Integrated strain isolation, comparative genomics, and microbial community analysis reveal metabolic versatility and adaptive strategies of facultative anaerobic PAH-degrading Pseudomonas

Nanlan Zhao , Nan Zhou , Zuotao Zhang , Dixiang Wang , Hui Wang

ENG. Environ. ›› 2026, Vol. 20 ›› Issue (5) : 71

PDF (7164KB)
ENG. Environ. ›› 2026, Vol. 20 ›› Issue (5) :71 DOI: 10.1007/s11783-026-2171-3
RESEARCH ARTICLE

Integrated strain isolation, comparative genomics, and microbial community analysis reveal metabolic versatility and adaptive strategies of facultative anaerobic PAH-degrading Pseudomonas

Author information +
History +
PDF (7164KB)

Abstract

Remediation of PAH-contaminated soils is often limited by oxygen delivery, highlighting the importance of organisms that maintain PAH degradation under anoxic conditions. We isolated three Pseudomonas/Stutzerimonas strains on pyrene with nitrate as electron acceptor and confirmed their rapid nitrate-reducing removal of phenanthrene (up to ~90% in 4 d) and benzo[a]pyrene (up to ~95% in 5 d), expanding pure-culture evidence for high-molecular-weight PAH degradation under nitrate respiration. Combined with six previously reported facultative anaerobic PAH-degrading Pseudomonas strains, we analyzed nine genomes representing the presently verifiable phenotype-defined subset. Comparative genomics showed an accessory-dominated pan-genome with a strict core (0.07% of 30101 orthogroups), coexistence of diverse aerobic ring-hydroxylation and anaerobic-associated activation (including carboxylation- and methylation- related) genes. Notably, stress resistance genes were present at significantly elevated copy numbers compared to other genes, reflecting adaptive genomic plasticity. The finding that Pseudomonas was the only genus consistently detected across all 17 petroleum-contaminated soils aligns well with the metabolic flexibility and stress-tolerance potential revealed by our phenotypic and genomic analyses. These findings provide a genomic and ecological framework for understanding facultative anaerobic PAH-degrading Pseudomonas strains and support their application in complex, contaminated environments.

Graphical abstract

Keywords

Pseudomonas / Facultative anaerobic bacteria / PAH degradation / Comparative genomics analysis / Environmental adaptability / Bioremediation

Highlight

● Three new strains removed ~90% phenanthrene and ~95% BaP with sole nitrate.

● Aerobic and anaerobic associated PAH-degrading genes co-occur with redundancy.

● Stress adaptation genes show significantly elevated copy numbers.

Pseudomonas is the only genus detected in all 17 petroleum-contaminated soils.

Cite this article

Download citation ▾
Nanlan Zhao, Nan Zhou, Zuotao Zhang, Dixiang Wang, Hui Wang. Integrated strain isolation, comparative genomics, and microbial community analysis reveal metabolic versatility and adaptive strategies of facultative anaerobic PAH-degrading Pseudomonas. ENG. Environ., 2026, 20(5): 71 DOI:10.1007/s11783-026-2171-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abbasian F , Lockington R , Megharaj M , Naidu R . (2016). A review on the genetics of aliphatic and aromatic hydrocarbon degradation. Applied Biochemistry and Biotechnology, 178(2): 224–250

[2]

Adeniran J A , Abdulraheem M O , Ameen H A , Odediran E T , Yusuf M N O . (2021). Source identification and health risk assessments of polycyclic aromatic hydrocarbons in settled dusts from different population density areas of Ilorin, Nigeria. Environmental Monitoring and Assessment, 193(12): 777

[3]

Ali M , Song X , Wang Q , Zhang Z X , Che J L , Chen X , Tang Z W , Liu X . (2023). Mechanisms of biostimulant-enhanced biodegradation of PAHs and BTEX mixed contaminants in soil by native microbial consortium. Environmental Pollution, 318: 120831

[4]

Aminiyan M M , Kalantzi O I , Etesami H , Khamoshi S E , Begloo R H , Aminiyan F M . (2021). Occurrence and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in dust of an emerging industrial city in Iran: implications for human health. Environmental Science and Pollution Research, 28(44): 63359–63376

[5]

Bergmann F D , Selesi D , Meckenstock R U . (2011). Identification of new enzymes potentially involved in anaerobic naphthalene degradation by the sulfate-reducing enrichment culture N47. Archives of Microbiology, 193(4): 241–250

[6]

Bolger A M , Lohse M , Usadel B . (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15): 2114–2120

[7]

Cardoso F SCastro R FBorges NSantos H (2007). Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii, and their role in stress response. Microbiology, 153(Pt 1): 270–280

[8]

Coates J D , Anderson R T , Lovley D R . (1996a). Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Applied and Environmental Microbiology, 62(3): 1099–1101

[9]

Coates J D , Anderson R T , Woodward J C , Phillips E J P , Lovley D R . (1996b). Anaerobic hydrocarbon degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions. Environmental Science & Technology, 30(9): 2784–2789

[10]

Dai C M , Han Y M , Duan Y P , Lai X Y , Fu R B , Liu S G , Leong K H , Tu Y , Zhou L . (2022). Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments. Environmental Research, 205: 112423

[11]

Dong W , He C Q , Li Y P , Huang C , Chen F L , Ma Y L . (2017). Complete genome sequence of a versatile hydrocarbon degrader, Pseudomonas aeruginosa DN1 isolated from petroleum-contaminated soil. Gene Reports, 7: 123–126

[12]

Edgar R C . (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10(10): 996–998

[13]

Elyamine A M , Kan J , Meng S S , Tao P , Wang H , Hu Z . (2021). Aerobic and anaerobic bacterial and fungal degradation of pyrene: mechanism pathway including biochemical reaction and catabolic genes. International Journal of Molecular Sciences, 22(15): 8202

[14]

Emms D M , Kelly S . (2019). OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology, 20(1): 238

[15]

Fang T T , Pan R S , Jiang J , He F , Wang H . (2016). Effect of salinity on community structure and naphthalene dioxygenase gene diversity of a halophilic bacterial consortium. Frontiers of Environmental Science & Engineering, 10(6): 16

[16]

Gao M Y , Zhang Q , Chen B F , Lei C T , Xia Q S , Sun L W , Li T , Zhou N Y , Lu T , Qian H F . (2025). Global geographic patterns of soil microbial degradation potential for polycyclic aromatic hydrocarbons. Environmental Science & Technology, 59(15): 7550–7560

[17]

Geng S Y , Cao W , Yuan J , Wang Y Y , Guo Y Q , Ding A Z , Zhu Y , Dou J F . (2020). Microbial diversity and co-occurrence patterns in deep soils contaminated by polycyclic aromatic hydrocarbons (PAHs). Ecotoxicology and Environmental Safety, 203: 110931

[18]

Gordon L , Dobson A D W . (2001). Fluoranthene degradation in Pseudomonas alcaligenes PA-10. Biodegradation, 12(6): 393–400

[19]

Gutiérrez E J , del Rosario Abraham M , Baltazar J C , Vázquez G , Delgadillo E , Tirado D . (2020). Pseudomonas fluorescens: a bioaugmentation strategy for oil-contaminated and nutrient-poor soil. International Journal of Environmental Research and Public Health, 17(19): 6959

[20]

Habe H , Omori T . (2003). Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Bioscience, Biotechnology, and Biochemistry, 67(2): 225–243

[21]

He C Q , Li Y P , Huang C , Chen F L , Ma Y L . (2018). Genome sequence and metabolic analysis of a fluoranthene-degrading strain Pseudomonas aeruginosa DN1. Frontiers in Microbiology, 9: 2595

[22]

Heker I , Haberhauer G , Meckenstock R U . (2023). Naphthalene carboxylation in the sulfate-reducing enrichment culture N47 is proposed to proceed via 1,3-dipolar cycloaddition to the cofactor prenylated flavin mononucleotide. Applied and Environmental Microbiology, 89(3): e0192722

[23]

Hossain S , Iken B , Iyer R . (2024). Whole genome analysis of 26 bacterial strains reveals aromatic and hydrocarbon degrading enzymes from diverse environmental soil samples. Scientific Reports, 14(1): 30685

[24]

Huang L P , Ye J Y , Jiang K M , Wang Y C , Li Y Y . (2021). Oil contamination drives the transformation of soil microbial communities: co-occurrence pattern, metabolic enzymes and culturable hydrocarbon-degrading bacteria. Ecotoxicology and Environmental Safety, 225: 112740

[25]

Ivanova A A , Sazonova O I , Zvonarev A N , Delegan Y A , Streletskii R A , Shishkina L A , Bogun A G , Vetrova A A . (2023). Genome analysis and physiology of Pseudomonas sp. strain OVF7 degrading naphthalene and n-dodecane. Microorganisms, 11(8): 2058

[26]

Juhasz A L , Naidu R . (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. International Biodeterioration & Biodegradation, 45(1−2): 57–88

[27]

Kondrashov F A . (2012). Gene duplication as a mechanism of genomic adaptation to a changing environment. Proceedings of the Royal Society B: Biological Sciences, 279(1749): 5048–5057

[28]

Kraegeloh A , Amendt B , Kunte H J . (2005). Potassium transport in a halophilic member of the Bacteria domain: identification and characterization of the K+ uptake systems TrkH and TrkI from Halomonas elongata DSM 2581T. Journal of Bacteriology, 187(3): 1036–1043

[29]

Kweon O , Kim S J , Blom J , Kim S K , Kim B S , Baek D H , Park S I , Sutherland J B , Cerniglia C E . (2015). Comparative functional pan-genome analyses to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon metabolism in the genus Mycobacterium. BMC Evolutionary Biology, 15(1): 21

[30]

Li X Q , Lu Y L , Shi Y J , Wang P , Cao X H , Cui H T , Zhang M , Du D . (2022). Effects of urbanization on the distribution of polycyclic aromatic hydrocarbons in China’s estuarine rivers. Environmental Pollution, 301: 119001

[31]

Liang L , Song X H , Kong J , Shen C H , Huang T W , Hu Z . (2014). Anaerobic biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a facultative anaerobe Pseudomonas sp. JP1. Biodegradation, 25(6): 825–833

[32]

Liu B L , Yu X , Lv L Y , Dong W H , Chen L N , Wu W L , Yu Y . (2023). A nationwide survey of polycyclic aromatic hydrocarbons (PAHs) in household dust in China: spatial distribution, sources, and health risk assessment. Environmental Geochemistry and Health, 45(7): 4979–4993

[33]

Liu Y L , Hu H Y , Zanaroli G , Xu P , Tang H Z . (2021). A Pseudomonas sp. strain uniquely degrades PAHs and heterocyclic derivatives via lateral dioxygenation pathways. Journal of Hazardous Materials, 403: 123956

[34]

Ma C , Wang Y Q , Zhuang L , Huang D Y , Zhou S G , Li F B . (2011). Anaerobic degradation of phenanthrene by a newly isolated humus-reducing bacterium, Pseudomonas aeruginosa strain PAH-1. Journal of Soils and Sediments, 11(6): 923–929

[35]

Ma Y F , Wang L , Shao Z Z . (2006). Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Environmental Microbiology, 8(3): 455–465

[36]

McNally D L , Mihelcic J R , Lueking D R . (1998). Biodegradation of three- and four-ring polycyclic aromatic hydrocarbons under aerobic and denitrifying conditions. Environmental Science & Technology, 32(17): 2633–2639

[37]

Meckenstock R U , Annweiler E , Michaelis W , Richnow H H , Schink B . (2000). Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Applied and Environmental Microbiology, 66(7): 2743–2747

[38]

Meckenstock R U , Mouttaki H . (2011). Anaerobic degradation of non-substituted aromatic hydrocarbons. Current Opinion in Biotechnology, 22(3): 406–414

[39]

Medić A , Lješević M , Inui H , Beškoski V , Kojić I , Stojanović K , Karadžić I . (2020). Efficient biodegradation of petroleum n-alkanes and polycyclic aromatic hydrocarbons by polyextremophilic Pseudomonas aeruginosa san ai with multidegradative capacity. RSC Advances, 10(24): 14060–14070

[40]

Mihelcic J R , Luthy R G . (1988). Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Applied and Environmental Microbiology, 54(5): 1182–1187

[41]

Mu J , Leng Q X , Yang G F , Zhu B K . (2021). Anaerobic degradation of high-concentration polycyclic aromatic hydrocarbons (PAHs) in seawater sediments. Marine Pollution Bulletin, 167: 112294

[42]

Musat F , Galushko A , Jacob J , Widdel F , Kube M , Reinhardt R , Wilkes H , Schink B , Rabus R . (2009). Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environmental Microbiology, 11(1): 209–219

[43]

Naloka K , Kuntaveesuk A , Muangchinda C , Chavanich S , Viyakarn V , Chen B , Pinyakong O . (2024). Pseudomonas and Pseudarthro-bacter are the key players in synergistic phenanthrene biodegradation at low temperatures. Scientific Reports, 14(1): 11976

[44]

Nzila A , Musa M M , Sankara S , Al-Momani M , Xiang L , Li Q X . (2021). Degradation of benzo[a]pyrene by halophilic bacterial strain Staphylococcus haemoliticus strain 10SBZ1A. PLoS One, 16(2): e0247723

[45]

Pal C , Bengtsson-Palme J , Rensing C , Kristiansson E , Larsson D G J . (2014). BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Research, 42(D1): D737–D743

[46]

Rensing C , Newby D T , Pepper I L . (2002). The role of selective pressure and selfish DNA in horizontal gene transfer and soil microbial community adaptation. Soil Biology and Biochemistry, 34(3): 285–296

[47]

Rockne K J , Chee-Sanford J C , Sanford R A , Hedlund B P , Staley J T , Strand S E . (2000). Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Applied and Environmental Microbiology, 66(4): 1595–1601

[48]

Safinowski M , Meckenstock R U . (2006). Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Environmental Microbiology, 8(2): 347–352

[49]

Salam L B , Obayori O S , Ilori M O , Amund O O . (2023). Chromium contamination accentuates changes in the microbiome and heavy metal resistome of a tropical agricultural soil. World Journal of Microbiology and Biotechnology, 39(9): 228

[50]

Sandegren L , Andersson D I . (2009). Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nature Reviews Microbiology, 7(8): 578–588

[51]

Seemann T . (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30(14): 2068–2069

[52]

Seip B , Galinski E A , Kurz M . (2011). Natural and engineered Hydroxyectoine production based on the Pseudomonas stutzeri ectABCD-ask gene cluster. Applied and Environmental Microbiology, 77(4): 1368–1374

[53]

Selesi D , Jehmlich N , Von Bergen M , Schmidt F , Rattei T , Tischler P , Lueders T , Meckenstock R U . (2010). Combined genomic and proteomic approaches identify gene clusters involved in anaerobic 2-methylnaphthalene degradation in the sulfate-reducing enrichment culture N47. Journal of Bacteriology, 192(1): 295–306

[54]

Strahl H , Greie J C . (2008). The extremely halophilic archaeon Halobacterium salinarum R1 responds to potassium limitation by expression of the K+-transporting KdpFABC P-type ATPase and by a decrease in intracellular K+. Extremophiles, 12(6): 741–752

[55]

Subashchandrabose S RVenkateswarlu KNaidu RMegharaj M (2019). Biodegradation of high-molecular weight PAHs by Rhodococcus wratislaviensis strain 9: overexpression of amidohydrolase induced by pyrene and BaP. Science of the Total Environment, 651(Pt 1): 813–821

[56]

Tam N F Y , Guo C L , Yau W Y , Wong Y S . (2002). Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong Kong. Marine Pollution Bulletin, 45(1−12): 316–324

[57]

Tonkin-Hill G , MacAlasdair N , Ruis C , Weimann A , Horesh G , Lees J A , Gladstone R A , Lo S , Beaudoin C , Floto R A . et al. (2020). Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biology, 21(1): 180

[58]

Tseng A S , Roberts M C , Weissman S J , Rabinowitz P M . (2023). Study of heavy metal resistance genes in Escherichia coli isolates from a marine ecosystem with a history of environmental pollution (arsenic, cadmium, copper, and mercury). PLoS One, 18(11): e0294565

[59]

Ventosa A , Nieto J J , Oren A . (1998). Biology of moderately halophilic aerobic bacteria. Microbiology and Molecular Biology Reviews, 62(2): 504–544

[60]

Xie J M , Chen Y R , Cai G J , Cai R L , Hu Z , Wang H . (2023). Tree Visualization By One Table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Research, 51(W1): W587–W592

[61]

Yang H , Kim G , Cho K S . (2023). Bioaugmentation of diesel-contaminated soil with Pseudomonas sp. DTF1. International Journal of Environmental Science and Technology, 20(11): 12499–12510

[62]

Zhang X M , Young L Y . (1997). Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Applied and Environmental Microbiology, 63(12): 4759–4764

[63]

Zhang Z T , Sun J , Gong X Q , Wang C Y , Wang H . (2023a). Anaerobic biodegradation of pyrene and benzo[a]pyrene by a new sulfate-reducing Desulforamulus aquiferis strain DSA. Journal of Hazardous Materials, 459: 132053

[64]

Zhang Z T , Sun J , Gong X Q , Wang C Y , Wang H . (2023b). Novel synergistic metabolic processes for phenanthrene biodegradation by a nitrate-reducing phenanthrene-degrading culture and an anammox culture. Water Research, 230: 119593

[65]

Zhang Z T , Sun J , Gong X Q , Yang Z Y , Wang C Y , Wang H . (2022). Anaerobic phenanthrene biodegradation by a new salt-tolerant/halophilic and nitrate-reducing Virgibacillus halodenitrificans strain PheN4 and metabolic processes exploration. Journal of Hazardous Materials, 435: 129085

[66]

Zhang Z T , Sun J , Guo H J , Gong X Q , Wang C Y , Wang H . (2021a). Investigation of anaerobic biodegradation of phenanthrene by a sulfate-dependent Geobacter sulfurreducens strain PheS2. Journal of Hazardous Materials, 409: 124522

[67]

Zhang Z T , Sun J , Guo H J , Wang C Y , Fang T T , Rogers M J , He J Z , Wang H . (2021b). Anaerobic biodegradation of phenanthrene by a newly isolated nitrate-dependent Achromobacter denitrificans strain PheN1 and exploration of the biotransformation processes by metabolite and genome analyses. Environmental Microbiology, 23(2): 908–923

[68]

Zhong C F , Han M Z , Yu S J , Yang P S , Li H J , Ning K . (2018). Pan-genome analyses of 24 Shewanella strains re-emphasize the diversification of their functions yet evolutionary dynamics of metal-reducing pathway. Biotechnology for Biofuels, 11(1): 193

[69]

Zhou N , Guo H J , Liu Q X , Zhang Z T , Sun J , Wang H . (2022). Bioaugmentation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil with the nitrate-reducing bacterium PheN7 under anaerobic condition. Journal of Hazardous Materials, 439: 129643

[70]

Zhou Z H , Wang C K , Cha X Y , Zhou T , Pang X S , Zhao F Z , Han X H , Yang G H , Wei G H , Ren C J . (2024). The biogeography of soil microbiome potential growth rates. Nature Communications, 15(1): 9472

[71]

Zou Y J , Yang L F , Wang L , Yang S S . (2008). Cloning and characterization of a Na+/H+ antiporter gene of the moderately halophilic bacterium Halobacillus aidingensis AD-6T. The Journal of Microbiology, 46(4): 415–421

RIGHTS & PERMISSIONS

Higher Education Press 2026

PDF (7164KB)

Supplementary files

Supplementary materials

192

Accesses

0

Citation

Detail

Sections
Recommended

/