Plasma enhanced chemical vapor deposition of excellent a-Si:H passivation layers for a-Si:H/c-Si heterojunction solar cells at high pressure and high power

Lei ZHAO, Wenbin ZHANG, Jingwei CHEN, Hongwei DIAO, Qi WANG, Wenjing WANG

PDF(286 KB)
PDF(286 KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (1) : 85-91. DOI: 10.1007/s11708-016-0437-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Plasma enhanced chemical vapor deposition of excellent a-Si:H passivation layers for a-Si:H/c-Si heterojunction solar cells at high pressure and high power

Author information +
History +

Abstract

The intrinsic a-Si:H passivation layer inserted between the doped a-Si:H layer and the c-Si substrate is very crucial for improving the performance of the a-Si:H/c-Si heterojunction (SHJ) solar cell. The passivation performance of the a-Si:H layer is strongly dependent on its microstructure. Usually, the compact a-Si:H deposited near the transition from the amorphous phase to the nanocrystalline phase by plasma enhanced chemical vapor deposition (PECVD) can provide excellent passivation. However, at the low deposition pressure and low deposition power, such an a-Si:H layer can be only prepared in a narrow region. The deposition condition must be controlled very carefully. In this paper, intrinsic a-Si:H layers were prepared on n-type Cz c-Si substrates by 27.12 MHz PECVD at a high deposition pressure and high deposition power. The corresponding passivation performance on c-Si was investigated by minority carrier lifetime measurement. It was found that an excellent a-Si:H passivation layer could be obtained in a very wide deposition pressure and power region. Such wide process window would be very beneficial for improving the uniformity and the yield for the solar cell fabrication. The a-Si:H layer microstructure was further investigated by Raman and Fourier transform infrared (FTIR) spectroscopy characterization. The correlation between the microstructure and the passivation performance was revealed. According to the above findings, the a-Si:H passivation performance was optimized more elaborately. Finally, a large-area SHJ solar cell with an efficiency of 22.25% was fabricated on the commercial 156 mm pseudo-square n-type Cz c-Si substrate with the open-circuit voltage (Voc) of up to 0.732 V.

Keywords

PECVD / high pressure and high power / a-Si:H microstructure / passivation / heterojunction solar cell

Cite this article

Download citation ▾
Lei ZHAO, Wenbin ZHANG, Jingwei CHEN, Hongwei DIAO, Qi WANG, Wenjing WANG. Plasma enhanced chemical vapor deposition of excellent a-Si:H passivation layers for a-Si:H/c-Si heterojunction solar cells at high pressure and high power. Front. Energy, 2017, 11(1): 85‒91 https://doi.org/10.1007/s11708-016-0437-3

References

[1]
Taguchi M, Tanaka M, Matsuyama T, Matsuoka T, Tsuda S, Nakano S, Kishi Y, Kuwano Y. Improvement of the conversion efficiency of polycrystalline silicon thin film solar cell. In: Proceedings of Technical Digest of the 5th International Photovoltaic Science and Engineering Conference. Kyoto, Japan, 1990: 689–692
[2]
Scherg-Kurmes H, Körner S, Ring S, Klaus M, Korte L, Ruske F, Schlatmann R, Rech B, Szyszka B. High mobility In2O3:H as contact layer for a-Si:H/c-Si heterojunction and c-Si:H thin film solar cells. Thin Solid Films, 2015, 594: 316–322
CrossRef Google scholar
[3]
Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E. 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE Journal of Photovoltaics, 2014, 4(1): 96–99
CrossRef Google scholar
[4]
de Wolf S, Descoeudres A, Holman Z C, Ballif C. High-efficiency silicon heterojunction solar cells: a review. Green, 2012, 2(1): 7– 24
CrossRef Google scholar
[5]
Schulze T F, Korte L, Rech B. Impact of a-Si:H hydrogen depth profiles on passivation properties in a-Si:H/c-Si heterojunctions. Thin Solid Films, 2012, 520(13): 4439–4444
CrossRef Google scholar
[6]
Wang Q, Page M R, Iwaniczko E, Xu Y Q, Roybal L, Bauer R, To B, Yuan H C, Duda A, Hasoon F, Yan Y F, Levi D, Meier D, Branz H M, Wang T H. Efficient heterojunction solar cells on p-type crystal silicon wafers. Applied Physics Letters, 2010, 96(1): 013507
CrossRef Google scholar
[7]
Fesquet L, Olibet S, Vallat-Sauvain E, Shah A, Ballif C. High quality surface passivation and heterojunction fabrication by VHF-PECVD deposition of amorphous silicon on crystalline Si: theory and experiments. In: Proceedings of 23rd European Photovoltaic Solar Energy Conference and Exhibition. Valencia, Spain, 2008, 2: 2DV 2.14
[8]
Fujiwara H, Kaneko T, Kondo M. Optimization of interface structures in crystalline silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 2009, 93(6-7): 725–728
CrossRef Google scholar
[9]
Kim S K, Lee J C, Park S J, Kim Y J, Yoon K H. Effect of hydrogen dilution on intrinsic a-Si:H layer between emitter and Si wafer in silicon heterojunction solar cell. Solar Energy Materials and Solar Cells, 2008, 92(3): 298–301
CrossRef Google scholar
[10]
Kim S, Dao V A, Shin C, Cho J, Lee Y, Balaji N, Ahn S, Kim Y, Yi J. Low defect interface study of intrinsic layer for c-Si surface passivation in a-Si:H/c-Si heterojunction solar cells. Thin Solid Films, 2012, 521: 45–49
CrossRef Google scholar
[11]
Lee S J, Kim S H, Kim D W, Kim K H, Kim B K, Jang J. Effect of hydrogen plasma passivation on performance of HIT solar cells. Solar Energy Materials and Solar Cells, 2011, 95(1): 81–83
CrossRef Google scholar
[12]
Zhao L, Diao H W, Zeng X B, Zhou C L, Li H L, Wang W J. Comparative study of the surface passivation on crystalline silicon by silicon thin films with different structures. Physica B: Condensed Matter, 2010, 405(1): 61–64
CrossRef Google scholar
[13]
Meddeb H, Bearda T, Abdelraheem Y, Ezzaouia H, Gordon I, Szlufcik J, Poortmans J. Structural, hydrogen bonding and in situ studies of the effect of hydrogen dilution on the passivation by amorphous silicon of n-type crystalline (100) silicon surfaces. Journal of Physics D: Applied Physics, 2015, 48(41): 415301
CrossRef Google scholar
[14]
Zhang L P, Liu W Z, Guo W W, Bao J, Zhang X Y, Liu J N, Wang D L, Meng F Y, Liu Z X. Interface processing of amorphous-crystalline silicon heterojunction prior to the formation of amorphous-to-nanocrystalline transition phase. IEEE Journal of Photovoltaics, 2016, 6(3): 604–610
CrossRef Google scholar
[15]
Ge J, Ling Z P, Wong J, Stangl R, Aberle A G, Mueller T. Analysis of intrinsic hydrogenated amorphous silicon passivation layer growth for use in heterojunction silicon wafer solar cells by optical emission spectroscopy. Journal of Applied Physics, 2013, 113(23): 234310
CrossRef Google scholar
[16]
Guo W W, Zhang L P, Bao J, Meng F Y, Liu J N, Wang D L, Bian J Y, Liu W Z, Feng Z Q, Verlinden P J, Liu Z X. Defining a parameter of plasma-enhanced CVD to characterize the effect of silicon-surface passivation in heterojunction solar cells. Japanese Journal of Applied Physics, 2015, 54(4): 041402
CrossRef Google scholar
[17]
Geissbühler J, De Wolf S, Demaurex B, Seif J P, Alexander D T L, Barraud L, Ballif C. Amorphous/crystalline silicon interface defects induced by hydrogen plasma treatments. Applied Physics Letters, 2013, 102(23): 231604
CrossRef Google scholar
[18]
Deligiannis D, Marioleas V, Vasudevan R, Visser C C G, van Swaaij R A C M M, Zeman M. Understanding the thickness-dependent effective lifetime of crystalline silicon passivated with a thin layer of intrinsic hydrogenated amorphous silicon using a nanometer-accurate wet-etching method. Journal of Applied Physics, 2016, 119(23): 235307
CrossRef Google scholar
[19]
De Wolf S. Intrinsic and doped a-Si:H/c-Si interface passivation. In: Physics and Technology of Amorphous-crystalline Heterostructure Silicon Solar Cells. Berlin: Springer-Verlag Berlin Heidelberg, 2012: 223–259<?Pub Caret?>
[20]
Sproul A B. Dimensionless solution of the equation describing the effect of surface recombination on carrier decay in semiconductors. Journal of Applied Physics, 1994, 76(5): 2851–2854
CrossRef Google scholar
[21]
Beeman D, Tsu R, Thorpe M F. Structural information from the Raman spectrum of amorphous silicon. Physical Review B: Condensed Matter and Materials Physics, 1985, 32(2): 874–878
CrossRef Google scholar
[22]
Morell G, Katiyar R S, Weisz S Z, Jia H, Shinar J, Balberg I. Raman study of the network disorder in sputtered and glow discharge a-Si:H films. Journal of Applied Physics, 1995, 78(8): 5120–5125
CrossRef Google scholar
[23]
Ouwens J D, Schropp R E I. Hydrogen microstructure in hydrogenated amorphous silicon. Physical Review B: Condensed Matter and Materials Physics, 1996, 54(24): 17759–17762
CrossRef Google scholar
[24]
Guo W W, Zhang L P, Meng F Y, Bao J, Wang D L, Liu J N, Feng Z Q, Verlinden P J, Liu Z X. Study of the correlation between hydrogenated amorphous silicon microstructure and crystalline silicon surface passivation in heterojunction solar cells. Physica Status Solidi A: Applications and Materials Science, 2015, 212(10): 2233–2238
CrossRef Google scholar
[25]
Langford A A, Fleet M L, Nelson B P, Lanford W A, Maley N. Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon. Physical Review B: Condensed Matter and Materials Physics, 1992, 45(23): 13367–13377
CrossRef Google scholar

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (863 Program) (Grant No. 2011AA050502) and the National Natural Science Foundation of China (Grant No. 61274061).

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(286 KB)

Accesses

Citations

Detail

Sections
Recommended

/