Recent studies on the inhibition of tumor growth by Se-containing polysaccharide were reviewed. Meanwhile, the possible molecular mechanisms of the inhibition of tumor cell growth through antioxidation, induction of tumor cell apoptosis, blockade of cell cycle, and enhancement of immunity by Se-containing polysaccharide were proposed. In the end, the potential application of Se-containing polysaccharide in the prevention and treatment of tumor was elucidated.
Microwave ablation therapy has become an important method for tumor treatment in recent years. The temperature and the coagulation region need real-time noninvasive monitoring to ensure the safety and effectiveness during the treatment. The authors reviewed the ultrasonic monitoring methods for tumor microwave ablation therapy both at home and abroad. In addition, the authors also prospected this technique in the future.
Microorganisms have been the main sources for the production of chemicals. Production of chemicals requires the development of low-cost and higher-yield processes. Towards this goal, microbial strains with higher levels of production should be first considered. Metabolic engineering has been used extensively over the past two to three decades to increase production of these chemicals. Advances in omics technology and computational simulation are allowing us to perform metabolic engineering at the systems level. By combining the results of omics analyses and computational simulation, systems biology allows us to understand cellular physiology and characteristics, which can subsequently be used for designing strategies. Here, we review the current status of metabolic engineering based on systems biology for chemical production and discuss future prospects.
Natural genetic polymorphisms are gifts from nature and sources of variations at all levels. The post-genomic era permits new perspectives on interpreting genetic polymorphisms and also poses challenges for scientists to answer system questions. Rather than a comprehensive coverage of genetic polymorphisms up-to-date, this review attempts to present some of the results in a somewhat coherent manner to highlight the needs and potentials of pertinent studies.
The intentional introduction of exotic species can increase the level of local biodiversity, enrich people’s material lives, and bring significant social and economic benefits that are also the symbols of human progress. However, along with the frequent intercourse among countries and regions, the frequency of uncontrolled cross-regional migration of species is increased and there is a lack of scientific management strategy for the intentional introduction of exotic species. Exotic species invasion, which is behind habitat fragmentation, has become the second largest threatening factor to the maintenance of the global-scale level of biological diversity. Exotic species invasion can destroy the structure of an ecosystem, disturb the economic life of a society, and do harm to human health. In this paper, the authors review some of the ecological explanations for issues such as “what causes or mechanisms have led to the successful invasion of exotic species”, including the “ideal weeds characteristics”, “biodiversity resistance hypothesis”, “enemies release hypothesis”, “evolution of increased competitive ability hypothesis”, “niche opportunity hypothesis”, and “novel weapon hypothesis”. The authors also analyze and evaluate the background and theoretical basis of the hypotheses, providing explanations for some phenomena, as well as the deficiencies of these explanations.
This paper briefly reviews the progress in studies of wetland plants in terms of heavy metal pollution. The current research mainly includes the following areas: (1) metal uptake, translocation, and distributions in wetland plants and toxicological effects on wetland plants, (2) radial oxygen loss (ROL) of wetland plants and its effects on metal mobility in rhizosphere soils, (3) constitutional metal tolerance in wetland plants, and (4) mechanisms of metal tolerance by wetland plants. Although a number of accomplishments have been achieved, many issues still remain unanswered. The future research effort is likely to focus on the ROL of wetland plants affecting metal speciation and bioavailability in rhizosphere soils, and the development of rhizosphere management technologies to facilitate and improve practical applications of phytoremediation of metal-polluted soils.
Any change in a plant that occurs following herbivory or environmental factors is an induced response. These changes include phytochemical induction, increases in physical defenses, emission of volatiles that attract predators and parasitoids of herbivores, and reduction in plant nutritional quality for herbivores, which is termed induced resistance. Induced resistance has been demonstrated ubiquitously in plants. It is one of our goals to review what is known about the induced resistance to herbivorous insects in cotton, including three resistance secondary metabolites (terpenoid, tannin, and flavonoids) that are contained at any significant levels of resistance to herbivorous insects in cotton cultivates. In many cases, the quantities or quality of secondary metabolites in plant are changed after attacked by insects. This review focuses on induced plant resistance as quantitative or qualitative enhancement of defense mechanism against insect pests, especially on the abiotic-elicitors-induced resistance in cotton plants. The abiotic-elicitor of cupric chloride, an exogenous inorganic compound, may induce the secondary metabolites accumulation and is referred to as a copper-inducible elicitor (CIE). Finally, we discuss how copper-inducible elicitor may be used in the Integrated Pest Management (IPM) system for cotton resistance control.
The common carp (
Fishery is an important industry in China as well as in the rest of the world, and it provides a human food resource containing high-quality protein. Best practice in aquaculture requires a full understanding of the genomic controls and transcriptional profiles of cultured fish species. Improvements in aquaculture can be made by regulation of the expression of functional genes. Microarray technology is a powerful tool for rapid screening of genes or transcriptional profiles in a particular fish or for a particular economic character; for example, genes that are related to growth and disease control in the fish. This review provides a brief introduction to microarray technology and its methods and applications, together with a discussion of the achievements in fish biology that have resulted from this technology.
The technique of SYBR Green-based quantitative real-time reverse transcription polymerase chain reaction (real-time RT-PCR) was applied to quantitative detect a 764 bp nucleotide sequence containing total
An oleic acid-grafted chitosan oligosaccharide (CSO-OA) with different degrees of amino substitution (DSs) was synthesized by the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-mediated coupling reaction. Fourier transform infrared spectroscopy (FT-IR) suggested the formation of an amide linkage between amino groups of chitosan oligosaccharide and carboxyl groups of oleic acid. The critical aggregation concentrations (CACs) of CSO-OA with 6%, 11%, and 21% DSs were 0.056, 0.042, and 0.028 mg·mL-1, respectively. Nanoparticles prepared with the sonication method were characterized by means of transmission electron microscopy (TEM) and Zetasizer, and the antibacterial activity against
Effects of different iron concentrations (final concentrations of iron in Artari’s medium: 3.7, 37.0, 74.0, and 185.0 mmol?L-1) on growth rate and contents of protein, triacylglycerides, and β-carotene in
In this study, 5 μmol?L-1 abscisic acid (ABA) and gibberellic acid (GA3) were used to study the effect of both growth regulators on the morphological parameters and pigment composition of
The effects of temperature on population characteristics of
“Evolution Canyon” is a typical Mediterranean-basin canyon with a summer dry stream at the bottom and large differences in vegetation cover and solar radiation between the north-facing slope (NFS) and the south-facing slope (SFS). It is known to act as an abiotic mediator influencing the community structure of soil fauna. The aim of this study was to determine the spatial dispersion of soil microbial and free-living nematode communities in the open sites (between shrubs) in the upper (0-10 cm) soil layer at four altitudes on both slopes. The combination of relative soil moisture availability and temperature, known to be one of the main triggers for soil biota activity, was explained by slope orientation. The above-mentioned differences were found to significantly affect microbial biomass and CO2 evolution resulting in temporary stress, corresponding to higher values in metabolic quotient (qCO2) values. These differences may represent microbial investment in energy in order to overcome stress resulting from the microclimatic differences between the two slopes. Moreover, the degree of substrate limitation (primary production due to the differences in plant cover) of microbial activity was explained by the difference in microbial functional groups. The total abundance of soil free-living nematodes was found to be 2-fold higher on the SFS than on the NFS. Thirty-nine genera, including 12 bacteria-feeders, 5 fungi-feeders, 12 plant-parasites, and 10 omnivore-predators, were found at the study site, with 34 genera on the NFS and 29 on the SFS. The generic diversity of the bacteria-feeding nematodes was higher on the SFS than on the NFS. This study elucidates the importance of slope orientation and its effect on the structural levels of soil microbial and nematode communities.