DNA microarray technology and its application in fish biology and aquaculture

Jianshe ZHANG, Wuying CHU, Guihong FU

PDF(305 KB)
PDF(305 KB)
Front. Biol. ›› 2009, Vol. 4 ›› Issue (3) : 305-313. DOI: 10.1007/s11515-009-0016-7
REVIEW
REVIEW

DNA microarray technology and its application in fish biology and aquaculture

Author information +
History +

Abstract

Fishery is an important industry in China as well as in the rest of the world, and it provides a human food resource containing high-quality protein. Best practice in aquaculture requires a full understanding of the genomic controls and transcriptional profiles of cultured fish species. Improvements in aquaculture can be made by regulation of the expression of functional genes. Microarray technology is a powerful tool for rapid screening of genes or transcriptional profiles in a particular fish or for a particular economic character; for example, genes that are related to growth and disease control in the fish. This review provides a brief introduction to microarray technology and its methods and applications, together with a discussion of the achievements in fish biology that have resulted from this technology.

Keywords

complementary DNA (cDNA) microarray / bioinformatics / transcription profiles / teleost fish / aquaculture

Cite this article

Download citation ▾
Jianshe ZHANG, Wuying CHU, Guihong FU. DNA microarray technology and its application in fish biology and aquaculture. Front Biol Chin, 2009, 4(3): 305‒313 https://doi.org/10.1007/s11515-009-0016-7

References

[1]
Adams A, Thompson K D (2006). Biotechnology offers revolution to fish health management. Trends Biotechnol, 24(5): 201–-205
CrossRef Google scholar
[2]
Arcand S L, Mes-Masson A M, Provencher D, Hudson T J, Tonin P N (2004). Gene expression microarray analysis and genome databases facilitate the characterization of a chromosome 22 derived homogeneously staining region. Mol Carcinog, 41(1): 17-38
CrossRef Google scholar
[3]
Benninghoff A D, Williams D E (2008). Identification of a transcriptional fingerprint of estrogen exposure in rainbow trout liver. Toxicol Sci, 101(1): 65-80
CrossRef Google scholar
[4]
Berger J A, Hautaniemi S, Jarvinen A K, Edgren H, Mitra S K, Astola J (2004). Optimized LOWESS normalization parameter selection for DNA microarray data. BMC Bioinformatics, 5: 194
CrossRef Google scholar
[5]
Bolstad B M, Irizarry R A, Astrand M, Speed T P (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2): 185-193
CrossRef Google scholar
[6]
Brown M M, Williams T D, Kevin Chipman J, Katsiadaki I, Sanders M, Craft J A (2008). Construction of subtracted EST and normalised cDNA libraries from liver of chemical-exposed three-spined stickleback (Gasterosteus aculeatus) containing pollutant-responsive genes as a resource for transcriptome analysis. Mar Environ Res, 66(1): 127-130
CrossRef Google scholar
[7]
Byon J Y, Ohira T, Hirono I, Aoki T (2005). Use of a cDNA microarray to study immunity against viral hemorrhagic septicemia (VHS) in Japanese flounder (Paralichthys olivaceus) following DNA vaccination. Fish Shellfish Immunol, 18(2): 135-147
CrossRef Google scholar
[8]
Byon J Y, Ohira T, Hirono I, Aoki T (2006). Comparative immune responses in Japanese flounder, Paralichthys olivaceus after vaccination with viral hemorrhagic septicemia virus (VHSV) recombinant glycoprotein and DNA vaccine using a microarray analysis. Vaccine, 24(7): 921-930
CrossRef Google scholar
[9]
Cohen R, Chalifa-Caspi V, Williams T D, Auslander M, George S G, Chipman J K, Tom M (2007). Estimating the efficiency of fish cross-species cDNA microarray hybridization. Mar Biotechnol (NY), 9(4): 491-499
CrossRef Google scholar
[10]
Colantuoni C, Henry G, Zeger S, Pevsner J (2002). Local mean normalization of microarray element signal intensities across an array surface: quality control and correction of spatially systematic artifacts. Biotechniques, 32(6): 1316-1320
[11]
Corredor-Adamez M, Welten M C, Spaink H P, Jeffery J E, Schoon R T, de Bakker M A, Bagowski C P, Meijer A H, Verbeek F J, Richardson M K (2005). Genomic annotation and transcriptome analysis of the zebrafish (Danio rerio) hox complex with description of a novel member, hoxb13a. Evolution & Development, 7(5): 362-375
CrossRef Google scholar
[12]
Darias M J, Zambonino-Infante J L, Hugot K, Cahu C L, Mazurais D (2008). Gene expression patterns during the larval development of European sea bass (dicentrarchus labrax) by microarray analysis. Mar Biotechnol (NY), 10(4): 416-428
CrossRef Google scholar
[13]
Douglas S E (2006). Microarray studies of gene expression in fish. Omics, 10(4): 474-489
CrossRef Google scholar
[14]
Eisen M B, Spellman P T, Brown P O, Botstein D (1998). Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA, 95(25): 14863-14868
CrossRef Google scholar
[15]
Ewart K V, Belanger J C, Williams J, Karakach T, Penny S, Tsoi S C, Richards R C, Douglas S E (2005). Identification of genes differentially expressed in Atlantic salmon (Salmo salar) in response to infection by Aeromonas salmonicida using cDNA microarray technology. Dev Comp Immunol, 29(4): 333-347
CrossRef Google scholar
[16]
Fiehn O (2001). Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics, 2(3): 155-168
CrossRef Google scholar
[17]
Finne E F, Cooper G A, Koop B F, Hylland K, Tollefsen K E (2007). Toxicogenomic responses in rainbow trout (Oncorhynchus mykiss) hepatocytes exposed to model chemicals and a synthetic mixture. Aquat Toxicol, 81(3): 293-303
CrossRef Google scholar
[18]
Fujimoto T, Koyanagi M, Baba I, Nakabayashi K, Kato N, Sasazuki T, Shirasawa S (2007). Analysis of KRAP expression and localization, and genes regulated by KRAP in a human colon cancer cell line. J Hum Genet, 52(12): 978-984
CrossRef Google scholar
[19]
Gonzalez S F, Krug M J, Nielsen M E, Santos Y, Call D R (2004). Simultaneous detection of marine fish pathogens by using multiplex PCR and a DNA microarray. J Clin Microbiol, 42(4): 1414-1419
CrossRef Google scholar
[20]
Gracey A Y (2007). Interpreting physiological responses to environmental change through gene expression profiling. J Exp Biol, 210(Pt 9): 1584-1592
CrossRef Google scholar
[21]
Hirayama M, Ahsan M N, Mitani H, Watabe S (2008). CYR61 is a novel gene associated with temperature-dependent changes in fish metabolism as revealed by cDNA microarray analysis on a medaka Oryzias latipes cell line. J Cell Biochem, 104(4): 1297-1310
CrossRef Google scholar
[22]
Ju Z, Dunham R A, Liu Z (2002). Differential gene expression in the brain of channel catfish (Ictalurus punctatus) in response to cold acclimation. Mol Genet Genomics, 268(1): 87-95
CrossRef Google scholar
[23]
Ju Z, Wells M C, Heater S J, Walter R B (2007a). Multiple tissue gene expression analyses in Japanese medaka (Oryzias latipes) exposed to hypoxia. Comp Biochem Physiol C Toxicol Pharmacol, 145(1): 134-144
CrossRef Google scholar
[24]
Ju Z, Wells M C, Walter R B (2007b). DNA microarray technology in toxicogenomics of aquatic models: methods and applications. Comp Biochem Physiol C Toxicol Pharmacol, 145(1): 5-14
CrossRef Google scholar
[25]
Kassahn K S, Caley M J, Ward A C, Connolly A R, Stone G, Crozier R H (2007). Heterologous microarray experiments used to identify the early gene response to heat stress in a coral reef fish. Mol Ecol, 16(8): 1749-1763
CrossRef Google scholar
[26]
Katogi R, Nakatani Y, Shini T, Kohara Y, Inohaya K, Kudo A (2004). Large-scale analysis of the genes involved in fin regeneration and blastema formation in the medaka, Oryzias latipes. Mech Dev, 121(7—8): 861-872
[27]
Kochzius M, Nolte M, Weber H, Silkenbeumer N, Hjorleifsdottir S, Hreggvidsson G O, Marteinsson V, Kappel K, Planes S, Tinti F, Magoulas A, Garcia Vazquez E, Turan C, Hervet C, Campo Falgueras D, Antoniou A, Landi M, Blohm D (2008). DNA microarrays for identifying fishes. Mar Biotechnol (NY), 10(2): 207-217
CrossRef Google scholar
[28]
Koskinen H, Pehkonen P, Vehniainen E, Krasnov A, Rexroad C, Afanasyev S, Molsa H, Oikari A (2004). Response of rainbow trout transcriptome to model chemical contaminants. Biochem Biophys Res Commun, 320(3): 745-753
CrossRef Google scholar
[29]
Kurobe T, Yasuike M, Kimura T, Hirono I, Aoki T (2005). Expression profiling of immune-related genes from Japanese flounder Paralichthys olivaceus kidney cells using cDNA microarrays. Dev Comp Immunol, 29(6): 515-523
CrossRef Google scholar
[30]
Lam S H, Gong Z (2006). Modeling liver cancer using zebrafish: a comparative oncogenomics approach. Cell Cycle, 5(6): 573-577
[31]
Lam S H, Winata C L, Tong Y, Korzh S, Lim W S, Korzh V, Spitsbergen J, Mathavan S, Miller L D, Liu E T, Gong Z (2006). Transcriptome kinetics of arsenic-induced adaptive response in zebrafish liver. Physiol Genomics, 27(3): 351-361
CrossRef Google scholar
[32]
Larkin P, Villeneuve D L, Knoebl I, Miracle A L, Carter B J, Liu L, Denslow N D, Ankley G T (2007). Development and validation of a 2,000-gene microarray for the fathead minnow (Pimephales promelas). Environ Toxicol Chem, 26(7): 1497-1506
CrossRef Google scholar
[33]
Leung Y F, Ma P, Dowling J E (2007). Gene expression profiling of zebrafish embryonic retinal pigment epithelium in vivo. Invest Ophthalmol Vis Sci, 48(2): 881-890
CrossRef Google scholar
[34]
Lien C L, Schebesta M, Makino S, Weber G J, Keating M T (2006). Gene expression analysis of zebrafish heart regeneration. PLoS Biol, 4(8): e260
CrossRef Google scholar
[35]
Linney E, Dobbs-McAuliffe B, Sajadi H, Malek R L (2004a). Microarray gene expression profiling during the segmentation phase of zebrafish development. Comp Biochem Physiol C Toxicol Pharmacol, 138(3): 351-362
CrossRef Google scholar
[36]
Linney E, Upchurch L, Donerly S (2004b). Zebrafish as a neurotoxicological model. Neurotoxicol Teratol, 26(6): 709-718
CrossRef Google scholar
[37]
Lo J, Lee S, Xu M, Liu F, Ruan H, Eun A, He Y, Ma W, Wang W, Wen Z, Peng J (2003). 15000 unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome Res, 13(3): 455-466
CrossRef Google scholar
[38]
Lua D T, Yasuike M, Hirono I, Aoki T (2005). Transcription program of red sea bream iridovirus as revealed by DNA microarrays. J Virol, 79(24): 15151-15164
CrossRef Google scholar
[39]
Martin S A, Blaney S C, Houlihan D F, Secombes C J (2006). Transcriptome response following administration of a live bacterial vaccine in Atlantic salmon (Salmo salar). Mol Immunol, 43(11): 1900-1911
[40]
Martyniuk C J, Gerrie E R, Popesku J T, Ekker M, Trudeau V L (2007). Microarray analysis in the zebrafish (Danio rerio) liver and telencephalon after exposure to low concentration of 17alpha-ethinylestradiol. Aquat Toxicol, 84(1): 38-49
CrossRef Google scholar
[41]
Meijer A H, Verbeek F J, Salas-Vidal E, Corredor-Adamez M, Bussman J, van der Sar A M, Otto G W, Geisler R, Spaink H P (2005). Transcriptome profiling of adult zebrafish at the late stage of chronic tuberculosis due to Mycobacterium marinum infection. Mol Immunol, 42(10): 1185-1203
CrossRef Google scholar
[42]
Moens L N, Smolders R, van der Ven K, van Remortel P, Del-Favero J, De Coen W M (2007). Effluent impact assessment using microarray-based analysis in common carp: a systems toxicology approach. Chemosphere, 67(11): 2293-2304
CrossRef Google scholar
[43]
Moens L N, van der Ven K, Van Remortel P, Del-Favero J, De Coen W M (2007). Gene expression analysis of estrogenic compounds in the liver of common carp (Cyprinus carpio) using a custom cDNA microarray. J Biochem Mol Toxicol, 21(5): 299-311
CrossRef Google scholar
[44]
Nishidate M, Nakatani Y, Kudo A, Kawakami A (2007). Identification of novel markers expressed during fin regeneration by microarray analysis in medaka fish. Dev Dyn, 236(9): 2685-2693
CrossRef Google scholar
[45]
Oostlander A E, Meijer G A, Ylstra B (2004). Microarray-based comparative genomic hybridization and its applications in human genetics. Clin Genet, 66(6): 488-495
CrossRef Google scholar
[46]
Pollack J R, Perou C M, Alizadeh A A, Eisen M B, Pergamenschikov A, Williams C F, Jeffrey S S, Botstein D, Brown P O (1999). Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet, 23(1): 41-46
CrossRef Google scholar
[47]
Ranheim T, Mattingsdal M, Lindvall J M, Holla O L, Berge K E, Kulseth M A, Leren T P (2008). Genome-wide expression analysis of cells expressing gain of function mutant D374Y-PCSK9. J Cell Physiol, 217(2): 459-467
CrossRef Google scholar
[49]
Renn S C, Aubin-Horth N, Hofmann H A (2004). Biologically meaningful expression profiling across species using heterologous hybridization to a cDNA microarray. BMC Genomics, 5(1): 42
CrossRef Google scholar
[50]
Rise M L, Jones S R, Brown G D, von Schalburg K R, Davidson W S, Koop B F (2004). Microarray analyses identify molecular biomarkers of Atlantic salmon macrophage and hematopoietic kidney response to Piscirickettsia salmonis infection. Physiol Genomics, 20(1): 21-35
CrossRef Google scholar
[51]
Salem M, Kenney P B, Rexroad C E3rd, Yao J (2006). Microarray gene expression analysis in atrophying rainbow trout muscle: a unique nonmammalian muscle degradation model. Physiol Genomics, 28(1): 33-45
CrossRef Google scholar
[52]
Schebesta M, Lien C L, Engel F B, Keating M T (2006). Transcriptional profiling of caudal fin regeneration in zebrafish. Sci World J, 6: 38-54
[53]
Ton C, Stamatiou D, Dzau V J, Liew C C (2002). Construction of a zebrafish cDNA microarray: gene expression profiling of the zebrafish during development. Biochem Biophys Res Commun, 296(5): 1134-1142
CrossRef Google scholar
[54]
Ton C, Stamatiou D, Liew C C (2003). Gene expression profile of zebrafish exposed to hypoxia during development. Physiol Genomics, 13(2): 97-106
[55]
Tsoi S C, Cale J M, Bird I M, Ewart V, Brown L L, Douglas S (2003). Use of human cDNA microarrays for identification of differentially expressed genes in Atlantic salmon liver during Aeromonas salmonicida infection. Mar Biotechnol (NY), 5(6): 545-554
[56]
van der Meer D L, van den Thillart G E, Witte F, de Bakker M A, Besser J, Richardson M K, Spaink H P, Leito J T, Bagowski C P (2005). Gene expression profiling of the long-term adaptive response to hypoxia in the gills of adult zebrafish. Am J Physiol Regul Integr Comp Physiol, 289(5): R1512-1519
CrossRef Google scholar
[57]
van der Ven K, De Wit M, Keil D, Moens L, van Leemput K, Naudts B, De Coen W (2005). Development and application of a brain-specific cDNA microarray for effect evaluation of neuro-active pharmaceuticals in zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol, 141(4): 408-417
CrossRef Google scholar
[58]
Williams T D, Gensberg K, Minchin S D, Chipman J K (2003). A DNA expression array to detect toxic stress response in European flounder (Platichthys flesus). Aquat Toxicol, 65(2): 141-157
CrossRef Google scholar
[59]
Wu W, Liu X, Xu M, Peng J R, Setiono R (2005). A hybrid SOM-SVM approach for the zebrafish gene expression analysis. Genomics Proteomics Bioinformatics, 3(2): 84-93
[60]
Xiang C C, Chen Y (2000). cDNA microarray technology and its applications. Biotechnol Adv, 18(1): 35-46
CrossRef Google scholar
[61]
Yang Y H, Buckley M J, Speed T P (2001). Analysis of cDNA microarray images. Brief Bioinform, 2(4): 341-349
CrossRef Google scholar
[62]
Zhang D, Wells M T, Smart C D, Fry W E (2005). Bayesian normalization and identification for differential gene expression data. J Comput Biol, 12(4): 391-406
CrossRef Google scholar

Acknowledgments

This work was supported by the Natural Science Foundation of China (Grant Nos. 30640015 and 30771644).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(305 KB)

Accesses

Citations

Detail

Sections
Recommended

/