Computation model for corrosion resistance of nanocrystalline zircaloy-4

ZHANG Xiyan1, ZHU Yutao1, LIU Qing1, LUAN Baifeng1, HUANG Guangjie1, LI Cong1, ZHANG Xiyan2, SHI Minghua2, LIU Nianfu2, ZHANG Xiyan3, LI Cong3

Front. Energy ›› 2008, Vol. 2 ›› Issue (4) : 386-389.

PDF(122 KB)
Front. Energy All Journals
PDF(122 KB)
Front. Energy ›› 2008, Vol. 2 ›› Issue (4) : 386-389. DOI: 10.1007/s11708-008-0102-6

Computation model for corrosion resistance of nanocrystalline zircaloy-4

  • ZHANG Xiyan1, ZHU Yutao1, LIU Qing1, LUAN Baifeng1, HUANG Guangjie1, LI Cong1, ZHANG Xiyan2, SHI Minghua2, LIU Nianfu2, ZHANG Xiyan3, LI Cong3
Author information +
History +

Abstract

A computation model of the corrosion rate versus grain size of nanocrystalline zircaloy-4 was presented. The influence of the second phase on the conductivity of alloy was considered. By this model, the corrosion rate of nanocrystalline zircaloy-4 at different temperature was calculated. The results show that the corrosion rate constant and weight gain of nanocrystalline zircaloy-4 decrease with the decrease of grain size, and that the corrosion weight gain of nanocrystalline zircaloy-4 is less than that of zircaloy-4 of coarse grain. The computational result is coincident with the experimental result.

Cite this article

Download citation ▾
ZHANG Xiyan, ZHU Yutao, LIU Qing, LUAN Baifeng, HUANG Guangjie, LI Cong, ZHANG Xiyan, SHI Minghua, LIU Nianfu, ZHANG Xiyan, LI Cong. Computation model for corrosion resistance of nanocrystalline zircaloy-4. Front. Energy, 2008, 2(4): 386‒389 https://doi.org/10.1007/s11708-008-0102-6
This is a preview of subscription content, contact us for subscripton.

References

1. Broy Y, Garzarolli F, Seibold A, et al.. Influence of Transition Elements Fe, Cr, andV on Long-Time Corrosion in PWRs. In: : George P S and Moan D ed. Zirconium in the Nuclear Industry, 12th InternationalSymposium, STP 1354, ASTM, Philadelphia, 1998, 609–622
2. Park J Y, Choi B K, Yoo S J, et al.. Corrosion Behavior and Oxide Properties of Zr–1.1wt%Nb–0.05 wt%Cu Alloy. J Nucl Mater, 2006, 359(1): 59–68. doi:10.1016/j.jnucmat.2006.07.017
3. Li Z K, Liu J Z, Zhou L, et al.. Study on microstructure of oxide film for newzirconium alloys. Rare Metal Mater Eng, 2001, 4(1): 52–65
4. Park J Y, Kim H G, Jeong Y H, et al.. Crystal structure and grain size of Zr oxidecharacterized by synchrotron radiation microdiffraction. Nucl Mater, 2004, 335(3): 433–442. doi:10.1016/j.jnucmat.2004.07.051
5. Zhang X Y, Li C, Liu N F, et al.. Evolution of microstructure of oxide film ofnano-crystalline zircaloy-4. Nucl PowerEng, 2007, 28(6): 71–75
6. Zhang X Y, Shi M H, Li C, et al.. The influence of grain size on the corrosionresistance of nanocrystalline zirconium metal. Mater Sci Eng A, 2007, 448(1,2): 259–263
7. Zhou B X, Li C, Huang D C . The oxidation of Zr(Fe,Cr)2 metalliccompound. Nucl Power Eng, 1993, 14(2): 149–153
8. Jiang Q Y, He J J, Zou J Y, et al.. Electrical conductivity of CuCr compound materials. J Huazhong Univer Sci & Tech, 1999, 27(1): 78–80
9. Huang X W . The research of electrical conductivity of the contact material. J Electrician Alloys, 1998, 3(1): 26–32
10. Wang C Z . The Properties of Materials. Beijing: Press of Beijing Univer Tech, 2001, 189
11. Ye C J, Li T F, Zhou J L . Effect of grain size on oxidation behaviour of Ni3Al-Zr base alloy at elevated temperature. Acta Metall Sinica, 1995, 31: B109–116
12. Xiong B K, Wen W G, Yang X M . The Metallurgy of Zirconium and Hafnium. Beijing: Metallurgical IndustryPress, 2003, 54
13. Zhou B X, Li Q, Huang Q, Miao Z, et al.. Theeffect of water chemistry on the corrosion behavior of zirconium alloys. Nucl Power Eng, 2000, 21(5): 439–447
14. Baek J H, Jeong Y H . Depletion of Fe and Cr withinprecipitates during zircaloy-4 oxidation. J Nucl Mater, 2002, 304: 107–116. doi:10.1016/S0022-3115(02)00903-0
AI Summary AI Mindmap
PDF(122 KB)

1565

Accesses

1

Citations

Detail

Sections
Recommended

/