DNA microarray technology and its application in fish biology and aquaculture

Jianshe ZHANG , Wuying CHU , Guihong FU

Front. Biol. ›› 2009, Vol. 4 ›› Issue (3) : 305 -313.

PDF (305KB)
Front. Biol. ›› 2009, Vol. 4 ›› Issue (3) : 305 -313. DOI: 10.1007/s11515-009-0016-7
REVIEW
REVIEW

DNA microarray technology and its application in fish biology and aquaculture

Author information +
History +
PDF (305KB)

Abstract

Fishery is an important industry in China as well as in the rest of the world, and it provides a human food resource containing high-quality protein. Best practice in aquaculture requires a full understanding of the genomic controls and transcriptional profiles of cultured fish species. Improvements in aquaculture can be made by regulation of the expression of functional genes. Microarray technology is a powerful tool for rapid screening of genes or transcriptional profiles in a particular fish or for a particular economic character; for example, genes that are related to growth and disease control in the fish. This review provides a brief introduction to microarray technology and its methods and applications, together with a discussion of the achievements in fish biology that have resulted from this technology.

Keywords

complementary DNA (cDNA) microarray / bioinformatics / transcription profiles / teleost fish / aquaculture

Cite this article

Download citation ▾
Jianshe ZHANG, Wuying CHU, Guihong FU. DNA microarray technology and its application in fish biology and aquaculture. Front. Biol., 2009, 4(3): 305-313 DOI:10.1007/s11515-009-0016-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams A, Thompson K D (2006). Biotechnology offers revolution to fish health management. Trends Biotechnol, 24(5): 201–-205

[2]

Arcand S L, Mes-Masson A M, Provencher D, Hudson T J, Tonin P N (2004). Gene expression microarray analysis and genome databases facilitate the characterization of a chromosome 22 derived homogeneously staining region. Mol Carcinog, 41(1): 17-38

[3]

Benninghoff A D, Williams D E (2008). Identification of a transcriptional fingerprint of estrogen exposure in rainbow trout liver. Toxicol Sci, 101(1): 65-80

[4]

Berger J A, Hautaniemi S, Jarvinen A K, Edgren H, Mitra S K, Astola J (2004). Optimized LOWESS normalization parameter selection for DNA microarray data. BMC Bioinformatics, 5: 194

[5]

Bolstad B M, Irizarry R A, Astrand M, Speed T P (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2): 185-193

[6]

Brown M M, Williams T D, Kevin Chipman J, Katsiadaki I, Sanders M, Craft J A (2008). Construction of subtracted EST and normalised cDNA libraries from liver of chemical-exposed three-spined stickleback (Gasterosteus aculeatus) containing pollutant-responsive genes as a resource for transcriptome analysis. Mar Environ Res, 66(1): 127-130

[7]

Byon J Y, Ohira T, Hirono I, Aoki T (2005). Use of a cDNA microarray to study immunity against viral hemorrhagic septicemia (VHS) in Japanese flounder (Paralichthys olivaceus) following DNA vaccination. Fish Shellfish Immunol, 18(2): 135-147

[8]

Byon J Y, Ohira T, Hirono I, Aoki T (2006). Comparative immune responses in Japanese flounder, Paralichthys olivaceus after vaccination with viral hemorrhagic septicemia virus (VHSV) recombinant glycoprotein and DNA vaccine using a microarray analysis. Vaccine, 24(7): 921-930

[9]

Cohen R, Chalifa-Caspi V, Williams T D, Auslander M, George S G, Chipman J K, Tom M (2007). Estimating the efficiency of fish cross-species cDNA microarray hybridization. Mar Biotechnol (NY), 9(4): 491-499

[10]

Colantuoni C, Henry G, Zeger S, Pevsner J (2002). Local mean normalization of microarray element signal intensities across an array surface: quality control and correction of spatially systematic artifacts. Biotechniques, 32(6): 1316-1320

[11]

Corredor-Adamez M, Welten M C, Spaink H P, Jeffery J E, Schoon R T, de Bakker M A, Bagowski C P, Meijer A H, Verbeek F J, Richardson M K (2005). Genomic annotation and transcriptome analysis of the zebrafish (Danio rerio) hox complex with description of a novel member, hoxb13a. Evolution & Development, 7(5): 362-375

[12]

Darias M J, Zambonino-Infante J L, Hugot K, Cahu C L, Mazurais D (2008). Gene expression patterns during the larval development of European sea bass (dicentrarchus labrax) by microarray analysis. Mar Biotechnol (NY), 10(4): 416-428

[13]

Douglas S E (2006). Microarray studies of gene expression in fish. Omics, 10(4): 474-489

[14]

Eisen M B, Spellman P T, Brown P O, Botstein D (1998). Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA, 95(25): 14863-14868

[15]

Ewart K V, Belanger J C, Williams J, Karakach T, Penny S, Tsoi S C, Richards R C, Douglas S E (2005). Identification of genes differentially expressed in Atlantic salmon (Salmo salar) in response to infection by Aeromonas salmonicida using cDNA microarray technology. Dev Comp Immunol, 29(4): 333-347

[16]

Fiehn O (2001). Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics, 2(3): 155-168

[17]

Finne E F, Cooper G A, Koop B F, Hylland K, Tollefsen K E (2007). Toxicogenomic responses in rainbow trout (Oncorhynchus mykiss) hepatocytes exposed to model chemicals and a synthetic mixture. Aquat Toxicol, 81(3): 293-303

[18]

Fujimoto T, Koyanagi M, Baba I, Nakabayashi K, Kato N, Sasazuki T, Shirasawa S (2007). Analysis of KRAP expression and localization, and genes regulated by KRAP in a human colon cancer cell line. J Hum Genet, 52(12): 978-984

[19]

Gonzalez S F, Krug M J, Nielsen M E, Santos Y, Call D R (2004). Simultaneous detection of marine fish pathogens by using multiplex PCR and a DNA microarray. J Clin Microbiol, 42(4): 1414-1419

[20]

Gracey A Y (2007). Interpreting physiological responses to environmental change through gene expression profiling. J Exp Biol, 210(Pt 9): 1584-1592

[21]

Hirayama M, Ahsan M N, Mitani H, Watabe S (2008). CYR61 is a novel gene associated with temperature-dependent changes in fish metabolism as revealed by cDNA microarray analysis on a medaka Oryzias latipes cell line. J Cell Biochem, 104(4): 1297-1310

[22]

Ju Z, Dunham R A, Liu Z (2002). Differential gene expression in the brain of channel catfish (Ictalurus punctatus) in response to cold acclimation. Mol Genet Genomics, 268(1): 87-95

[23]

Ju Z, Wells M C, Heater S J, Walter R B (2007a). Multiple tissue gene expression analyses in Japanese medaka (Oryzias latipes) exposed to hypoxia. Comp Biochem Physiol C Toxicol Pharmacol, 145(1): 134-144

[24]

Ju Z, Wells M C, Walter R B (2007b). DNA microarray technology in toxicogenomics of aquatic models: methods and applications. Comp Biochem Physiol C Toxicol Pharmacol, 145(1): 5-14

[25]

Kassahn K S, Caley M J, Ward A C, Connolly A R, Stone G, Crozier R H (2007). Heterologous microarray experiments used to identify the early gene response to heat stress in a coral reef fish. Mol Ecol, 16(8): 1749-1763

[26]

Katogi R, Nakatani Y, Shini T, Kohara Y, Inohaya K, Kudo A (2004). Large-scale analysis of the genes involved in fin regeneration and blastema formation in the medaka, Oryzias latipes. Mech Dev, 121(7—8): 861-872

[27]

Kochzius M, Nolte M, Weber H, Silkenbeumer N, Hjorleifsdottir S, Hreggvidsson G O, Marteinsson V, Kappel K, Planes S, Tinti F, Magoulas A, Garcia Vazquez E, Turan C, Hervet C, Campo Falgueras D, Antoniou A, Landi M, Blohm D (2008). DNA microarrays for identifying fishes. Mar Biotechnol (NY), 10(2): 207-217

[28]

Koskinen H, Pehkonen P, Vehniainen E, Krasnov A, Rexroad C, Afanasyev S, Molsa H, Oikari A (2004). Response of rainbow trout transcriptome to model chemical contaminants. Biochem Biophys Res Commun, 320(3): 745-753

[29]

Kurobe T, Yasuike M, Kimura T, Hirono I, Aoki T (2005). Expression profiling of immune-related genes from Japanese flounder Paralichthys olivaceus kidney cells using cDNA microarrays. Dev Comp Immunol, 29(6): 515-523

[30]

Lam S H, Gong Z (2006). Modeling liver cancer using zebrafish: a comparative oncogenomics approach. Cell Cycle, 5(6): 573-577

[31]

Lam S H, Winata C L, Tong Y, Korzh S, Lim W S, Korzh V, Spitsbergen J, Mathavan S, Miller L D, Liu E T, Gong Z (2006). Transcriptome kinetics of arsenic-induced adaptive response in zebrafish liver. Physiol Genomics, 27(3): 351-361

[32]

Larkin P, Villeneuve D L, Knoebl I, Miracle A L, Carter B J, Liu L, Denslow N D, Ankley G T (2007). Development and validation of a 2,000-gene microarray for the fathead minnow (Pimephales promelas). Environ Toxicol Chem, 26(7): 1497-1506

[33]

Leung Y F, Ma P, Dowling J E (2007). Gene expression profiling of zebrafish embryonic retinal pigment epithelium in vivo. Invest Ophthalmol Vis Sci, 48(2): 881-890

[34]

Lien C L, Schebesta M, Makino S, Weber G J, Keating M T (2006). Gene expression analysis of zebrafish heart regeneration. PLoS Biol, 4(8): e260

[35]

Linney E, Dobbs-McAuliffe B, Sajadi H, Malek R L (2004a). Microarray gene expression profiling during the segmentation phase of zebrafish development. Comp Biochem Physiol C Toxicol Pharmacol, 138(3): 351-362

[36]

Linney E, Upchurch L, Donerly S (2004b). Zebrafish as a neurotoxicological model. Neurotoxicol Teratol, 26(6): 709-718

[37]

Lo J, Lee S, Xu M, Liu F, Ruan H, Eun A, He Y, Ma W, Wang W, Wen Z, Peng J (2003). 15000 unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome Res, 13(3): 455-466

[38]

Lua D T, Yasuike M, Hirono I, Aoki T (2005). Transcription program of red sea bream iridovirus as revealed by DNA microarrays. J Virol, 79(24): 15151-15164

[39]

Martin S A, Blaney S C, Houlihan D F, Secombes C J (2006). Transcriptome response following administration of a live bacterial vaccine in Atlantic salmon (Salmo salar). Mol Immunol, 43(11): 1900-1911

[40]

Martyniuk C J, Gerrie E R, Popesku J T, Ekker M, Trudeau V L (2007). Microarray analysis in the zebrafish (Danio rerio) liver and telencephalon after exposure to low concentration of 17alpha-ethinylestradiol. Aquat Toxicol, 84(1): 38-49

[41]

Meijer A H, Verbeek F J, Salas-Vidal E, Corredor-Adamez M, Bussman J, van der Sar A M, Otto G W, Geisler R, Spaink H P (2005). Transcriptome profiling of adult zebrafish at the late stage of chronic tuberculosis due to Mycobacterium marinum infection. Mol Immunol, 42(10): 1185-1203

[42]

Moens L N, Smolders R, van der Ven K, van Remortel P, Del-Favero J, De Coen W M (2007). Effluent impact assessment using microarray-based analysis in common carp: a systems toxicology approach. Chemosphere, 67(11): 2293-2304

[43]

Moens L N, van der Ven K, Van Remortel P, Del-Favero J, De Coen W M (2007). Gene expression analysis of estrogenic compounds in the liver of common carp (Cyprinus carpio) using a custom cDNA microarray. J Biochem Mol Toxicol, 21(5): 299-311

[44]

Nishidate M, Nakatani Y, Kudo A, Kawakami A (2007). Identification of novel markers expressed during fin regeneration by microarray analysis in medaka fish. Dev Dyn, 236(9): 2685-2693

[45]

Oostlander A E, Meijer G A, Ylstra B (2004). Microarray-based comparative genomic hybridization and its applications in human genetics. Clin Genet, 66(6): 488-495

[46]

Pollack J R, Perou C M, Alizadeh A A, Eisen M B, Pergamenschikov A, Williams C F, Jeffrey S S, Botstein D, Brown P O (1999). Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet, 23(1): 41-46

[47]

Ranheim T, Mattingsdal M, Lindvall J M, Holla O L, Berge K E, Kulseth M A, Leren T P (2008). Genome-wide expression analysis of cells expressing gain of function mutant D374Y-PCSK9. J Cell Physiol, 217(2): 459-467

[48]

Renn S C, Aubin-Horth N, Hofmann H A (2004). Biologically meaningful expression profiling across species using heterologous hybridization to a cDNA microarray. BMC Genomics, 5(1): 42

[49]

Rise M L, Jones S R, Brown G D, von Schalburg K R, Davidson W S, Koop B F (2004). Microarray analyses identify molecular biomarkers of Atlantic salmon macrophage and hematopoietic kidney response to Piscirickettsia salmonis infection. Physiol Genomics, 20(1): 21-35

[50]

Salem M, Kenney P B, Rexroad C E3rd, Yao J (2006). Microarray gene expression analysis in atrophying rainbow trout muscle: a unique nonmammalian muscle degradation model. Physiol Genomics, 28(1): 33-45

[51]

Schebesta M, Lien C L, Engel F B, Keating M T (2006). Transcriptional profiling of caudal fin regeneration in zebrafish. Sci World J, 6: 38-54

[52]

Ton C, Stamatiou D, Dzau V J, Liew C C (2002). Construction of a zebrafish cDNA microarray: gene expression profiling of the zebrafish during development. Biochem Biophys Res Commun, 296(5): 1134-1142

[53]

Ton C, Stamatiou D, Liew C C (2003). Gene expression profile of zebrafish exposed to hypoxia during development. Physiol Genomics, 13(2): 97-106

[54]

Tsoi S C, Cale J M, Bird I M, Ewart V, Brown L L, Douglas S (2003). Use of human cDNA microarrays for identification of differentially expressed genes in Atlantic salmon liver during Aeromonas salmonicida infection. Mar Biotechnol (NY), 5(6): 545-554

[55]

van der Meer D L, van den Thillart G E, Witte F, de Bakker M A, Besser J, Richardson M K, Spaink H P, Leito J T, Bagowski C P (2005). Gene expression profiling of the long-term adaptive response to hypoxia in the gills of adult zebrafish. Am J Physiol Regul Integr Comp Physiol, 289(5): R1512-1519

[56]

van der Ven K, De Wit M, Keil D, Moens L, van Leemput K, Naudts B, De Coen W (2005). Development and application of a brain-specific cDNA microarray for effect evaluation of neuro-active pharmaceuticals in zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol, 141(4): 408-417

[57]

Williams T D, Gensberg K, Minchin S D, Chipman J K (2003). A DNA expression array to detect toxic stress response in European flounder (Platichthys flesus). Aquat Toxicol, 65(2): 141-157

[58]

Wu W, Liu X, Xu M, Peng J R, Setiono R (2005). A hybrid SOM-SVM approach for the zebrafish gene expression analysis. Genomics Proteomics Bioinformatics, 3(2): 84-93

[59]

Xiang C C, Chen Y (2000). cDNA microarray technology and its applications. Biotechnol Adv, 18(1): 35-46

[60]

Yang Y H, Buckley M J, Speed T P (2001). Analysis of cDNA microarray images. Brief Bioinform, 2(4): 341-349

[61]

Zhang D, Wells M T, Smart C D, Fry W E (2005). Bayesian normalization and identification for differential gene expression data. J Comput Biol, 12(4): 391-406

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (305KB)

1258

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/