Simulation and experimental improvement on a small-scale Stirling thermo-acoustic engine

Mao CHEN, Yonglin JU

PDF(1191 KB)
PDF(1191 KB)
Front. Energy ›› 2016, Vol. 10 ›› Issue (1) : 37-45. DOI: 10.1007/s11708-015-0390-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Simulation and experimental improvement on a small-scale Stirling thermo-acoustic engine

Author information +
History +

Abstract

Compared with the traditional engines, the thermo-acoustic engines are relatively new and can act as the linear compressors for refrigerators. Many institutes have shown great interest in this kind of machine for its absence of moving mechanical part. In this paper, the influence of the dimensions of the main parts of the small-scale Stirling thermo-acoustic engine was numerically simulated using a computer code called DeltaEC. The resonator and the resonator cavity were found to be the most convenient and effective in improving the performance of the engine. Based on the numerical simulation, a small-scale Stirling thermo-acoustic engine were constructed and experimentally investigated. Currently, with a resonator length of only 1 m, the working frequency of the engine was decreased to 90 Hz and the onset temperature difference was decreased to 198.2 K.

Keywords

thermo-acoustic Stirling engine / small-scale / simulation / experiment

Cite this article

Download citation ▾
Mao CHEN, Yonglin JU. Simulation and experimental improvement on a small-scale Stirling thermo-acoustic engine. Front. Energy, 2016, 10(1): 37‒45 https://doi.org/10.1007/s11708-015-0390-6

References

[1]
Backhaus S, Swift G W. A thermo-acoustic-Stirling heat engine: detailed study. Journal of the Acoustical Society of America, 2000, 107(6): 3148–3166
CrossRef Google scholar
[2]
Ueda Y, Biwa T, Mizutani U, Yazaki T. U, Yazaki T. Experimental studies of a thermoacoustic Stirling prime mover and its application to a cooler. Journal of the Acoustical Society of America, 2004, 115(3): 1134–1141 
CrossRef Google scholar
[3]
Yu Z B, Li Q, Chen X, Guo F Z, Xie X J. Experimental investigation on a thermo-acoustic engine having a looped tube and resonator. Cryogenics, 2005, 45(8): 566–571 
CrossRef Google scholar
[4]
Zhou G, Li Q, Li Z Y, Li Q. Influence of resonator diameter on a miniature thermo-acoustic Stirling heat engine. Chinese Science Bulletin, 2008, 53(1): 145–154
CrossRef Google scholar
[5]
Ward W C, Swift G W. Design environment for low-amplitude thermo-acoustic engines. Journal of the Acoustical Society of America, 1994, 95(6): 3671–3672
CrossRef Google scholar
[6]
Hao X H, Ju Y L, Behera U, Kasthurirengan S. Influence of working fluid on the performance of a standing-wave thermo-acoustic prime mover. Cryogenics, 2011, 51(9): 559–561
CrossRef Google scholar
[7]
Yu Z B, Jaworski A J, Backhaus S. Travelling-wave thermo-acoustic electricity generator using an ultra-compliant alternator for utilization of low-grade thermal energy. Applied Energy, 2012, 99: 135–145
CrossRef Google scholar
[8]
Hariharan N M, Sivashanmugam P, Kasthurirengan S. Effect of resonator length and working fluid on the performance of twin thermo-acoustic heat engine—experimental and simulation studies. Computers & Fluids, 2013, 75: 51–55
CrossRef Google scholar
[9]
Mumith J A, Makatsoris C, Karayiannis T G. Design of a thermo-acoustic heat engine for low temperature waste heat recovery in food manufacturing. Applied Thermal Engineering, 2014, 65(1-2): 588–596
CrossRef Google scholar

Acknowledgments

This work was partially supported by the Science and Technology Research Project of Shanghai (No. 06PJ14052) and the Program for Distinguished Young Scholars of the Ministry of Education (NCET-07-0544). The authors would also like to acknowledge the support from the software of DeltaEC.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1191 KB)

Accesses

Citations

Detail

Sections
Recommended

/