Temperature difference-powered carbon nanotube bearings

Quanwen HOU , Bingyang CAO , Zengyuan GUO

Front. Energy ›› 2011, Vol. 5 ›› Issue (1) : 49 -52.

PDF (161KB)
Front. Energy ›› 2011, Vol. 5 ›› Issue (1) : 49 -52. DOI: 10.1007/s11708-010-0111-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Temperature difference-powered carbon nanotube bearings

Author information +
History +
PDF (161KB)

Abstract

Molecular dynamics simulations are conducted to study the motion of carbon nanotube-based nanobearings powered by temperature difference. When a temperature difference exists between stator nanotubes, the rotor nanotubes acquire a higher temperature, which arises from the interaction between phonon currents and nanotubes. The thermal driving force increases with the increase in temperature difference between the stators, an increase that is nearly proportional to the temperature difference. Confined by the minimum energy track, the (5, 5)@(10, 10) nanotube bearings only translate along the axis direction but without successive rotation.

Keywords

temperature difference-induced motion / carbon nanotubes / nanobearing / molecular dynamics simulation

Cite this article

Download citation ▾
Quanwen HOU, Bingyang CAO, Zengyuan GUO. Temperature difference-powered carbon nanotube bearings. Front. Energy, 2011, 5(1): 49-52 DOI:10.1007/s11708-010-0111-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes-the route toward applications. Science, 2002, 297(5582): 787-792

[2]

Tuzun R E, Noid D W, Sumpter B G. Dynamics of a laser-driven molecular motor. Nanotechnology, 1995, 6(2): 52-63

[3]

Srivastava D. A phenomenological model of the rotation dynamics of carbon nanotube gears with laser electric fields. Nanotechnology, 1997, 8(4): 186-192

[4]

Forro L. Nanotechnology- beyond gedanken experiments. Science, 2000, 289(5479): 560-561

[5]

Zheng Q S, Jiang Q. Multiwalled carbon nanotubes as gigahertz oscillators. Physical Review Letters, 2002, 88(4): 045503

[6]

Bourlon B, Glattli D C, Miko C, Forró L, Bachtold A. Carbon nanotube based bearing for rotational motions. Nano Letters, 2004, 4(4): 709-712

[7]

Schoen P A E, Walther J H, Arcidiacono S, Poulikakos D, Koumoutsakos P. Nanoparticle traffic on helical tracks: thermophoretic mass transport through carbon nanotubes. Nano Letters, 2006, 6(9): 1910-1917

[8]

Schoen P A E, Walther J H, Poulikakos D, Koumoutsakos P. Phonon assisted thermophoretic motion of gold nanoparticles inside carbon nanotubes. Applied Physics Letters, 2007, 90(25): 253116

[9]

Barreiro A, Rurali R, Hernandez E R, Moser J, Pichler T, Forró L,Bachtold A. Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes. Science, 2008, 320(5877): 775-778

[10]

Zambrano H A, Walther J H, Koumoutsakos P, Sbalzarini I F. Thermophoretic motion of water nanodroplets confined inside carbon nanotubes. Nano Letters, 2009, 9(1): 66-71

[11]

Shiomi J, Maruyama S. Water transport inside a single-walled carbon nanotube driven by a temperature gradient. Nanotechnology, 2009, 20(5): 55708

[12]

Brenner D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical Review B, 1990, 42(15): 9458-9471

[13]

Servantie J, Gaspard P. Rotational dynamics and friction in double-walled carbon nanotubes. Physical Review Letters, 2006, 97(18): 186106

[14]

Servantie J, Gaspard P. Translational dynamics and friction in double-walled carbon nanotubes. Physical Review B, 2006, 73(12): 125428

[15]

Hou Q W, Cao B Y, Guo Z Y. Thermal gradient induced actuation in double-walled carbon nanotubes. Nanotechnology, 2009, 20(49): 495503

[16]

Saito R, Matsuo R, Kimura T, Dresselhaus G, resselhaus M S. Anomalous potential barrier of double-wall carbon nanotube. Chemical Physics Letters, 2001, 348(3,4): 187-193

[17]

Lozovik Y E, Minogin A, Popov A M. Nanomachines based on carbon nanotubes. Physics Letters A, 2003, 313(1, 2): 112-121

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (161KB)

2463

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/