Classical state feedback controller for nonlinear systems using mean value theorem: closed loop-FOC of PMSM motor application

Abrar ALLAG , Abdelhamid BENAKCHA , Meriem ALLAG , Ismail ZEIN , Mohamed Yacine AYAD

Front. Energy ›› 2015, Vol. 9 ›› Issue (4) : 413 -425.

PDF (1641KB)
Front. Energy ›› 2015, Vol. 9 ›› Issue (4) : 413 -425. DOI: 10.1007/s11708-015-0379-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Classical state feedback controller for nonlinear systems using mean value theorem: closed loop-FOC of PMSM motor application

Author information +
History +
PDF (1641KB)

Abstract

The problem of state feedback controllers for a class of Takagi-Sugeno (T-S) Lipschitz nonlinear systems is investigated. A simple systematic and useful synthesis method is proposed based on the use of the differential mean value theorem (DMVT) and convex theory. The proposed design approach is based on the mean value theorem (MVT) to express the nonlinear error dynamics as a convex combination of known matrices with time varying coefficients as linear parameter varying (LPV) systems. Using the Lyapunov theory, stability conditions are obtained and expressed in terms of linear matrix inequalities (LMIs). The controller gains are then obtained by solving linear matrix inequalities. The effectiveness of the proposed approach for closed loop-field oriented control (CL-FOC) of permanent magnet synchronous machine (PMSM) drives is demonstrated through an illustrative simulation for the proof of these approaches. Furthermore, an extension for controller design with parameter uncertainties and perturbation performance is discussed.

Keywords

Takagi-Sugeno (T-S) fuzzy systems / sector nonlinearity / nonlinear controller / linear matrix inequality (LMI) approach / differential mean value theorem (DMVT) / field oriented control (FOC) / linear parameter varying (LPV)

Cite this article

Download citation ▾
Abrar ALLAG, Abdelhamid BENAKCHA, Meriem ALLAG, Ismail ZEIN, Mohamed Yacine AYAD. Classical state feedback controller for nonlinear systems using mean value theorem: closed loop-FOC of PMSM motor application. Front. Energy, 2015, 9(4): 413-425 DOI:10.1007/s11708-015-0379-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ichalal DArioui HMammar S. Observer design for two-wheeled vehicle: a Takagi-Sugeno approach with unmeasurable premise variables. In: Proceedings of the 19th Mediterranean Conference on Control and Automation. Corfu, Greece, 2011, 1–6

[2]

Pertew A MMarquez H JZhao QH observer design for Lipschitz nonlinear systems. IEEE Transactions on Automatic Control200651(7): 1211–1216

[3]

Luenberger D G. An introduction to observers. IEEE Transactions on Automatic Control197116(6): 596–602

[4]

Rajamani R. Observers for Lipschitz nonlinear systems. IEEE Transactions on Automatic Control199843(3): 397–401

[5]

Bara G IDaafouz JKratz FRagot J. Parameter dependent state observer design for affine LPV systems. International Journal of Control200174(16): 1601–1611

[6]

Zemouche ABoutayeb MBara G I. Observer design for nonlinear systems: an approach based on the differential mean value theorem. In: Proceedings of the 44th IEEE Conference on Decision and Control. Seville, Spain, 2005, 6353–6358

[7]

Phanomchoeng GRajamani RPiyabongkarn D. Nonlinear observer for bounded Jacobian systems, with applications to automotive slip angle estimation. IEEE Transactions on Automatic Control201156(5): 1163–1170

[8]

Tanaka KWang H O. Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. New York: Wiley-Interscience2001

[9]

Baranyi P. TP model transformation as a way to LMI-based controller design. IEEE Transactions on Industrial Electronics200451(2): 387–400

[10]

Merzoug MNaceri F. Comparison of field-oriented control and direct torque control for permanent magnet synchronous motor (PMSM). International Journal of Electrical, Computer, Energetic, Electronics and Communication Engineering20082(9): 107–112

[11]

Molavi RKhaburi D A. Optimal control strategies for speed control of permanent-magnet synchronous motor drives. Proceedings of World Academy of Science Engineering and Technology200844: 428

[12]

Štulrajter MHrabovcová VFranko M. Permanent magnets synchronous motor control theory. Journal of Electrical Engineering200758(2): 79–84

[13]

Novotny DLipo T. Vector Control and Dynamics of AC Drives. New York: Oxford University Press1996

[14]

Solsona JValla M IMuravchik C. Nonlinear control of a permanent magnet synchronous motor with disturbance torque estimation. IEEE Transactions on Energy Conversion200015(2): 163–168

[15]

Shi J LLiu T HChang Y C. Optimal controller design of a sensorless PMSM control system. Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of IEEE2005

[16]

Zemouche ABoutayeb MBara G I. Observers for a class of Lipschitz systems with extension to H performance analysis. Systems & Control Letters200857(1): 18–27

[17]

Sahoo P KRiedel T. Mean Value Theorems and Functional Equations. New Jersey: World Scientific Publishing Company1999

[18]

Bergsten PPalm RDriankov D. Observers for Takagi-Sugeno fuzzy systems. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics200232(1): 114–121

[19]

Raghavan SHedrick J K. Observer design for a class of nonlinear systems. International Journal of Control199459(2): 515–528

[20]

Rahman M AVilathgamuwa D MUddin M NTseng K J. Nonlinear control of interior permanent-magnet synchronous motor. IEEE Transactions on Industry Applications200339(2): 408–416

[21]

Ren HLiu D. Nonlinear feedback control of chaos in permanent magnet synchronous motor. IEEE Transactions on Circuits and Systems II: Express Briefs200653(1): 45–50

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1641KB)

3358

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/