A new technique for solving the multi-objective optimization problem using hybrid approach
Mimoun YOUNES, Khodja FOUAD, Belabbes BAGDAD
A new technique for solving the multi-objective optimization problem using hybrid approach
Energy efficiency, which consists of using less energy or improving the level of service to energy consumers, refers to an effective way to provide overall energy. But its increasing pressure on the energy sector to control greenhouse gases and to reduce CO2 emissions forced the power system operators to consider the emission problem as a consequential matter besides the economic problems. The economic power dispatch problem has, therefore, become a multi-objective optimization problem. Fuel cost, pollutant emissions, and system loss should be minimized simultaneously while satisfying certain system constraints. To achieve a good design with different solutions in a multi-objective optimization problem, fuel cost and pollutant emissions are converted into single optimization problem by introducing penalty factor. Now the power dispatch is formulated into a bi-objective optimization problem, two objectives with two algorithms, firefly algorithm for optimization the fuel cost, pollutant emissions and the real genetic algorithm for minimization of the transmission losses. In this paper the new approach (firefly algorithm-real genetic algorithm, FFA-RGA) has been applied to the standard IEEE 30-bus 6-generator. The effectiveness of the proposed approach is demonstrated by comparing its performance with other evolutionary multi-objective optimization algorithms. Simulation results show the validity and feasibility of the proposed method.
economic power dispatch (EPD) / firefly algorithm (FFA) / real genetic algorithm (RGA) / hybrid method
[1] |
Carpentier J. Contribution to the study of economic dispatch. Bulletin of the French Society of Electricians, 1962, 3: 431–447
|
[2] |
Vanderbei J R, Shanno F D. An interior-point algorithm for nonconvex nonlinear programming. Computational Optimization and Applications, 1999, 13(1–3): 231–252
CrossRef
Google scholar
|
[3] |
Bottero M H, Caliana E D, Fahmideh-Vojdani A R. Economic dispatch using the reduced hessian. IEEE Transactions on Power Apparatus and Systems, 1982, 101(10): 3679–3688
CrossRef
Google scholar
|
[4] |
Reid G E, Hasdorf L. Economic dispatch using quadratic programming. IEEE Transactions on Power Apparatus and Systems, 1973, 92(6): 2015–2023
CrossRef
Google scholar
|
[5] |
Stott B, Hobson E. Power system security control calculation using linear programming. IEEE Transactions on Power Apparatus and Systems, 1978, 97(5): 1713–1720
CrossRef
Google scholar
|
[6] |
Stott B, Hobson E. Power system security control calculation using linear programming. IEEE Transactions on Power Apparatus and Systems, 1978, 97(5): 1721–1731
CrossRef
Google scholar
|
[7] |
Momoh J A, Zhu J Z. Improved interior point method for OPF problems. IEEE Transactions on Power Systems, 1999, 14(3): 1114–1120
CrossRef
Google scholar
|
[8] |
Sun D I, Ashley B, Brewer B, Hughes A, Tinney W F. Optimal power flow by Newton approach. IEEE Transactions on Power Apparatus and Systems, 1984, PAS-103(10): 2864–2880
CrossRef
Google scholar
|
[9] |
Bahiense L, Oliveira G C, Pereira M, Granville S. A mixed integer disjunctive model for transmission network expansion. IEEE Transactions on Power Systems, 2001, 16(3): 560–565
CrossRef
Google scholar
|
[10] |
Dusonchet Y P, El-Abiad A H. Transmission planning using discrete dynamic optimization. IEEE Transactions on Power Apparatus and Systems, 1997, 92: 1358–1371
|
[11] |
Haffner S, Monticelli A, Garcia A, Romero R. Specialised branch and bound algorithm for transmission network expansion planning. IEE Proceedings-Generation, Transmission and Distribution, 2001, 148(5): 482–488
CrossRef
Google scholar
|
[12] |
Glover F. Tabu search—Part I. ORSA Journal on Computing, 1986, 1(3): 190–206
|
[13] |
Kirkpatrick S, Gelatt C D, Vecchi M P. Optimisation by simulated annealing. Science, 1983, 220(4598): 671–680
CrossRef
Google scholar
|
[14] |
Lai L L, Ma J T, Yokoyama R, Zhao M. Improved genetic algorithms for optimal power flow under both normal and contingent operation states. International Journal of Electrical Power & Energy Systems, 1997, 19(5): 287–292
CrossRef
Google scholar
|
[15] |
Yuryevich J, Wong K P. Evolutionary programming based optimal power flow algorithm. IEEE Transactions on Power Systems, 1999, 14(4): 1245–1250
CrossRef
Google scholar
|
[16] |
Mousavian S, Valenzuela J, Wang J. Real-time data reassurance in electrical power systems based on artificial neural networks. Electric Power Systems Research, 2013, 96: 285–295
CrossRef
Google scholar
|
[17] |
Abido M A. Optimal power flow using particle swarm optimization. International Journal of Electrical Power & Energy Systems, 2002, 24(7): 563–571
CrossRef
Google scholar
|
[18] |
Song Y H, Chou C S, Stonham T J. Combined heat and power economic dispatch by improved ant colony search algorithm. Electric Power Systems Research, 1999, 52(2): 115–121
CrossRef
Google scholar
|
[19] |
Fesanghary M, Mahdavi M, Minary-Jolandan M, Alizadeh Y. Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Computer Methods Applied Mechanics and Engineering, 2008, 197(33–40): 3080–3091
|
[20] |
Abido M A. A novel multiobjective evolutionary algorithm for environmental/economic power dispatch. Electric Power Systems Research, 2003, 65(1): 71–81
CrossRef
Google scholar
|
[21] |
Abido M A. Multiobjective evolutionary algorithms for electric power dispatch problem. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 315–329
CrossRef
Google scholar
|
[22] |
Yang X S. Review of meta-heuristic and generalized evolutionary walk algorithm. International Journal of Bio-Inspired Computation, 2011, 3(2): 77–84
CrossRef
Google scholar
|
[23] |
Amiri B, Hossain L, Crawford J W, Wigand R T. Community detection in complex networks: multi-objective enhanced firefly algorithm. Knowledge-Based Systems, 2013, 46: 1–11
CrossRef
Google scholar
|
[24] |
Gandomi A H, Yang X S, Talatahari S, Alavi A H. Firefly algorithm with chaos. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(1): 89–98
CrossRef
Google scholar
|
[25] |
Senapati M R, Dash P K. Local linear wavelet neural network based breast tumor classification using firefly algorithm. Neural Computing & Applications, 2013, 22(7–8): 1591–1598
CrossRef
Google scholar
|
[26] |
Fister I, Yang X S, Brest J, Fister I Jr. Modified firefly algorithm using quaternion representation. Expert Systems with Applications, 2013, 40(18): 7220–7230
CrossRef
Google scholar
|
[27] |
Kazem A, Sharifi E, Hussain F K, Saberi M, Hussain O K. Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Applied Soft Computing, 2013, 13(2): 947–958
CrossRef
Google scholar
|
[28] |
Yang X S. Multiobjective firefly algorithm for continuous optimization. Engineering with Computers, 2013, 29(2): 175–184
CrossRef
Google scholar
|
[29] |
Yang X S. Nature-Inspired Metaheuristic Algorithms. Bristol: Luniver Press, 2008
|
[30] |
Yang X S. Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley, 2010: 221–230
|
[31] |
Basu B, Mahanti G K. Firefly and artificial bees colony algorithm for synthesis of scanned and broadside linear array antenna. Progress in Electromagnetic Research B, 2011, 32: 169–190
CrossRef
Google scholar
|
[32] |
Yazdani A, Jayabarathi T, Ramesh V, Raghunathan T. Combined heat and power economic dispatch problem using firefly algorithm. Frontiers in Energy, 2013, 7(2): 133–139
CrossRef
Google scholar
|
[33] |
Holland J. Adaptation in Natural and Artificial Systems. Ann Arbor, USA: The University of Michigan Press, 1975
|
[34] |
Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley Educational Publishers Inc, 1989
|
[35] |
Younes M, Rahli M, Koridak L A. Optimal power flow based on hybrid genetic algorithm. Journal of Information Science and Engineering, 2007, 23: 1801–1816
|
[36] |
Michalewicz Z. A survey of constraint handling techniques in evolutionary computation methods. In: Mcdonnell J R, Renolds R G, Fogel D B, eds. Proceedings of the 4th Annual Conference on Evolutionary Programming, MIT Press, 1995, 135–155
|
[37] |
Caorsi S, Massa A, Pastorino M. A computational technique based on a real-coded genetic algorithm for microwave imaging purposes. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4): 1697–1708
CrossRef
Google scholar
|
[38] |
Oyama A, Obayashi S, Nakamura T. Real-coded adaptive range genetic algorithm applied to transonic wing optimization. Applied Soft Computing, 2001, 1(3): 179–187
CrossRef
Google scholar
|
[39] |
Niknam T, Narimani M R, Jabbari M, Malekpour A R. A modified shuffle frog leaping algorithm for multi-objective optimal power flow. Energy, 2011, 36(11): 6420–6432
CrossRef
Google scholar
|
[40] |
Saini A, Chaturvedi D K, Saxena A K. Optimal power flow solution: a GA-fuzzy system approach. International Journal of Emerging Electric Power Systems, 2006, 5(2): 1–21
CrossRef
Google scholar
|
[41] |
Ongsakul W, Tantimaporn T. Optimal power flow by improved evolutionary programming. Electric Power Components and Systems, 2006, 34(1): 79–95
CrossRef
Google scholar
|
[42] |
Abido M A. Optimal power flow using tabu search algorithm. Electric Power Components and Systems, 2002, 30(5): 469–483
CrossRef
Google scholar
|
[43] |
Yuryevich J, Wong K P. Evolutionary programming based optimal power flow algorithm. IEEE Transactions on Power Systems, 1999, 14(4): 1245–1250
CrossRef
Google scholar
|
[44] |
Narimani M R, Azizipanah-Abarghooee R, Zoghdar-Moghadam-Shahrekohne B, Gholami K. A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type. Energy, 2013, 49: 119–136
CrossRef
Google scholar
|
[45] |
Sailaja Kunari M, Maheswarapu S. Enhanced genetic algorithm based computation technique for multi-objective optimal power flow. International Journal of Electrical Power & Energy Systems, 2010, 32(6): 736–742
CrossRef
Google scholar
|
[46] |
Vaisakh K, Srinivas L R. A genetic evolving ant direction DE for OPF with non-smooth cost functions and statistical analysis. Energy, 2010, 35(8): 3155–3171
CrossRef
Google scholar
|
[47] |
Rezaei Adaryani M, Karami A. Artificial bee colony algorithm for solving multi-objective optimal power flow problem. International Journal of Electrical Power & Energy Systems, 2013, 53: 219– 230
CrossRef
Google scholar
|
[48] |
Perez-Guerrero R E, Cedefio-Maldonado J R. Differential evolution based economic environmental power dispatch. In: Proceedings of the 37th Annual North American Power Symposium. Piscataway, USA: NJ IEEE Service Center, 2005, 191–197
|
[49] |
Wang L, Singh C. Balancing risk and cost in fuzzy economic dispatch including wind power penetration based on particle swarm optimization. Electric Power Systems Research, 2008, 78(8): 1361–1368
CrossRef
Google scholar
|
/
〈 | 〉 |