Higher heating value prediction of torrefaction char produced from non-woody biomass

Nitipong SOPONPONGPIPAT, Dussadeeporn SITTIKUL, Unchana SAE-UENG

PDF(684 KB)
PDF(684 KB)
Front. Energy ›› 2015, Vol. 9 ›› Issue (4) : 461-471. DOI: 10.1007/s11708-015-0377-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Higher heating value prediction of torrefaction char produced from non-woody biomass

Author information +
History +

Abstract

The higher heating value of five types of non-woody biomass and their torrefaction char was predicted and compared with the experimental data obtained in this paper. The correlation proposed in this paper and the ones suggested by previous researches were used for prediction. For prediction using proximate analysis data, the mass fraction of fixed carbon and volatile matter had a strong effect on the higher heating value prediction of torrefaction char of non-woody biomass. The high ash fraction found in torrefied char resulted in a decrease in prediction accuracy. However, the prediction could be improved by taking into account the effect of ash fraction. The correlation developed in this paper gave a better prediction than the ones suggested by previous researches, and had an absolute average error (AAE) of 2.74% and an absolute bias error (ABE) of 0.52%. For prediction using elemental analysis data, the mass fraction of carbon, hydrogen, and oxygen had a strong effect on the higher heating value, while no relationship between the higher heating value and mass fractions of nitrogen and sulfur was discovered. The best correlation gave an AAE of 2.28% and an ABE of 1.36%.

Keywords

higher heating value / correlation / biomass / proximate analysis / ultimate analysis

Cite this article

Download citation ▾
Nitipong SOPONPONGPIPAT, Dussadeeporn SITTIKUL, Unchana SAE-UENG. Higher heating value prediction of torrefaction char produced from non-woody biomass. Front. Energy, 2015, 9(4): 461‒471 https://doi.org/10.1007/s11708-015-0377-3

References

[1]
Sheng C, Azevedo J L T. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass and Bioenergy, 2005, 28(5): 499–507
CrossRef Google scholar
[2]
Friedl A, Padouvas E, Rotter H, Varmuza K. Prediction of heating values of biomass fuel from elemental composition. Analytica Chimica Acta, 2005, 544(1–2): 191–198
CrossRef Google scholar
[3]
Shen J, Zhu S, Liu X, Zhang H, Tan J. The prediction of elemental composition of biomass based on proximate analysis. Energy Conversion and Management, 2010, 51(5): 983–987
CrossRef Google scholar
[4]
Nhuchhen D R, Abdul Salam P. Estimation of higher heating value of biomass from proximate analysis: a new approach. Fuel, 2012, 99: 55–63
CrossRef Google scholar
[5]
Akkaya A V. Proximate analysis based multiple regression models for higher heating value estimation of low rank coals. Fuel Processing Technology, 2009, 90(2): 165–170
CrossRef Google scholar
[6]
Cordero T, Marquez F, Rodriguez-Mirasol J, Rodriguez J J. Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel, 2001, 80(11): 1567–1571
CrossRef Google scholar
[7]
Erol M, Haykiri-Acma H, Küçükbayrak S. Calorific value estimation of biomass from their proximate analyses data. Renewable Energy, 2010, 35(1): 170–173
CrossRef Google scholar
[8]
Jenkins B M, Ebeling J M. Correlation of physical and chemical properties of terrestrial biomass with conversion. In: Proceedings of Energy from Biomass and Wastes IX, Chicago, 1985, 371–400
[9]
Kathiravale S, Muhd Yunus M N, Sopian K, Samsuddin A H, Rahman R A. Modeling the heating value of Municipal Solid Waste. Fuel, 2003, 82(9): 1119–1125
CrossRef Google scholar
[10]
Callejón-Ferre A J, Velázquez-Marti B, López-Martínez J A, Manzano-Agugliaro F. Greenhouse crop residues: energy potential and models for the prediction of their higher heating value. Renewable  &  Sustainable  Energy  Reviews,  2011,  15(2):  948–955
CrossRef Google scholar
[11]
Graboski M, Bain R. Properties of biomass relevant to gasification [Fuel gas production]. Biomass gasification—principles and technology, 1981, 41–69
[12]
Thipkhunthod P, Meeyoo V, Rangsunvigit P, Kitiyanan B, Siemanond K, Rirksomboon T. Predicting the heating value of sewage sludges in Thailand from proximate and ultimate analyses. Fuel, 2005, 84(7–8): 849–857
CrossRef Google scholar
[13]
Jiménez L, González F. Study of the physical and chemical properties of lignocellulosic residues with a view to the production of fuels. Fuel, 1991, 70(8): 947–950
CrossRef Google scholar
[14]
Parikh J, Channiwala S A, Ghosal G K. A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel, 2007, 86(12–13): 1710–1719
CrossRef Google scholar
[15]
Demirbaş A. Calculation of higher heating values of biomass fuels. Fuel, 1997, 76(5): 431–434
CrossRef Google scholar
[16]
Küçükbayrak S, Dürüs B, Meríçboyu A E, Kadioġlu E. Estimation of calorific values of Turkish lignites. Fuel, 1991, 70(8): 979–981
CrossRef Google scholar
[17]
Yin C Y. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel, 2011, 90(3): 1128–1132
CrossRef Google scholar
[18]
Channiwala S A, Parikh P P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 2002, 81(8): 1051–1063
CrossRef Google scholar
[19]
Tillman D. Wood as an energy resource. New York: Academic, 1978
[20]
Francis H E, Lloyd W G. Predicting heating value from elemental composition. Journal of Coal Quality, 1983, 2: 2
[21]
Bridgeman T G, Jones J M, Williams A, Waldron D J. An investigation of the grindability of two torrefied energy crops. Fuel, 2010, 89(12): 3911–3918
CrossRef Google scholar
[22]
Chen W H, Cheng W Y, Lu K M, Huang Y P. An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction. Applied Energy, 2011, 88(11): 3636–3644
CrossRef Google scholar
[23]
Medic D, Darr M, Shah A, Potter B, Zimmerman J. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel, 2012, 91(1): 147–154
CrossRef Google scholar

Acknowledgments

This work was supported by the Energy Policy and Planning Office, Ministry of Energy, Thailand (Grant no: 07-01-54-001).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(684 KB)

Accesses

Citations

Detail

Sections
Recommended

/