Higher heating value prediction of torrefaction char produced from non-woody biomass

Nitipong SOPONPONGPIPAT , Dussadeeporn SITTIKUL , Unchana SAE-UENG

Front. Energy ›› 2015, Vol. 9 ›› Issue (4) : 461 -471.

PDF (684KB)
Front. Energy ›› 2015, Vol. 9 ›› Issue (4) : 461 -471. DOI: 10.1007/s11708-015-0377-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Higher heating value prediction of torrefaction char produced from non-woody biomass

Author information +
History +
PDF (684KB)

Abstract

The higher heating value of five types of non-woody biomass and their torrefaction char was predicted and compared with the experimental data obtained in this paper. The correlation proposed in this paper and the ones suggested by previous researches were used for prediction. For prediction using proximate analysis data, the mass fraction of fixed carbon and volatile matter had a strong effect on the higher heating value prediction of torrefaction char of non-woody biomass. The high ash fraction found in torrefied char resulted in a decrease in prediction accuracy. However, the prediction could be improved by taking into account the effect of ash fraction. The correlation developed in this paper gave a better prediction than the ones suggested by previous researches, and had an absolute average error (AAE) of 2.74% and an absolute bias error (ABE) of 0.52%. For prediction using elemental analysis data, the mass fraction of carbon, hydrogen, and oxygen had a strong effect on the higher heating value, while no relationship between the higher heating value and mass fractions of nitrogen and sulfur was discovered. The best correlation gave an AAE of 2.28% and an ABE of 1.36%.

Keywords

higher heating value / correlation / biomass / proximate analysis / ultimate analysis

Cite this article

Download citation ▾
Nitipong SOPONPONGPIPAT, Dussadeeporn SITTIKUL, Unchana SAE-UENG. Higher heating value prediction of torrefaction char produced from non-woody biomass. Front. Energy, 2015, 9(4): 461-471 DOI:10.1007/s11708-015-0377-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sheng CAzevedo J L T. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass and Bioenergy200528(5): 499–507

[2]

Friedl APadouvas ERotter HVarmuza K. Prediction of heating values of biomass fuel from elemental composition. Analytica Chimica Acta2005544(1–2): 191–198

[3]

Shen JZhu SLiu XZhang HTan J. The prediction of elemental composition of biomass based on proximate analysis. Energy Conversion and Management201051(5): 983–987

[4]

Nhuchhen D RAbdul Salam P. Estimation of higher heating value of biomass from proximate analysis: a new approach. Fuel201299: 55–63

[5]

Akkaya A V. Proximate analysis based multiple regression models for higher heating value estimation of low rank coals. Fuel Processing Technology200990(2): 165–170

[6]

Cordero TMarquez FRodriguez-Mirasol JRodriguez J J. Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel200180(11): 1567–1571

[7]

Erol MHaykiri-Acma HKüçükbayrak S. Calorific value estimation of biomass from their proximate analyses data. Renewable Energy201035(1): 170–173

[8]

Jenkins B MEbeling J M. Correlation of physical and chemical properties of terrestrial biomass with conversion. In: Proceedings of Energy from Biomass and Wastes IX, Chicago1985, 371–400

[9]

Kathiravale SMuhd Yunus M NSopian KSamsuddin A HRahman R A. Modeling the heating value of Municipal Solid Waste. Fuel200382(9): 1119–1125

[10]

Callejón-Ferre A JVelázquez-Marti BLópez-Martínez J AManzano-Agugliaro F. Greenhouse crop residues: energy potential and models for the prediction of their higher heating value. Renewable  &  Sustainable  Energy  Reviews 2011 15(2):  948–955

[11]

Graboski MBain R. Properties of biomass relevant to gasification [Fuel gas production]. Biomass gasification—principles and technology1981, 41–69

[12]

Thipkhunthod PMeeyoo VRangsunvigit PKitiyanan BSiemanond KRirksomboon T. Predicting the heating value of sewage sludges in Thailand from proximate and ultimate analyses. Fuel200584(7–8): 849–857

[13]

Jiménez LGonzález F. Study of the physical and chemical properties of lignocellulosic residues with a view to the production of fuels. Fuel199170(8): 947–950

[14]

Parikh JChanniwala S AGhosal G K. A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel200786(12–13): 1710–1719

[15]

Demirbaş A. Calculation of higher heating values of biomass fuels. Fuel199776(5): 431–434

[16]

Küçükbayrak SDürüs BMeríçboyu A EKadioġlu E. Estimation of calorific values of Turkish lignites. Fuel199170(8): 979–981

[17]

Yin C Y. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel201190(3): 1128–1132

[18]

Channiwala S AParikh P P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel200281(8): 1051–1063

[19]

Tillman D. Wood as an energy resource. New York: Academic, 1978

[20]

Francis H ELloyd W G. Predicting heating value from elemental composition. Journal of Coal Quality19832: 2

[21]

Bridgeman T GJones J MWilliams AWaldron D J. An investigation of the grindability of two torrefied energy crops. Fuel201089(12): 3911–3918

[22]

Chen W HCheng W YLu K MHuang Y P. An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction. Applied Energy201188(11): 3636–3644

[23]

Medic DDarr MShah APotter BZimmerman J. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel201291(1): 147–154

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (684KB)

3539

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/