Computation model for corrosion resistance of nanocrystalline zircaloy-4

ZHANG Xiyan1, ZHU Yutao1, LIU Qing1, LUAN Baifeng1, HUANG Guangjie1, LI Cong1, ZHANG Xiyan2, SHI Minghua2, LIU Nianfu2, ZHANG Xiyan3, LI Cong3

PDF(122 KB)
PDF(122 KB)
Front. Energy ›› 2008, Vol. 2 ›› Issue (4) : 386-389. DOI: 10.1007/s11708-008-0102-6

Computation model for corrosion resistance of nanocrystalline zircaloy-4

  • ZHANG Xiyan1, ZHU Yutao1, LIU Qing1, LUAN Baifeng1, HUANG Guangjie1, LI Cong1, ZHANG Xiyan2, SHI Minghua2, LIU Nianfu2, ZHANG Xiyan3, LI Cong3
Author information +
History +

Abstract

A computation model of the corrosion rate versus grain size of nanocrystalline zircaloy-4 was presented. The influence of the second phase on the conductivity of alloy was considered. By this model, the corrosion rate of nanocrystalline zircaloy-4 at different temperature was calculated. The results show that the corrosion rate constant and weight gain of nanocrystalline zircaloy-4 decrease with the decrease of grain size, and that the corrosion weight gain of nanocrystalline zircaloy-4 is less than that of zircaloy-4 of coarse grain. The computational result is coincident with the experimental result.

Cite this article

Download citation ▾
ZHANG Xiyan, ZHU Yutao, LIU Qing, LUAN Baifeng, HUANG Guangjie, LI Cong, ZHANG Xiyan, SHI Minghua, LIU Nianfu, ZHANG Xiyan, LI Cong. Computation model for corrosion resistance of nanocrystalline zircaloy-4. Front. Energy, 2008, 2(4): 386‒389 https://doi.org/10.1007/s11708-008-0102-6

References

1. Broy Y, Garzarolli F, Seibold A, et al.. Influence of Transition Elements Fe, Cr, andV on Long-Time Corrosion in PWRs. In: : George P S and Moan D ed. Zirconium in the Nuclear Industry, 12th InternationalSymposium, STP 1354, ASTM, Philadelphia, 1998, 609–622
2. Park J Y, Choi B K, Yoo S J, et al.. Corrosion Behavior and Oxide Properties of Zr–1.1wt%Nb–0.05 wt%Cu Alloy. J Nucl Mater, 2006, 359(1): 59–68. doi:10.1016/j.jnucmat.2006.07.017
3. Li Z K, Liu J Z, Zhou L, et al.. Study on microstructure of oxide film for newzirconium alloys. Rare Metal Mater Eng, 2001, 4(1): 52–65
4. Park J Y, Kim H G, Jeong Y H, et al.. Crystal structure and grain size of Zr oxidecharacterized by synchrotron radiation microdiffraction. Nucl Mater, 2004, 335(3): 433–442. doi:10.1016/j.jnucmat.2004.07.051
5. Zhang X Y, Li C, Liu N F, et al.. Evolution of microstructure of oxide film ofnano-crystalline zircaloy-4. Nucl PowerEng, 2007, 28(6): 71–75
6. Zhang X Y, Shi M H, Li C, et al.. The influence of grain size on the corrosionresistance of nanocrystalline zirconium metal. Mater Sci Eng A, 2007, 448(1,2): 259–263
7. Zhou B X, Li C, Huang D C . The oxidation of Zr(Fe,Cr)2 metalliccompound. Nucl Power Eng, 1993, 14(2): 149–153
8. Jiang Q Y, He J J, Zou J Y, et al.. Electrical conductivity of CuCr compound materials. J Huazhong Univer Sci & Tech, 1999, 27(1): 78–80
9. Huang X W . The research of electrical conductivity of the contact material. J Electrician Alloys, 1998, 3(1): 26–32
10. Wang C Z . The Properties of Materials. Beijing: Press of Beijing Univer Tech, 2001, 189
11. Ye C J, Li T F, Zhou J L . Effect of grain size on oxidation behaviour of Ni3Al-Zr base alloy at elevated temperature. Acta Metall Sinica, 1995, 31: B109–116
12. Xiong B K, Wen W G, Yang X M . The Metallurgy of Zirconium and Hafnium. Beijing: Metallurgical IndustryPress, 2003, 54
13. Zhou B X, Li Q, Huang Q, Miao Z, et al.. Theeffect of water chemistry on the corrosion behavior of zirconium alloys. Nucl Power Eng, 2000, 21(5): 439–447
14. Baek J H, Jeong Y H . Depletion of Fe and Cr withinprecipitates during zircaloy-4 oxidation. J Nucl Mater, 2002, 304: 107–116. doi:10.1016/S0022-3115(02)00903-0
AI Summary AI Mindmap
PDF(122 KB)

Accesses

Citations

Detail

Sections
Recommended

/