Nano thermo-hydrodynamics method for investigating cell membrane fluidity

YANG Yang1, LIU Jing2

PDF(336 KB)
PDF(336 KB)
Front. Energy ›› DOI: 10.1007/s11708-008-0033-2

Nano thermo-hydrodynamics method for investigating cell membrane fluidity

  • YANG Yang1, LIU Jing2
Author information +
History +

Abstract

As a barrier to compartmentalize cells, membranes form the interface between a cell and its surroundings. The essential function of a membrane is to maintain a relatively stable environment in the cell, exchange substances selectively and transfer energy and information continually from the outside. It is intriguing that above the phase transition temperature, the membrane lipid molecule will have three modes–lateral diffusion, rotational movement and flip-flop activity. These thermodynamic processes are vital to cell existence, growth, division, differentiation and are also responsible for hundreds of thousands of phenomena in life. Previously, species transport across the membrane was interpreted mainly from a phenomenological view using a lumped system model. Therefore, detailed flow processes occurred in the membrane domain and clues related to life mechanism were not sufficiently tackled. Such important issues can be clarified by modeling nano scale thermal hydrodynamics over the gap space of a cell membrane. Previously observed complex membrane behaviors will be shown in this paper and explained by the thermally induced fluidic convections inside the membrane. A correlation between nano scale hydrodynamics, non-equilibrium thermodynamics and cell membrane activities is set up. The disclosed mechanisms are expected to provide a new viewpoint on the interaction between intracellular and extracellular processes through the membrane.

Cite this article

Download citation ▾
YANG Yang, LIU Jing. Nano thermo-hydrodynamics method for investigating cell membrane fluidity. Front. Energy, https://doi.org/10.1007/s11708-008-0033-2

References

1. Sheeler P Bianchi D E Cell Biology: Structure, Biochemistry,and FunctionNew YorkWiley 1980 1291 2. Swanson C P Webster P L The Cell. 4th edNJPrentice-Hall: Englewood Cliffs 1977 4, 7, 13 3. Groves J T Integratedcellmembrane nanotechnology. 2007. 4. Liu L Y Xue S B Liu H T Cell BiologyBeijingHigher Education 2002 26 5. Cevc G Marsh D Phospholipid Bilayers, PhysicalPrinciples and ModelsNew YorkWiley 1987 23 6. Editorial. Lifeat the edgeNature 2005 438(1)531532 7. Nath D MembranebiologyNature 2005 438(1)577. doi: 10.1038/438577a 8. Davidson A L Chen J Flipping lipids: is the thirdtime the charm?Science 2005 308(13)963965. doi:10.1126/science.1113414 9. Aloia R C MembraneFluidity in BiologyNew YorkAcademic 1983 10. Maxfield F R Tabas I Role of cholesterol and lipidorganization in diseaseNature 2005 438(1)612621. doi:10.1038/nature04399 11. Hurtley S M Crossingthe bilayerScience 2005 310(2)1451. doi: 10.1126/science.310.5753.1451 12. Alper J Breachingthe membraneScience 2002 296(3)838839. doi:10.1126/science.296.5569.838 13. Lee A MembranestructureCurrent Biology 2001 11(20)811814. doi:10.1016/S0960‐9822(01)00491‐2 14. Wang J Zhang G J Influence of membrane physicalstate on lysosomal potassium ion permeabilityCell Biology International 2005 29393401. doi:10.1016/j.cellbi.2004.12.002 15. Hou X Richardson S J Aguilar M I et al.Binding of amyloidogenic transthyretin to the plasmamembrane alters membrane fluidity and induces neurotoxicityBiochemistry 2005 441161811627. doi:10.1021/bi050700m 16. Velitchkova M Popova A High light-induced changesof 77 K fluorescennce emission of pea thylakoid membranes with alteredmembrane fluidityBioelectrochemistry 2005 678190. doi:10.1016/j.bioelechem.2004.12.001 17. García N Zazueta C Pavón N et al.Agaric acid induces mitochondrial permeability transitionthrough its interaction with the adenine nucleotide translocase, itsdependence on membrane fluidityMitochondrion 2005 5272281. doi:10.1016/j.mito.2005.05.002 18. Park S H Oha S G Munb J Y et al.Effects of silver nanoparticles on the fluidityof bilayer in phospholipid liposomeColloidsand Surfaces B: Biointerfaces 2005 44117122. doi:10.1016/j.colsurfb.2005.06.002 19. Chludzińska L Ananicz E Jarosaawska A et al.Near-infrared radiation protects the red cell membraneagainst oxidationBlood Cells, Molecules,and Diseases 2005 357479. doi:10.1016/j.bcmd.2005.04.003 20. Haidekker M A Stevens H Y Frangos J A Cell membrane fluidity changes and membrane undulationsobserved using a laser scattering techniqueAnnals of Biomedical Engineering 2004 32531536. doi:10.1023/B:ABME.0000019172.12700.b8 21. Losa D A Murata N Membrane fluidity and its rolesin the perception of environmental signalsBiochimica et Biophysica Acta 2004 1666142157 22. Alberts B Bray D Lewis J et al.Molecular Biology of the Cell. 3rd edNew YorkGarland 1994 498 23. Ciofalo M Collins M W Hennessy T R Nanoscale Fluid Dynamics in Physiological Processes: AReview StudyWIT Press 1999 237238 24. Deng Z S Liu J Blood perfusion-based modelfor characterizing the temperature fluctuation in living tissuesPhysica A 2001 300521530. doi:10.1016/S0378‐4371(01)00373‐9 25. Enquist B J Economo E P Huxman T E et al.Scaling metabolism from organisms to ecosystemsNature 2003 423(5)639642. doi:10.1038/nature01671 26. Gillooly J F Brown J H West G B et al.Effects of size and temperature on metabolic rateScience 2001 293(21)22482251. doi:10.1126/science.1061967 27. Baksh M M Jaros M Groves J T Detection of molecular interactions at membrane surfacesthrough colloid phase transitionsNature 2004 427(8)139. doi: 10.1038/nature02209 28. Krishnan M Agrawal N Burns M A et al.Reactions and fluidics in miniaturized natural convectionsystemAnal Chem 2004 7662546265. doi:10.1021/ac049323u 29. Brunet P Amberg G Alfredsson P H Control of thermocapillary instabilities far from thresholdPhysics of Fluids 2005 17104109. doi:10.1063/1.2111144 30. Sun C Xi H D Xia K Q Azimuthal symmetry, flow dynamics, and heat transport inturbulent thermal convection in a cylinder with an aspect ratio of0.5. Phys Rev Lett 2005 95074502. doi: 10.1103/PhysRevLett.95.074502 31. Lee A G Howlipids affect the activities of integral membrane proteinsBiochimica et Biophysica Acta 2004 16666287. doi:10.1016/j.bbamem.2004.05.012 32. Leibovici J Klein O Wollman Y et al.Cell membrane fluidity and adriamycin rententionin a tumor progression model of AKR lymphomaBiochimica et Biophysica Acta 1996 1281182188. doi:10.1016/0005‐2736(96)00016‐8 33. Denicourt C Dowdy S F Targeting apoptotic pathwaysin cancer cellsScience 2004 305(3)11411413 34. Edidin M Lipidson the frontier: a century of cell-membrane bilayersNature Reviews, Molecular Cell Biology 2003 4415418. doi:10.1038/nrm1102 35. Ash W L Zlomislic M R Oloo E O et al.Computer simulations of membrane proteinsBiochimica et Biophysica Acta 2004 1666158189. doi:10.1016/j.bbamem.2004.04.012 36. Feller S E Moleculardynamics simulations of lipid bilayerCurrentOpinion in Colloid & Interface Science 2000 5217223. doi:10.1016/S1359‐0294(00)00058‐3 37. Squires T M Quake S R Microfluidics: fluid physicsat the nanoliter scaleReview of ModernPhysics 2005 779771026. doi:10.1103/RevModPhys.77.977
AI Summary AI Mindmap
PDF(336 KB)

Accesses

Citations

Detail

Sections
Recommended

/