The silent cleanup arsenal: microbial biofertilizers and their enzymatic pathways for arsenic decontamination in agricultural soils

Yong-Feng Wang , Amir Abdullah Khan , Babar Iqbal , Daolin Du

ENG. Environ. ›› 2026, Vol. 20 ›› Issue (5) : 70

PDF (8821KB)
ENG. Environ. ›› 2026, Vol. 20 ›› Issue (5) :70 DOI: 10.1007/s11783-026-2170-4
REVIEW ARTICLE

The silent cleanup arsenal: microbial biofertilizers and their enzymatic pathways for arsenic decontamination in agricultural soils

Author information +
History +
PDF (8821KB)

Abstract

Arsenic (As) contamination in agricultural soils endangers environmental health and food security by inducing phytotoxicity, disrupting nutrient balance, and impairing essential physiological functions in crops. A good and long-lasting method of reducing the negative effects of arsenic on plants is to use biofertilizers, which are microbial combinations that aid in plant growth and nutrient movement. This work describes new developments in the use of microbial biofertilizers, namely nitrogen-fixing rhizobia and bacteria that solubilize phosphate, sulfur, and zinc, to remove arsenic (As) from agricultural environments. These methods rely on microbial enzymes, including glutathione S-transferases, catalase, arsenate reductase (ArsC), and arsenite oxidase (AioA). Utilizing biofertilizers in conjunction with organic transporters such as biochar increases the activity of soil enzymes (urease, dehydrogenase), increases the soil’s capacity to retain As (from 21.4 to 35.9 mg/g), and reduces the accumulated As in edible tissues by 10.8% to 55.5%. In addition to increasing the amount of chlorophyll and the activities of antioxidant enzymes (SOD, CAT), the use of plant growth-promoting rhizobacteria (PGPR) with inorganic nanoparticles (ZnO, Fe3O4) decreased the movement of As by up to 30.3% in important vegetable crops such as chili pepper (Capsicum annuum), ridge gourd (Luffa acutangula), and pumpkin (Cucurbita moschata). Beyond improving nutrient solubilization, these microbial–nanoparticle consortia also activate systemic resistance pathways, strengthen glutathione-mediated chelation, and remodel root architecture to further limit As uptake. Despite these promising outcomes, scalable field application remains challenged by strain-specific efficacy, formulation stability across variable soils, and a paucity of integrated multi-omics studies.

Graphical abstract

Keywords

Biofertilizers / Arsenic stress / Arsenic detoxification enzymes / Systemic resistance / Biochar / Nanoparticles

Highlight

● Biofertilizers lower arsenic through redox reactions and sequestration.

● CAT, GSTs, AioA, and ArsC are all crucial for the elimination of arsenic.

● Biochar and nanoparticles with biofertilizers reduce As uptake in plants.

Cite this article

Download citation ▾
Yong-Feng Wang, Amir Abdullah Khan, Babar Iqbal, Daolin Du. The silent cleanup arsenal: microbial biofertilizers and their enzymatic pathways for arsenic decontamination in agricultural soils. ENG. Environ., 2026, 20(5): 70 DOI:10.1007/s11783-026-2170-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abbas G , Murtaza B , Bibi I , Shahid M , Niazi N K , Khan M I , Amjad M , Hussain M . (2018). Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. International Journal of Environmental Research and Public Health, 15(1): 59

[2]

Adnan MFahad SSaleem M HAli BMussart MUllah RJr AArif MAhmad MShah W A, et al. (2022). Comparative efficacy of phosphorous supplements with phosphate solubilizing bacteria for optimizing wheat yield in calcareous soils. Scientific Reports, 12(1): 11997

[3]

Afroz H , Su S M , Carey M , Meharg A A , Meharg C . (2019). Inhibition of microbial methylation via arsM in the rhizosphere: arsenic speciation in the soil to plant continuum. Environmental Science & Technology, 53(7): 3451–3463

[4]

Ahmed T , Noman M , Rizwan M , Ali S , Ijaz U , Nazir M M , Alhaithloul H A S , Alghanem S M , Abdulmajeed A M , Li B . (2022). Green molybdenum nanoparticles-mediated bio-stimulation of Bacillus sp. strain ZH16 improved the wheat growth by managing in planta nutrients supply, ionic homeostasis and arsenic accumulation. Journal of Hazardous Materials, 423: 127024

[5]

Ahn A C , Cavalca L , Colombo M , Schuurmans J M , Sorokin D Y , Muyzer G . (2019). Transcriptomic analysis of two Thioalkalivibrio species under arsenite stress revealed a potential candidate gene for an alternative arsenite oxidation pathway. Frontiers in Microbiology, 10: 1514

[6]

Al Tawaha A R MKarnwal APati SAl-Tawaha A RUpadhyay A KSingh ARajput V DGhazaryan KMinkina TAli I, et al. (2025). Biofertilizers: a sustainable solution for enhancing soil fertility and crop productivity. In: Etesami H, Chen Y L, eds. Sustainable Agriculture under Drought Stress. Cambridge: Academic Press, 209–217

[7]

Alam M Z , Roy M D . (2024). The reduction of abiotic stress in food crops through climate-smart mycorrhiza-enriched biofertilizer. AIMS Microbiology, 10(3): 674–693

[8]

Ali S , Tyagi A , Mushtaq M , Al-Mahmoudi H , Bae H . (2022). Harnessing plant microbiome for mitigating arsenic toxicity in sustainable agriculture. Environmental Pollution, 300: 118940

[9]

Alka S , Shahir S , Ibrahim N , Vo D V N , Abd Manan F . (2023). Assessment of plant growth promotion properties and impact of Microbacterium foliorum for arsenic removal in Melastoma malabathricum. Bioremediation Journal, 27(3): 251–262

[10]

Alori E T , Glick B R , Babalola O O . (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8: 971

[11]

Amist NSingh N B (2021). Metalloid transporters and channels in plants. In: Roychoudhury A, Tripathi D K, Deshmukh R, eds. Metal and Nutrient Transporters in Abiotic Stress. London: Academic Press, 213–236

[12]

Amjadian K , Sacchi E , Rastegari Mehr M . (2016). Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) in soils of different land uses in Erbil metropolis, Kurdistan Region, Iraq. Environmental Monitoring and Assessment, 188(11): 605

[13]

Anand VKaur JSrivastava SBist VDharmesh VKriti KBisht SSrivastava P KSrivastava S (2023). Potential of methyltransferase containing Pseudomonas oleovorans for abatement of arsenic toxicity in rice. Science of the Total Environment, 856(Pt 1): 158944

[14]

Anand V , Kaur J , Srivastava S , Bist V , Singh P , Srivastava S . (2022). Arsenotrophy: a pragmatic approach for arsenic bioremediation. Journal of Environmental Chemical Engineering, 10(3): 107528

[15]

Areej A , Usama M , Zulfiqar U , Sarwar F , Ashiq A . (2024). Sustainable agriculture development: the role of biofertilizers in soil fertility and crop yield improvement. Applied Agriculture Sciences, 2(1): 1–5

[16]

Arjumend TSarıhan E OYıldırım M U (2022). Plant-bacterial symbiosis: an ecologically sustainable agriculture production alternative to chemical fertilizers. In: Meena V S, Prasad Parewa H, Kumari Meena S, eds. Revisiting Plant Biostimulants. London: IntechOpen

[17]

Ashitha ARakhimol K RMathew J (2021). Fate of the conventional fertilizers in environment. In: Lewu F B, Volova T, Thomas S, Rakhimol K R, eds. Controlled Release Fertilizers for Sustainable Agriculture. London: Academic Press, 25–39

[18]

Aslam M M , Waseem M , Xu W F , ul Qamar M T . (2022). Identification and expression analysis of phosphate transporter (PHT) gene family in Lupinus albus cluster root under phosphorus stress. International Journal of Biological Macromolecules, 205: 772–781

[19]

Atiang’ S, Ndunda EN, Okello VA. Advances in removal of chromated copper arsenate elements in wood waste, contaminated water and soils. Frontiers in Environmental Chemistry, 6 (2025): 1452837

[20]

Awasthi S , Chauhan R , Indoliya Y , Chauhan A S , Mishra S , Agrawal L , Dwivedi S , Singh S N , Srivastava S , Singh P C . et al. (2021). Microbial consortium mediated growth promotion and arsenic reduction in rice: an integrated transcriptome and proteome profiling. Ecotoxicology and Environmental Safety, 228: 113004

[21]

Barimah A O , Guo Z M , Agyekum A A , Guo C , Chen P , El-Seedi H R , Zou XB , Chen Q S . (2021). Sensitive label-free Cu2O/Ag fused chemometrics SERS sensor for rapid detection of total arsenic in tea. Food Control, 130: 108341

[22]

Basu S , Mukherjee S K , Hossain S T . (2023). Arsenic detoxification by As (III)-oxidizing bacteria: a proposition for sustainable environmental management. Microbiology and Biotechnology Letters, 51(1): 1–9

[23]

Bhardwaj A . (2022). Understanding the diversified microbial operon framework coupled to arsenic transformation and expulsion. Biologia, 77(12): 3531–3544

[24]

Bhardwaj D , Ansari M W , Sahoo R K , Tuteja N . (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13: 66

[25]

Bhat A , Ravi K , Tian F R , Singh B . (2024a). Arsenic contamination needs serious attention: an opinion and global scenario. Pollutants, 4(2): 196–211

[26]

Bhat M A , Mishra A K , Shah S N , Bhat M A , Jan S , Rahman S , Baek K H , Jan A T . (2024b). Soil and mineral nutrients in plant health: a prospective study of iron and phosphorus in the growth and development of plants. Current Issues in Molecular Biology, 46(6): 5194–5222

[27]

Bhatla S CLal M A (2018). Plant Physiology, Development and Metabolism. Singapore: Springer, 295–334

[28]

Biswas RSarkar A (2022). Microbes: key players of the arsenic biogeochemical cycle. In: Hurst C J, ed. Microbial Metabolism of Metals and Metalloids. Cham: Springer, 197–221

[29]

Biswas S , Ganesan M . (2024). Current perspectives of ACR3 (arsenite efflux system) toward the reduction of arsenic accumulation in plants. Journal of Crop Science and Biotechnology, 27(3): 313–329

[30]

Boorboori M R , Lin W X , Jiao Y Y , Fang C X . (2021). Silicon modulates molecular and physiological activities in Lsi1 transgenic and wild Lemont Rice seedlings under arsenic stress. Agronomy, 11(8): 1532

[31]

Cai W , Chen T B , Lei M , Wan X M . (2021). Effective strategy to recycle arsenic-accumulated biomass of Pteris vittata with high benefits. Science of the Total Environment, 756: 143890

[32]

Cai X L , Yin N Y , Liu X R , Wang P F , Du H L , Cui Y S , Hu Z Y . (2022). Biogeochemical processes of arsenic transformation and redistribution in contaminated soils: combined effects of iron, sulfur, and organic matter. Geoderma, 422: 115948

[33]

Cao X S , Ma C X , Chen F R , Luo X , Musante C , White J C , Zhao X L , Wang Z Y , Xing B S . (2021). New insight into the mechanism of graphene oxide-enhanced phytotoxicity of arsenic species. Journal of Hazardous Materials, 410: 124959

[34]

Chandrasekaran M , Paramasivan M , Ahmad S . (2024). Review on arbuscular mycorrhizal fungi mediated alleviation of arsenic stress. International Biodeterioration & Biodegradation, 194: 105872

[35]

Chaudhary P , Singh S , Chaudhary A , Sharma A , Kumar G . (2022). Overview of biofertilizers in crop production and stress management for sustainable agriculture. Frontiers in Plant Science, 13: 930340

[36]

Chauhan R , Awasthi S , Tiwari P , Upadhyay M K , Srivastava S , Dwivedi S , Dhankher O P , Tripathi R D . (2024). Biotechnological strategies for remediation of arsenic-contaminated soils to improve soil health and sustainable agriculture. Soil & Environmental Health, 2(1): 100061

[37]

Cheema A , Garg N . (2024). Arbuscular mycorrhizae reduced arsenic induced oxidative stress by coordinating nutrient uptake and proline-glutathione levels in Cicer arietinum L. (chickpea). Ecotoxicology, 33(2): 205–225

[38]

Compant S , Cassan F , Kostić T , Johnson L , Brader G , Trognitz F , Sessitsch A . (2025). Harnessing the plant microbiome for sustainable crop production. Nature Reviews Microbiology, 23(1): 9–23

[39]

Das S , Majumder B , Biswas A K . (2022). Selenium alleviates arsenic induced stress by modulating growth, oxidative stress, antioxidant defense and thiol metabolism in rice seedlings. International Journal of Phytoremediation, 24(7): 763–777

[40]

De Francisco P , Martín-González A , Rodriguez-Martín D , Díaz S . (2021). Interactions with arsenic: mechanisms of toxicity and cellular resistance in eukaryotic microorganisms. International Journal of Environmental Research and Public Health, 18(22): 12226

[41]

Debiec-Andrzejewska K , Krucon T , Piatkowska K , Drewniak L . (2020). Enhancing the plants growth and arsenic uptake from soil using arsenite-oxidizing bacteria. Environmental Pollution, 264: 114692

[42]

Deng F L , Liu X , Chen Y S , Rathinasabapathi B , Rensing C , Chen J , Bi J , Xiang P , Ma L Q . (2020). Aquaporins mediated arsenite transport in plants: molecular mechanisms and applications in crop improvement. Critical Reviews in Environmental Science and Technology, 50(16): 1613–1639

[43]

Deng J , Mi S W , Qu C C , Huang Q Y , Feng X H , Wang X M . (2025). Enhanced As(III) adsorption-oxidation via synergistic interactions between bacteria and goethite. Eco-Environment & Health, 4(1): 100131

[44]

Dick W AKost DChen L M (2008). Availability of sulfur to crops from soil and other sources. In: Jez J, ed. Sulfur: A Missing Link Between Soils, Crops, and Nutrition. Madison: American Society of Agronomy, Inc., 59–82

[45]

El Sharkawy M , Al-Huqail A A , Aljuaid A M , Kamal N , Mahmoud E , Omara A E D , El-Kader N A , Li J , Mahmoud N N , El Baroudy A A . et al. (2024). Nano-bioremediation of arsenic and its effect on the biological activity and growth of maize plants grown in highly arsenic-contaminated soil. Nanomaterials, 14(13): 1164

[46]

FAO (2018)IFAD UNICEF WFP WHO . The State of Food Security and Nutrition in the World 2018: Building Climate Resilience for Food Security and Nutrition. Rome: FAO

[47]

Farkas B , Kolenčík M , Hain M , Dobročka E , Kratošová G , Bujdoš M , Feng H , Deng Y , Yu Q , Illa R . et al. (2020). Aspergillus niger decreases bioavailability of arsenic(V) via biotransformation of manganese oxide into biogenic oxalate minerals. Journal of Fungi, 6(4): 270

[48]

Farooq M A , Hong Z Y , Islam F , Noor Y , Hannan F , Zhang Y , Ayyaz A , Mwamba T M , Zhou W J , Song W J . (2021). Comprehensive proteomic analysis of arsenic induced toxicity reveals the mechanism of multilevel coordination of efficient defense and energy metabolism in two Brassica napus cultivars. Ecotoxicology and Environmental Safety, 208: 111744

[49]

Fatoki J O , Badmus J A . (2022). Arsenic as an environmental and human health antagonist: a review of its toxicity and disease initiation. Journal of Hazardous Materials Advances, 5: 100052

[50]

Fayiga A O , Ma L Q . (2006). Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata. Science of the Total Environment, 359(1−3): 17–25

[51]

Fernández M , Morel B , Ramos J L , Krell T . (2016). Paralogous regulators ArsR1 and ArsR2 of Pseudomonas putida KT2440 as a basis for arsenic biosensor development. Applied and Environmental Microbiology, 82(14): 4133–4144

[52]

Ferrusquía-Jiménez N I , González-Arias B , Rosales A , Esquivel K , Escamilla-Silva E M , Ortega-Torres A E , Guevara-González R G . (2022). Elicitation of Bacillus cereus-amazcala (B.c-A) with SiO2 nanoparticles improves its role as a plant growth-promoting bacteria (PGPB) in chili pepper plants. Plants, 11(24): 3445

[53]

Gaafar R M , Osman M E A H , Abo-Shady A M , Almohisen I A A , Badawy G A , El-Nagar M M F , Ismail G A . (2022). Role of antioxidant enzymes and glutathione S-transferase in bromoxynil herbicide stress tolerance in wheat plants. Plants, 11(20): 2679

[54]

Ganie S Y , Javaid D , Hajam Y A , Reshi M S . (2024). Arsenic toxicity: sources, pathophysiology and mechanism. Toxicology Research, 13(1): tfad111

[55]

Gao M S , Li H , Xie Z L , Li Z C , Luo Z Q , Yu R H , C W , He J . (2024). The fate of Arsenic associated with the transformation of iron oxides in soils: the mineralogical evidence. Science of the Total Environment, 914: 169795

[56]

Garcia-Casal M N , Dary O , Jefferds M E , Pasricha S R . (2023). Diagnosing anemia: challenges selecting methods, addressing underlying causes, and implementing actions at the public health level. Annals of the New York Academy of Sciences, 1524(1): 37–50

[57]

Gatasheh M K , Shah A A , Kaleem M , Usman S , Shaffique S . (2024). Application of CuNPs and AMF alleviates arsenic stress by encompassing reduced arsenic uptake through metabolomics and ionomics alterations in Elymus sibiricus. BMC Plant Biology, 24(1): 667

[58]

Gautam KSirohi CSingh N RThakur YJatav S SRana KChitara MMeena R PSingh A KParihar M (2021). Microbial biofertilizer: types, applications, and current challenges for sustainable agricultural production. In: Rakshit A, Meena V S, Parihar M, Singh H B, Singh A K, eds. Biofertilizers. Duxford: Woodhead Publishing, 3–19

[59]

Gentile R , Vanlauwe B , Chivenge P , Six J . (2008). Interactive effects from combining fertilizer and organic residue inputs on nitrogen transformations. Soil Biology and Biochemistry, 40(9): 2375–2384

[60]

Ghosh P K , Pramanik K , Mahapatra K , Mondal S , Ghosh S K , Ghosh A , Maiti T K . (2024). Plant growth-promoting Bacillus cereus MCC3402 facilitates rice seedling growth under arsenic-spiked soil. Biocatalysis and Agricultural Biotechnology, 61: 103405

[61]

Gong Z L , Lu X F , Ma M S , Watt C , Le X C . (2002). Arsenic speciation analysis. Talanta, 58(1): 77–96

[62]

Gracia-Rodriguez C , Lopez-Ortiz C , Flores-Iga G , Ibarra-Muñoz L , Nimmakayala P , Reddy U K , Balagurusamy N . (2024). From genes to ecosystems: decoding plant tolerance mechanisms to arsenic stress. Heliyon, 10(7): e29140

[63]

Guo J M , Meng X F , Yang J X , Li Y F , Chen T B , Wei Y X , Zuo Y P . (2025). Intercropping hyperaccumulators with peaches for sustainable management modes on Cd/As-contaminated orchards: a comprehensive perspective for environmental and economic merit evaluation. Frontiers of Environmental Science & Engineering, 19(6): 85

[64]

Guo Z M , Chen P , Yosri N , Chen Q S , Elseedi H R , Zou X B , Yang H S . (2023). Detection of heavy metals in food and agricultural products by surface-enhanced Raman spectroscopy. Food Reviews International, 39(3): 1440–1461

[65]

Gupta ATripathy D BKumar GAgarwal PGhosal A (2024a). Nanopesticides, Nanoherbicides, and Nanofertilizers. Boca Raton: CRC Press

[66]

Gupta R , Khan F , Alqahtani F M , Hashem M , Ahmad F . (2024b). Plant growth–promoting Rhizobacteria (PGPR) assisted bioremediation of Heavy Metal Toxicity. Applied Biochemistry and Biotechnology, 196(5): 2928–2956

[67]

Gupta S , Thokchom S D , Kapoor R . (2023). Arbuscular mycorrhiza fungus alleviates arsenic mediated disturbances in tricarboxylic acid cycle and nitrogen metabolism in Triticum aestivum L. Plant Physiology and Biochemistry, 197: 107631

[68]

Hafeez B , Khanif Y M , Saleem M . (2013). Role of zinc in plant nutrition: a review. Journal of Experimental Agriculture International, 3(2): 374–391

[69]

Haidar H UArshad EAmir M AZafar NAkhtar IAhmad M TSaeed KKhan M JAli M (2024) Integrating nanotechnologybacteria-based remediation: a synergistic approach to mitigating climate changesoil degradation in agriculture. Global Scientific and Academic Research Journal of Multidisciplinary Studies, 3(10): 1–13(After consulting online materials, we were unable to confirm whether the modification of this document is correct. Please confirm)

[70]

Haroon MKhan S TMalik A (2022). Zinc-solubilizing bacteria: an option to increase zinc uptake by plants. In: Tabrez S, Khan, Malik A, eds. Microbial Biofertilizers and Micronutrient Availability: The Role of Zinc in Agriculture and Human Health. Cham: Springer, 207–238

[71]

Haroun M , Xie S F , Awadelkareem W , Wang J J , Qian X Q . (2023). Influence of biofertilizer on heavy metal bioremediation and enzyme activities in the soil to revealing the potential for sustainable soil restoration. Scientific Reports, 13(1): 20684

[72]

Hemmat-Jou M H , Liu S J , Liang Y M , Chen G H , Fang L P , Li F B . (2024). Microbial arsenic methylation in soil-water systems and its environmental significance. Science of the Total Environment, 944: 173873

[73]

Hoang A T P , Kim K W . (2024). Mitigation of arsenic accumulation in crop plants using biofertilizer. Environmental Science and Pollution Research, 31(17): 26231–26241

[74]

Hönig M , Roeber V M , Schmülling T , Cortleven A . (2023). Chemical priming of plant defense responses to pathogen attacks. Frontiers in Plant Science, 14: 1146577

[75]

Hou X Y , Qiao W T , Gu J D , Liu C Y , Hussain M M , Du D L , Zhou Y , Wang Y F , Li Q . (2024). Reforestation of Cunninghamia lanceolata changes the relative abundances of important prokaryotic families in soil. Frontiers in Microbiology, 15: 1312286

[76]

Hu Y X , Li J , Lou B , Wu R R , Wang G , Lu C W , Wang H H , Pi J B , Xu Y Y . (2020). The role of reactive oxygen species in arsenic toxicity. Biomolecules, 10(2): 240

[77]

Huang LWang XChi Y HHuang L NLi W CYe Z H (2021). Rhizosphere bacterial community composition affects cadmium and arsenic accumulation in rice (Oryza sativa L.). Ecotoxicology and Environmental Safety, 222: 112474

[78]

Huang YWang L YWang W JLi T QHe Z LYang X E (2019). Current status of agricultural soil pollution by heavy metals in China: a meta-analysis. Science of the Total Environment, 651(Pt 2): 3034–3042

[79]

Hussain M M , Bibi I , Niazi N K , Shahid M , Iqbal J , Shakoor M B , Ahmad A , Shah N S , Bhattacharya P , Mao K . et al. (2021). Arsenic biogeochemical cycling in paddy soil-rice system: interaction with various factors, amendments and mineral nutrients. Science of the Total Environment, 773: 145040

[80]

Ilham B , Noureddine C , Philippe G , Mohammed E G , Brahim E , Sophie A , Martine N , Muriel M . (2019). Induced systemic resistance (ISR) in Arabidopsis thaliana by Bacillus amyloliquefaciens and Trichoderma harzianum used as seed treatments. Agriculture, 9(8): 166

[81]

Ilyas M Z , Sa K J , Ali M W , Lee J K . (2024). Toxic effects of lead on plants: integrating multi-omics with bioinformatics to develop Pb-tolerant crops. Planta, 259(1): 18

[82]

Iriawan H , Andersen S Z , Zhang X L , Comer B M , Barrio J , Chen P , Medford A J , Stephens I E , Chorkendorff I , Shao-Horn Y . (2021). Methods for nitrogen activation by reduction and oxidation. Nature Reviews Methods Primers, 1(1): 56

[83]

Irshad S , Xie Z M , Kamran M , Nawaz A , Faheem S , Mehmood H , Gulzar M H , Saleem M , Rizwan Z . et al. (2021). Biochar composite with microbes enhanced arsenic biosorption and phytoextraction by Typha latifolia in hybrid vertical subsurface flow constructed wetland. Environmental Pollution, 291: 118269

[84]

Islam S , Al Bakky A , Islam A R M T , Ali M M , Islam T , Ismail Z , Hossain T B , Ahmed S , Ibrahim K A , Idris A M . (2024). The novel study on arsenic contamination, health risk, and approaches to its mitigation from water resource of a developing country: a potential review. Water, Air, & Soil Pollution, 235(12): 821

[85]

Jat M L , Chakraborty D , Ladha J K , Parihar C M , Datta A , Mandal B , Nayak H S , Maity P , Rana D S , Chaudhari S K . et al. (2022). Carbon sequestration potential, challenges, and strategies towards climate action in smallholder agricultural systems of South Asia. Crop and Environment, 1(1): 86–101

[86]

Javed Q , Wu Y Y , Xing D K , Azeem A , Ullah I , Zaman M . (2017). Re-watering: an effective measure to recover growth and photosynthetic characteristics in salt-stressed Brassica napus L. Chilean Journal of Agricultural Research, 77(1): 78–86

[87]

Ji X W , Wan J , Wang X D , Peng C , Wang G H , Liang W Y , Zhang W . (2022). Mixed bacteria-loaded biochar for the immobilization of arsenic, lead, and cadmium in a polluted soil system: effects and mechanisms. Science of the Total Environment, 811: 152112

[88]

Jing Y L , Zhang Y H , Han I , Wang P , Mei Q W , Huang Y J . (2020). Effects of different straw biochars on soil organic carbon, nitrogen, available phosphorus, and enzyme activity in paddy soil. Scientific Reports, 10(1): 8837

[89]

Kabiraj A , Halder U , Bandopadhyay R . (2024). Isolation and characterization of arsenic-tolerable bacteria from groundwater and their implementation on rice seedling’s shoot and root enhancement. Current Microbiology, 81(12): 425

[90]

Kamal M Z UMiah Y (2021). Arsenic speciation techniques in soil water and plant: an overview. In: Stoytcheva M, Zlatev R, eds. Arsenic Monitoring, Removal and Remediation. London: IntechOpen

[91]

Kamran S , Shahid I , Baig D N , Rizwan M , Malik K A , Mehnaz S . (2017). Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Frontiers in Microbiology, 8: 2593

[92]

Karle S BKumar KDhankher O P (2022). The versatile role of plant aquaglyceroporins in metalloid transport. In: Kumar K, Srivastava S, eds. Plant Metal and Metalloid Transporters. Singapore: Springer, 133–150

[93]

Karnwal A , Dohroo A , Malik T . (2023). Unveiling the potential of bioinoculants and nanoparticles in sustainable agriculture for enhanced plant growth and food security. BioMed Research International, 2023: 6911851

[94]

Kaya C , Uğurlar F , Ashraf M , Hou D Y , Kirkham M B , Bolan N . (2024). Microbial consortia-mediated arsenic bioremediation in agricultural soils: current status, challenges, and solutions. Science of the Total Environment, 917: 170297

[95]

Keren R , Méheust R , Santini J M , Thomas A , West-Roberts J , Banfield J F , Alvarez-Cohen L . (2022). Global genomic analysis of microbial biotransformation of arsenic highlights the importance of arsenic methylation in environmental and human microbiomes. Computational and Structural Biotechnology Journal, 20: 559–572

[96]

Khan A , Farhan A , Maqbool F , Maqsood N , Qayyum W , Haider A , Khan M Y , Maleki-Baladi R , Rahdar A , Díez-Pascual A M . (2024). Exploring the transporters and mechanisms of arsenic detoxification in plants and potential role of nanoparticles in alleviating arsenic stress. Plant Growth Regulation, 104(1): 95–119

[97]

Khan A A , Alabbosh K F , Kashif B , Iqbal S , Manan W A , Alhoqail D L , Du Y F . (2025a). Ion homeostasis, osmotic adjustment, and ROS detoxification underlie pea salinity tolerance induced by Pseudomonas putida RT12. Microbiology Research, 16(11): 227

[98]

Khan A A , Kashif Z , Ahmad W T , Qiao D L , Du Z C , Dai Y Y , Lu B , Iqbal R , Akbar S . et al. (2025b). Halotolerant Staphylococcus epidermidis DS2 enhances growth, stress resilience, and ion homeostasis in wheat under saline conditions. World Journal of Microbiology and Biotechnology, 41(11): 433

[99]

Khan A A , Wang Y F , Akbar R , Alhoqail W A . (2025c). Mechanistic insights and future perspectives of drought stress management in staple crops. Frontiers in Plant Science, 16: 1547452

[100]

Khan A AWang Y FZeb AHayat KAlhoqail W ASoliman M H (2025d). Beneficial elements and their roles against soil pollution. In: Saud S, Fahad S, Wang D P, eds. Beneficial Elements for Remediation of Heavy Metals in Polluted Soil. Amsterdam: Elsevier, 1–32

[101]

Khan I , Iqbal B , Khan A A , Inamullah A , Rehman A , Fayyaz A , Shakoor T H , Farooq L X . (2022a). The interactive impact of straw mulch and biochar application positively enhanced the growth indexes of maize (Zea mays L.) crop. Agronomy, 12(10): 2584

[102]

Khan M A , Yasmin H , Shah Z A , Rinklebe J , Alyemeni M N , Ahmad P . (2022b). Co application of biofertilizer and zinc oxide nanoparticles upregulate protective mechanism culminating improved arsenic resistance in maize. Chemosphere, 294: 133796

[103]

Khan Z , Khan S , Almansour M I , Asad M , Ansari M J , Khan H , Ahmad I . (2025e). Mycorrhizopshere bacteria alleviated arsenic toxicity by regulating organic acids, glyoxalase defense system, and metal transporters in soybean plants. South African Journal of Botany, 177: 171–186

[104]

Khanna KKohli S KKumar POhri PBhardwaj RAlam PAhmad P (2022). Arsenic as hazardous pollutant: perspectives on engineering remediation tools. Science of the Total Environment, 838(Pt 2): 155870

[105]

Khatun J , Intekhab A , Dhak D . (2022). Effect of uncontrolled fertilization and heavy metal toxicity associated with arsenic(As), lead(Pb) and cadmium(Cd), and possible remediation. Toxicology, 477: 153274

[106]

Khoshru B , Mitra D , Khoshmanzar E , Myo E M , Uniyal N , Mahakur B , Mohapatra P K D , Panneerselvam P , Boutaj H , Alizadeh M . et al. (2020). Current scenario and future prospects of plant growth-promoting rhizobacteria: an economic valuable resource for the agriculture revival under stressful conditions. Journal of Plant Nutrition, 43(20): 3062–3092

[107]

Kour B , Sharma P , Ramya S , Gawdiya S , Sudheer K , Ramakrishnan B . (2024). Cyanobacterial biofertilizer inoculation has a distinctive effect on the key genes of carbon and nitrogen cycling in paddy rice. Journal of Applied Phycology, 36(4): 1859–1874

[108]

Kour D , Rana K L , Yadav A N , Yadav N , Kumar M , Kumar V , Vyas P , Dhaliwal H S , Saxena A K . (2020). Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology, 23: 101487

[109]

Kumar ARaj VSrivastava AAli MGhosh A KRachamalla MKumar D (2022a). Autophagy in arsenic exposed population and cancer patients. In: Kumar D, Asthana S, eds. Autophagy and Metabolism. London: Academic Press, 141–161

[110]

Kumar S , Choudhary A K , Suyal D C , Makarana G , Goel R . (2022b). Leveraging arsenic resistant plant growth-promoting rhizobacteria for arsenic abatement in crops. Journal of Hazardous Materials, 425: 127965

[111]

Kumar S , Sindhu S S , Kumar R . (2022c). Biofertilizers: an ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences, 3: 100094

[112]

Kumar VSanyal I (2022). Co-transport mechanism in plants for metals and metalloids. In: Kumar K, Srivastava S, eds. Plant Metal and Metalloid Transporters. Singapore: Springer, 305–330

[113]

Laha ASengupta SBhattacharyya SBhattacharyya KGuharoy S (2024). Isolation and characterization of rhizobacteria from lentil for arsenic resistance and plant growth promotion. 3 Biotech, 14(1): 30

[114]

Legendre F , MacLean A , Tharmalingam S , Appanna V D . (2022). A metabolic network mediating the cycling of succinate, a product of ROS detoxification into α-ketoglutarate, an antioxidant. Antioxidants, 11(3): 560

[115]

Li G L , Kim S , Han S H , Chang H N , Du D L , Son Y . (2018a). Precipitation affects soil microbial and extracellular enzymatic responses to warming. Soil Biology and Biochemistry, 120: 212–221

[116]

Li L Z , Hu Z R , Tan G , Fan J Q , Chen Y Q , Xiao Y S , Wu S L , Zhi Q Q , Liu T B , Yin H Q . et al. (2023). Enhancing plant growth in biofertilizer-amended soil through nitrogen-transforming microbial communities. Frontiers in Plant Science, 14: 1259853

[117]

Li P , Li Y C , Zheng X Q , Ding L N , Ming F , Pan A H , Lv W G , Tang X M . (2018b). Rice straw decomposition affects diversity and dynamics of soil fungal community, but not bacteria. Journal of Soils and Sediments, 18(1): 248–258

[118]

Li S JJiang Z MWei S Q (2024a). Interaction of heavy metals and polycyclic aromatic hydrocarbons in soil-crop systems: the effects and mechanisms. Environmental Research, 263(Pt 1): 120035

[119]

Li X , Fan J R , Zhu F , Yan Z L , Hartley W , Yang X W , Zhong X L , Jiang Y F , Xue S G . (2024b). Sb/As immobilization and soil function improvement under the combined remediation strategy of modified biochar and Sb-oxidizing bacteria at a smelting site. Journal of Hazardous Materials, 471: 134302

[120]

Liu C J , Hu C Y , Xiao S F , Deng S G , Liu X , Menezes-Blackburn D , Ma L Q . (2024). Insoluble-phytate improves plant growth and arsenic accumulation in As-hyperaccumulator Pteris vittata: phytase activity, nutrient uptake, and As-metabolism. Environmental Science & Technology, 58(8): 3858–3868

[121]

Liu H , Li P P , Qiu F X , Zhang T , Xu J C . (2020). Controllable preparation of FeOOH/CuO@WBC composite based on water bamboo cellulose applied for enhanced arsenic removal. Food and Bioproducts Processing, 123: 177–187

[122]

Liu Q H , Li Y . (2022). Nutrient and non-nutrient factors associated with the arsenic uptake and buildup in rice: a review. Journal of Soil Science and Plant Nutrition, 22(4): 4798–4815

[123]

Mącik M , Gryta A , Frąc M . (2020). Biofertilizers in agriculture: an overview on concepts, strategies and effects on soil microorganisms. Advances in Agronomy, 162: 31–87

[124]

Magar L B , Rayamajhee B , Khadka S , Karki G , Thapa A , Yasir M , Thapa S , Panta O P , Sharma S , Poudel P . (2022). Detection of Bacillus species with arsenic resistance and plant growth promoting efficacy from agricultural soils of Nepal. Scientifica, 2022: 9675041

[125]

Mahgoub H A M , Fouda A , Eid A M , Ewais E E D , Hassan S E D . (2021). Biotechnological application of plant growth-promoting endophytic bacteria isolated from halophytic plants to ameliorate salinity tolerance of Vicia faba L. Plant Biotechnology Reports, 15(6): 819–843

[126]

Majhi B , Semwal P , Mishra S K , Misra S , Chauhan P S . (2025). Arsenic stress management through arsenite and arsenate-tolerant growth-promoting bacteria in rice. International Microbiology, 28(1): 11–25

[127]

Majumder BSil PBiswas A K (2023). Arsenic toxicity and tolerance in plants: insights from omics studies. In: Hossain M A, Hossain A Z, Bourgerie S, Fujita M, Dhankher O P, Haris P, eds. Heavy Metal Toxicity and Tolerance in Plants: A Biological, Omics, and Genetic Engineering Approach. Hoboken: Wiley, 293–321

[128]

Majumder S , Powell M A , Biswas P K , Banik P . (2022). The impact of Arsenic induced stress on soil enzyme activity in different rice agroecosystems. Environmental Technology & Innovation, 26: 102282

[129]

Mandal D , Aghababaei M , Das S K , Majumder S , Chatterjee D , Basu A . (2022). Isolation and identification of arsenic hyper-tolerant bacterium with potential plant growth promoting properties from soil. Minerals, 12(11): 1452

[130]

Mandal S M , Gouri S S , De D , Das B K , Mondal K C , Pati B R . (2011). Effect of arsenic on nodulation and nitrogen fixation of blackgram (Vigna mungo). Indian Journal of Microbiology, 51(1): 44–47

[131]

Marwa N , Mishra N , Singh N , Mishra A , Saxena G , Pandey V , Singh N . (2020). Effect of rhizospheric inoculation of isolated arsenic (As) tolerant strains on growth, As-uptake and bacterial communities in association with Adiantum capillus-veneris. Ecotoxicology and Environmental Safety, 196: 110498

[132]

Masood FAhmad SMalik A (2022). Role of rhizobacterial bacilli in zinc solubilization. In: Tabrez S, Khan, Malik A, eds. Microbial Biofertilizers and Micronutrient Availability: The Role of Zinc in Agriculture and Human Health. Cham: Springer, 361–377

[133]

Meena M , Swapnil P , Divyanshu K , Kumar S , Harish Y N , Tripathi A , Zehra A , Marwal R S . (2020). PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: current perspectives. Journal of Basic Microbiology, 60(10): 828–861

[134]

Mishra ARajput SGupta P SGoyal VSingh SSharma SShukla SSingh AShukla KVarma A (2021). Role of cyanobacteria in rhizospheric nitrogen fixation. In: Cruz C, Vishwakarma K, Choudhary D K, Varma A, eds. Soil Nitrogen Ecology. Cham: Springer, 497–519

[135]

Misu I J , Kayess O , Siddiqui N , Gupta D R , Islam M N , Islam T . (2025). Microbiome engineering for sustainable rice production: strategies for biofertilization, stress tolerance, and climate resilience. Microorganisms, 13(2): 233

[136]

Mitra D , Saritha B , Janeeshma E , Gusain P , Khoshru B , Nouh F A A , Rani A , Olatunbosun A N , Ruparelia J , Rabari A . et al. (2022). Arbuscular mycorrhizal fungal association boosted the arsenic resistance in crops with special responsiveness to rice plant. Environmental and Experimental Botany, 193: 104681

[137]

Mohd S , Kushwaha A S , Shukla J , Mandrah K , Shankar J , Arjaria N , Saxena P N , Khare P , Narayan R , Dixit S . et al. (2019). Fungal mediated biotransformation reduces toxicity of arsenic to soil dwelling microorganism and plant. Ecotoxicology and Environmental Safety, 176: 108–118

[138]

Monaco P , Baldoni A , Naclerio G , Scippa G S , Bucci A . (2024). Impact of plant–microbe interactions with a focus on poorly investigated urban ecosystems: a review. Microorganisms, 12(7): 1276

[139]

Mondal S , Pramanik K , Ghosh S K , Pal P , Ghosh P K , Ghosh A , Maiti T K . (2022). Molecular insight into arsenic uptake, transport, phytotoxicity, and defense responses in plants: a critical review. Planta, 255(4): 87

[140]

Monroy-Licht A . (2023). Effect of phosphate on arsenic species uptake in plants under hydroponic conditions. Journal of Plant Research, 136(5): 729–742

[141]

Morales-Simfors N , Bundschuh J , Herath I , Inguaggiato C , Caselli A T , Tapia J , Choquehuayta F E A , Armienta M A , Ormachea M , Joseph E . et al. (2020). Arsenic in Latin America: a critical overview on the geochemistry of arsenic originating from geothermal features and volcanic emissions for solving its environmental consequences. Science of the Total Environment, 716: 135564

[142]

Mousavi S M , Motesharezadeh B , Hosseini H M , Alikhani H , Zolfaghari A A . (2018). Root-induced changes of Zn and Pb dynamics in the rhizosphere of sunflower with different plant growth promoting treatments in a heavily contaminated soil. Ecotoxicology and Environmental Safety, 147: 206–216

[143]

Mujawar S Y , Vaigankar D C , Dubey S K . (2021). Biological characterization of Bacillus flexus strain SSAI1 transforming highly toxic arsenite to less toxic arsenate mediated by periplasmic arsenite oxidase enzyme encoded by aioAB genes. BioMetals, 34(4): 895–907

[144]

Mushtaq T , Bano A , Ullah A . (2025). Effects of rhizospheric microbes, growth regulators, and biochar in modulating antioxidant machinery of plants under stress. Journal of Plant Growth Regulation, 44(5): 1846–1867

[145]

Mushtaq T , Shah A A , Akram W , Yasin N A . (2020). Synergistic ameliorative effect of iron oxide nanoparticles and Bacillus subtilis S4 against arsenic toxicity in Cucurbita moschata: polyamines, antioxidants, and physiochemical studies. International Journal of Phytoremediation, 22(13): 1408–1419

[146]

Nahar K , Rhaman M S , Parvin K , Bardhan K , Marques D N , García-Caparrós P , Hasanuzzaman M . (2022). Arsenic-induced oxidative stress and antioxidant defense in plants. Stresses, 2(2): 179–209

[147]

Namdjoyan S H , Namdjoyan S H , Kermanian H . (2016). Phytochelatin synthesis and responses of antioxidants during arsenic stress in Nasturtium officinale. Russian Journal of Plant Physiology, 63(6): 739–748

[148]

Naorem ATilgam JPriyadarshini PTak YBharati APatel A (2022). Advances in Plant Nitrogen Metabolism. Boca Raton: CRC Press, 142–154

[149]

Narayan O P , Kumar P , Yadav B , Dua M , Johri A K . (2023). Sulfur nutrition and its role in plant growth and development. Plant Signaling & Behavior, 18(1): 2030082

[150]

Naseem M , Raghuwanshi R , Verma P C , Tripathi R D , Srivastava P K . (2025). Harnessing fungal biotechnology for sustainable management of arsenic contamination in agricultural ecosystems. Environmental Reviews, 33: 1–11

[151]

Nivetha NLavanya A KVikram K VAsha A DSruthi K SBandeppa SAnnapurna KPaul S (2021). PGPR-mediated regulation of antioxidants: Prospects for abiotic stress management in plants. In: Singh H B, Vaishnav A, Sayyed R Z, eds. Antioxidants in Plant-Microbe Interaction. Singapore: Springer, 471–497

[152]

Páez-Espino A D , Nikel P I , Chavarría M , de Lorenzo V . (2020). ArsH protects Pseudomonas putida from oxidative damage caused by exposure to arsenic. Environmental Microbiology, 22(6): 2230–2242

[153]

Pandey D , Kehri H K , Rai S N , Chaturvedi S , Singh S K , Vamanu E . (2024). The Consequence of arsenic remediation through potential indigenous rhizospheric microbes. Biocatalysis and Agricultural Biotechnology, 56: 103030

[154]

Pandey DKehri H KZoomi IChaturvedi SChaudhary K L (2022). Seasonal effect on the diversity of soil fungi and screening for arsenic tolerance and their remediation. Journal of Applied Biology & Biotechnology, 10 Suppl 1: 40–46

[155]

Pandey N , Xalxo R , Chandra J , Keshavkant S . (2023). Bacterial consortia mediated induction of systemic tolerance to arsenic toxicity via expression of stress responsive antioxidant genes in Oryza sativa L. Biocatalysis and Agricultural Biotechnology, 47: 102565

[156]

Parewa H PJoshi NMeena V SJoshi SChoudhary ARam MMeena S CJain L K (2021). Role of biofertilizers and biopesticides in organic farming. In: Meena V S, Meena S K, Rakshit A, Stanley J, Srinivasarao C, eds. Advances in Organic Farming. Duxford: Woodhead Publishing, 133–159

[157]

Patel K S , Pandey P K , Martín-Ramos P , Corns W T , Varol S , Bhattacharya P , Zhu Y B . (2023). A review on arsenic in the environment: contamination, mobility, sources, and exposure. RSC Advances, 13(13): 8803–8821

[158]

Peralta J M , Travaglia C , Romero-Puertas M C , Molina-Moya E , Furlan A , Castro S , Bianucci E . (2022). Decoding the antioxidant mechanisms underlying arsenic stress in roots of inoculated peanut plants. Plant Growth Regulation, 97(1): 77–90

[159]

Pérez-Palacios P , Funes Pinter I , Agostini E , Talano M A , Ibáñez S G , Humphry M , Edwards K , Rodríguez-Llorente I D , Caviedes M A , Pajuelo E . (2019). Targeting acr3 from Ensifer medicae to the plasma membrane or to the tonoplast of tobacco hairy roots allows arsenic extrusion or improved accumulation. Effect of acr3 expression on the root transcriptome. Metallomics, 11(11): 1864–1886

[160]

Pigna M , Caporale A G , Cavalca L , Sommella A , Violante A . (2015). Arsenic in the soil environment: mobility and phytoavailability. Environmental Engineering Science, 32(7): 551–563

[161]

Pramparo R D P , Vezza M E , Wevar Oller A L , Talano M A , Agostini E . (2025). Assessing the impact of arsenic on symbiotic and free-living PGPB: plant growth promoting traits, bacterial compatibility and adhesion on soybean seed. World Journal of Microbiology and Biotechnology, 41(1): 20

[162]

Qiao J T , Li X M , Li F B . (2018). Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar. Journal of Hazardous Materials, 344: 958–967

[163]

Qiao W T , Wang Y F , Hou X Y , Du D L , Li Z Y , Wang X Y . (2024). Solidago canadensis enhances its invasion by modulating prokaryotic communities in the bulk soil. International Biodeterioration & Biodegradation, 194: 105881

[164]

Qiao W T , Wang Y F , Hou X Y , Li X Z , Du D L , Dai Z C , Ren G Q , Zheng X J , Liu C Y . (2025). Soil comammox Nitrospira dominates over ammonia-oxidizing archaea and bacteria in the invasion of Solidago canadensis. Plant and Soil, 513(2): 2417–2431

[165]

Rabani M SHameed IGupta M KWani B AFayaz MHussain HPathak ATripathi SGupta CSrivastav M, et al. (2023). Introduction of biofertilizers in agriculture with emphasis on nitrogen fixers and phosphate solubilizers. In: Dar G H, Bhat R A, Mehmood M A, eds. Microbiomes for the Management of Agricultural Sustainability. Cham: Springer, 71–93

[166]

Rahimzadeh S , Ghassemi-Golezani K . (2025). The roles of nanoparticle-enriched biochars in improving soil enzyme activities and nutrient uptake by basil plants under arsenic toxicity. International Journal of Phytoremediation, 27(3): 307–315

[167]

Rahman H H , Toohey W , Munson-McGee S H . (2023). Exposure to arsenic, polycyclic aromatic hydrocarbons, metals, and association with skin cancers in the US adults. Environmental Science and Pollution Research, 30(45): 101681–101708

[168]

Rahman S U , Liu X X , Khalid M , Rehman A , Cao J F , Kayani S I , Naeem M , Ahmad N , Khan A A , Manzoor M A . et al. (2024). Beyond contamination: Enhancing plant tolerance to arsenic through phytobial remediation. South African Journal of Botany, 164: 250–265

[169]

Rahman S U , Nawaz M F , Gul S , Yasin G , Hussain B , Li Y L , Cheng H F . (2022). State-of-the-art OMICS strategies against toxic effects of heavy metals in plants: a review. Ecotoxicology and Environmental Safety, 242: 113952

[170]

Rahut D BAryal J PManchanda NSonobe T (2022). Expectations for household food security in the coming decades: a global scenario. In: Bhat R, ed. Future Foods. London: Academic Press, 107–131

[171]

Rajani R K (2025)Meena . Nano-biofertilizers as soil conditioner. Vegetos.

[172]

Rao A , Kumari S , Dhania G , Laura J S . (2024). Agrochemicals are polluting the environment with arsenic. Environment Conservation Journal, 25(4): 1218–1223

[173]

Rao M C S , Rahul V D , Uppar P , Madhuri M L , Tripathy B , Vyas R D V , Swami D V , Raju S S . (2025). Enhancing the phytoremediation of heavy metals by plant growth promoting rhizobacteria (PGPR) consortium: a narrative review. Journal of Basic Microbiology, 65(4): e2400529

[174]

Rathi B S , Kumar P S . (2021). A review on sources, identification and treatment strategies for the removal of toxic Arsenic from water system. Journal of Hazardous Materials, 418: 126299

[175]

Ray IMridha DJoardar MDas AChowdhury N RDe ARoychowdhury T (2022). Alleviation of arsenic stress in plants using nanofertilizers and its extent of commercialization a systemic review. In: Piccin J S, Dettmer A, Chandrasekaran N, eds. Toxic Metals Contamination. Boca Raton: CRC Press, 47–71

[176]

Reddy G B G , Rajan R , Chundurwar K , Kumar A , Singh T , Vamshi T . (2023). Efficacy of biofertilizers in different stress management of fruit crops-a review. Plant Science Today, 10(sp2): 27–34

[177]

Rehman M U , Khan R , Khan A , Qamar W , Arafah A , Ahmad A , Ahmad A , Akhter R , Rinklebe J , Ahmad P . (2021). Fate of arsenic in living systems: implications for sustainable and safe food chains. Journal of Hazardous Materials, 417: 126050

[178]

Rezaei SKhanmirzaei A (2024). Nano-biofertilizers: a new area for enhancing plant nutrition. In: Sayyed R Z, Ilyas N, eds. Plant Holobiome Engineering for Climate-Smart Agriculture. Singapore: Springer, 617–632

[179]

Rizvi AAhmed BUmar SKhan M S (2022). Bacterial biofertilizers for bioremediation: a priority for future research. In: Soni R, Suyal D C, Yadav A N, Goel R, eds. Trends of Applied Microbiology for Sustainable Economy. New York: Academic Press, 565–612

[180]

Sá-Pereira P , Rodrigues M , E Castro I V , Simões F . (2007). Identification of an arsenic resistance mechanism in rhizobial strains. World Journal of Microbiology and Biotechnology, 23(10): 1351–1356

[181]

Sarraf M , Janeeshma E , Arif N , Qudrat Ullah Farooqi M , Kumar V , Ansari N A , Ghani M I , Ahanger M A , Hasanuzzaman M . (2023). Understanding the role of beneficial elements in developing plant stress resilience: signalling and crosstalk with phytohormones and microbes. Plant Stress, 10: 100224

[182]

Savci S . (2012). Investigation of effect of chemical fertilizers on environment. APCBEE Procedia, 1: 287–292

[183]

Sehar S , Adil M F , Askri S M H , Dennis E , Faizan M , Zhao P , Zhou F R , Shamsi I H . (2024). Nutrient and mycoremediation of a global menace ‘arsenic’: exploring the prospects of phosphorus and Serendipita indica-based mitigation strategies in rice and other crops. Plant Cell Reports, 43(4): 90

[184]

Sehar S , Adil M F , Ma Z X , Karim M F , Faizan M , Zaidi S S A , Siddiqui M H , Alamri S , Zhou F R , Shamsi I H . (2023). Phosphorus and Serendipita indica synergism augments arsenic stress tolerance in rice by regulating secondary metabolism related enzymatic activity and root metabolic patterns. Ecotoxicology and Environmental Safety, 256: 114866

[185]

Sevak P , Pushkar B . (2023). Bacterial responses towards arsenic toxicity and in-depth analysis of molecular mechanism along with possible on-field application. Journal of Environmental Chemical Engineering, 11(4): 110187

[186]

Shah A M , Khan I M , Shah T I , Bangroo S A , Kirmani N A , Nazir S , Malik A R , Aezum A M , Mir Y H , Hilal A . et al. (2022). Soil microbiome: a treasure trove for soil health sustainability under changing climate. Land, 11(11): 1887

[187]

Shang C , Chen A W , Chen G Q , Li H K , Guan S , He J M . (2017). Microbial biofertilizer decreases nicotine content by improving soil nitrogen supply. Applied Biochemistry and Biotechnology, 181(1): 1–14

[188]

Sharma A , Chetani R . (2017). A review on the effect of organic and chemical fertilizers on plants. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 5(11): 677–680

[189]

Sharma PSangwan SKaur HPatra AAnamika S (2023a)Mehta . Diversity and evolution of nitrogen fixing bacteria. In: Singh N, K Chattopadhyay A, Lichtfouse E, eds. Sustainable Agriculture Reviews 60: Microbial Processes in Agriculture. Cham: Springer, 95–120

[190]

Sharma S , Anand G , Singh N , Kapoor R . (2017). Arbuscular mycorrhiza augments arsenic tolerance in wheat (Triticum aestivum L.) by strengthening antioxidant defense system and thiol metabolism. Frontiers in Plant Science, 8: 906

[191]

Sharma S B , Sayyed R Z , Trivedi M H , Gobi T A . (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1): 587

[192]

Sharma U CDatta MSharma V (2023b). Soil microbes and biofertilizers. In: Sharma U C, Datta M, Sharma V, eds. Soils in the Hindu Kush Himalayas: Management for Agricultural Land Use. Cham: Springer, 117–144

[193]

Sharma Y , Hemmings A M , Deshmukh R , Pareek A . (2025). Metalloid transporters in plants: bridging the gap in molecular structure and physiological exaptation. Journal of Experimental Botany, 76(5): 1370–1389

[194]

Sher S , Rehman A . (2019). Use of heavy metals resistant bacteria—a strategy for arsenic bioremediation. Applied Microbiology and Biotechnology, 103(15): 6007–6021

[195]

Shi K X , Fan X , Qiao Z X , Han Y S , McDermott T R , Wang Q , Wang G J . (2017). Arsenite oxidation regulator AioR regulates bacterial chemotaxis towards arsenite in Agrobacterium tumefaciens GW4. Scientific Reports, 7(1): 43252

[196]

Shi K X , Wang Q , Fan X , Wang G J . (2018). Proteomics and genetic analyses reveal the effects of arsenite oxidation on metabolic pathways and the roles of AioR in Agrobacterium tumefaciens GW4. Environmental Pollution, 235: 700–709

[197]

Shi L , Zhan C T , Bai W J , Wang W , Yuan S J , Hu Z H . (2025). Enhanced degradation of arsanilic acid and in situ recovery of inorganic arsenic in a two-stage bioelectrochemical process. Frontiers of Environmental Science & Engineering, 19(8): 101

[198]

Shipley H J , Engates K E , Guettner A M . (2011). Study of iron oxide nanoparticles in soil for remediation of arsenic. Journal of Nanoparticle Research, 13(6): 2387–2397

[199]

Shri MDubey SDwivedi SSingh P KTripathi R D (2024). Long-distance translocation mechanism of arsenic from soil to rice grain. In: Awasthi G, Srivastava S, Sankhla M S, eds. Arsenic in Rice. New York: Apple Academic Press, 75–94

[200]

Silva L I D , Pereira M C , de Carvalho A M X , Buttrós V H , Pasqual M , Dória J . (2023). Phosphorus-solubilizing microorganisms: a key to sustainable agriculture. Agriculture, 13(2): 462

[201]

Singh A (2021). Role of algae in soil nitrogen fixation. In: Cruz C, Vishwakarma K, Choudhary D K, Varma A, eds. Soil Nitrogen Ecology. Cham: Springer, 483–496

[202]

Singh H , Bhat J A , Singh V P , Corpas F J , Yadav S R . (2021a). Auxin metabolic network regulates the plant response to metalloids stress. Journal of Hazardous Materials, 405: 124250

[203]

Singh H BVaishnav A (2022). New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam: Elsevier, 131–150

[204]

Singh N , Ghosh P K , Chakraborty S , Majumdar S . (2021b). Decoding the pathways of arsenic biotransformation in bacteria. Environmental Sustainability, 4(1): 63–85

[205]

Singh N , Gupta S , Marwa N , Pandey V , Verma P C , Rathaur S , Singh N . (2016). Arsenic mediated modifications in Bacillus aryabhattai and their biotechnological applications for arsenic bioremediation. Chemosphere, 164: 524–534

[206]

Singh P , Anand V , Kaur J , Srivastava S , Verma S K , Niranjan A , Srivastava P K , Srivastava S . (2024). Mitigation of arsenic toxicity in wheat by the inoculation of methyltransferase containing Pseudomonas oleovorans NBRI-B4.10. International Biodeterioration & Biodegradation, 193: 105851

[207]

Singhal R KFahad SKumar PChoyal PJaved TJinger DSingh PSaha DMd PBose B, et al. (2023). Beneficial elements: new players in improving nutrient use efficiency and abiotic stress tolerance. Plant Growth Regulation, 100(2): 237–265

[208]

Sinha DDatta SMishra RAgarwal PKumari TAdeyemi S BKumar Maurya AGanguly SAtique USeal S, et al. (2023). Negative impacts of arsenic on plants and mitigation strategies. Plants, 12(9): 1815

[209]

Slyemi D , Moinier D , Talla E , Bonnefoy V . (2013). Organization and regulation of the arsenite oxidase operon of the moderately acidophilic and facultative chemoautotrophic Thiomonas arsenitoxydans. Extremophiles, 17(6): 911–920

[210]

Solangi F , Zhu X Y , Solangi K A , Iqbal R , Elshikh M S , Alarjani K M , Elsalahy H H . (2024). Responses of soil enzymatic activities and microbial biomass phosphorus to improve nutrient accumulation abilities in leguminous species. Scientific Reports, 14(1): 11139

[211]

Solangi K A , Siyal A A , Wu Y Y , Abbasi B , Solangi F , Lakhiar I A , Zhou G Y . (2019). An assessment of the spatial and temporal distribution of soil salinity in combination with field and satellite data: a case study in Sujawal District. Agronomy, 9(12): 869

[212]

Soumare A , Diedhiou A G , Thuita M , Hafidi M , Ouhdouch Y , Gopalakrishnan S , Kouisni L . (2020). Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. Plants, 9(8): 1011

[213]

Srivastava P KSingh RParihar PPrasad S M (2022). Arsenic in Plants: Uptake, Consequences, and Remediation Techniques. Hoboken: Wiley

[214]

Sultana R , Islam S M N , Sultana T . (2023). Arsenic and other heavy metals resistant bacteria in rice ecosystem: potential role in promoting plant growth and tolerance to heavy metal stress. Environmental Technology & Innovation, 31: 103160

[215]

Sun B , Gu L K , Bao L J , Zhang S W , Wei Y X , Bai Z H , Zhuang G Q , Zhuang X L . (2020). Application of biofertilizer containing Bacillus subtilis reduced the nitrogen loss in agricultural soil. Soil Biology and Biochemistry, 148: 107911

[216]

Sun M M , Xiao D , Zhang W , Wang K L . (2024). Impacts of managed vegetation restoration on arbuscular mycorrhizal fungi and diazotrophs in karst ecosystems. Journal of Fungi, 10(4): 280

[217]

Sun Y , Ma L , Ma J , Li B K , Zhu Y F , Chen F . (2022). Combined application of plant growth-promoting bacteria and iron oxide nanoparticles ameliorates the toxic effects of arsenic in Ajwain (Trachyspermum ammi L.). Frontiers in Plant Science, 13: 1098755

[218]

Tanveer Y , Yasmin H , Nosheen A , Ali S , Ahmad A . (2022). Ameliorative effects of plant growth promoting bacteria, zinc oxide nanoparticles and oxalic acid on Luffa acutangula grown on arsenic enriched soil. Environmental Pollution, 300: 118889

[219]

Tayoh L N (2020). Destruction of soil health and risk of food contamination by application of chemical fertilizer. Ecological and Practical Applications for Sustainable Agriculture. In: Bauddh K, Kumar S, Singh R P, Korstad J, eds. Ecological and Practical Applications for Sustainable Agriculture. Singapore: Springer, 53–64

[220]

Thakur M , Rachamalla M , Niyogi S , Datusalia A K , Flora S J S . (2021). Molecular mechanism of arsenic-induced neurotoxicity including neuronal dysfunctions. International Journal of Molecular Sciences, 22(18): 10077

[221]

Thongnok S , Siripornadulsil W , Siripornadulsil S . (2021). AsIII-oxidizing and Cd-tolerant plant growth-promoting bacteria synergistically reduce arsenic translocation, toxicity and accumulation in KDML105 rice. Environmental and Experimental Botany, 192: 104660

[222]

Thounaojam T C , Khan Z , Meetei T T , Srivastava S , Panda S K , Upadhyaya H . (2021). Transporters: the molecular drivers of arsenic stress tolerance in plants. Journal of Plant Biochemistry and Biotechnology, 30(4): 730–743

[223]

Timofeeva A , Galyamova M , Sedykh S . (2022). Prospects for using phosphate-solubilizing microorganisms as natural fertilizers in agriculture. Plants, 11(16): 2119

[224]

Timofeeva A M, Galyamova M R, Sedykh S E (2024). How do plant growth-promoting bacteria use plant hormones to regulate stress reactions? Plants, 13(17): 2371

[225]

Toyota K , Watanabe T . (2013). Recent trends in microbial inoculants in agriculture. Microbes and Environments, 28(4): 403–404

[226]

Ulhassan Z , Bhat J A , Zhou W J , Senan A M , Alam P , Ahmad P . (2022). Attenuation mechanisms of arsenic induced toxicity and its accumulation in plants by engineered nanoparticles: a review. Environmental Pollution, 302: 119038

[227]

Ullah I , Mao H P , Rasool G , Gao H Y , Javed Q , Sarwar A , Khan M I . (2021). Effect of deficit irrigation and reduced N fertilization on plant growth, root morphology and water use efficiency of tomato grown in soilless culture. Agronomy, 11(2): 228

[228]

Umutesi C , Nirere M , Ndungutse V , Ndahimana D , Umuhozariho M G , Karangwa A , Mazimpaka J D , Nyagatare G . (2022). Effect of organic fertilizers on nutritional and processing quality of potatoes (Solanum tuberosum L.). Potato Journal, 49(2): 123–130

[229]

Uniyal N , Dhami B , Petwal H , Sharma A . (2024). Adverse impacts of heavy metal pollution on soil and plant growth in agriculture. Emergent Life Sciences Research, 10(2): 103–115

[230]

Upadhyay H , Gangola S , Sharma A , Singh A , Maithani D , Joshi S . (2021). Contribution of zinc solubilizing bacterial isolates on enhanced zinc uptake and growth promotion of maize (Zea mays L.). Folia Microbiologica, 66(4): 543–553

[231]

Vocciante M , Grifoni M , Fusini D , Petruzzelli G , Franchi E . (2022). The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Applied Sciences, 12(3): 1231

[232]

Waheed Z , Iqbal S , Irfan M , Jabeen K , Ilyas N , Al-Qahtani W H . (2024a). Isolation and characterization of PGPR obtained from different arsenic-contaminated soil samples and their effect on photosynthetic characters of maize grown under arsenic stress. Environmental Science and Pollution Research, 31(12): 18656–18671

[233]

Waheed Z , Iqbal S , Irfan M , Jabeen K , Umar A , Aljowaie R M , Almutairi S M , Gancarz M . (2024b). Pseudochrobactrum asaccharolyticum mitigates arsenic induced oxidative stress of maize plant by enhancing water status and antioxidant defense system. BMC Plant Biology, 24(1): 832

[234]

Wang C W , Xie Y K , Tan Z X . (2024). Soil potassium depletion in global cereal croplands and its implications. Science of the Total Environment, 907: 167875

[235]

Wang H J , Cui S P , Ma L , Wang Z Z , Wang H B . (2021). Variations of arsenic forms and the role of arsenate reductase in three hydrophytes exposed to different arsenic species. Ecotoxicology and Environmental Safety, 221: 112415

[236]

Wang L , Zhang H , Wang J , Wang J D , Zhang Y C . (2022a). Long-term fertilization with high nitrogen rates decreased diversity and stability of diazotroph communities in soils of sweet potato. Applied Soil Ecology, 170: 104266

[237]

Wang L Y , Ju C F , Han C , Yu Z H , Bai M Y , Wang C . (2025). The interaction of nutrient uptake with biotic and abiotic stresses in plants. Journal of Integrative Plant Biology, 67(3): 455–487

[238]

Wang Q , Lin G B , Zeng J Y , Tang J , Wang L . (2023a). As(III)-oxidizing bacteria alleviate arsenite toxicity via reducing As accumulation, elevating antioxidative activities and modulating ionome in rice (Oryza sativa L.). Current Microbiology, 80(10): 320

[239]

Wang Q L , Feng X Y , Liu Y Y , Cui W Z , Sun Y H , Zhang S W , Wang F Y . (2022b). Effects of microplastics and carbon nanotubes on soil geochemical properties and bacterial communities. Journal of Hazardous Materials, 433: 128826

[240]

Wang Y F , Li X Z , Datta R , Chen J , Du Y Z , Du D L . (2022c). Key factors shaping prokaryotic communities in subtropical forest soils. Applied Soil Ecology, 169: 104162

[241]

Wang Y Z , Xing M L , Gao X R , Wu M , Liu F , Sun L L , Zhang P , Duan M , Fan W X , Xu J . (2023b). Physiological and transcriptomic analyses reveal that phytohormone pathways and glutathione metabolism are involved in the arsenite toxicity response in tomatoes. Science of the Total Environment, 899: 165676

[242]

Wei CJiao Q JAgathokleous ELiu H TLi G ZZhang J JFahad SJiang Y (2022). Hormetic effects of zinc on growth and antioxidant defense system of wheat plants. Science of the Total Environment, 807(Pt 2): 150992

[243]

Wei X P , Xie B K , Wan C , Song R F , Zhong W R , Xin S Q , Song K . (2024a). Enhancing soil health and plant growth through microbial fertilizers: mechanisms, benefits, and sustainable agricultural practices. Agronomy, 14(3): 609

[244]

Wei Y T , Hu D , Ye C S , Zhang H , Li H R , Yu X . (2024b). Drinking water quality & health risk assessment of secondary water supply systems in residential neighborhoods. Frontiers of Environmental Science & Engineering, 18(2): 18

[245]

Wevar Oller A L , Regis S , Armendariz A L , Talano M A , Agostini E . (2020). Improving soybean growth under arsenic stress by inoculation with native arsenic-resistant bacteria. Plant Physiology and Biochemistry, 155: 85–92

[246]

Wu J W , Liang J L , Björn L O , Li J T , Shu W S , Wang Y T . (2022a). Phosphorus-arsenic interaction in the ‘soil-plant-microbe’ system and its influence on arsenic pollution. Science of the Total Environment, 802: 149796

[247]

Wu K K , Wu C , Jiang X X , Xue R , Pan W S , Li W C , Luo X H , Xue S G . (2022b). Remediation of arsenic-contaminated paddy field by a new iron oxidizing strain (Ochrobactrum sp.) and iron-modified biochar. Journal of Environmental Sciences, 115: 411–421

[248]

Xu X J , Sun S K , Zhang W W , Tang Z , Zhao F J . (2024). Editing silicon transporter genes to reduce arsenic accumulation in rice. Environmental Science & Technology, 58(4): 1976–1985

[249]

Xu Y H , Ma Y , Cayuela M L , Sánchez-Monedero M A , Wang Q J . (2020). Compost biochemical quality mediates nitrogen leaching loss in a greenhouse soil under vegetable cultivation. Geoderma, 358: 113984

[250]

Xue Y B , Li Y , Li X T , Zheng J , Hua D L , Jiang C Y , Yu B . (2024). Arsenic bioremediation in mining wastewater by controllable genetically modified bacteria with biochar. Environmental Technology & Innovation, 33: 103514

[251]

Yadav P , Ansari M W , Gill R , Tuteja N , Gill S S . (2024). Arsenic transport, detoxification, and recent technologies for mitigation: a systemic review. Plant Physiology and Biochemistry, 213: 108848

[252]

Yan Y Y , Chang W Y , Tian P L , Chen J Y , Jiang J Y , Dai X Z , Jiang T , Luo F , Yang C Y . (2024). Exploring native arsenic (As)-resistant bacteria: unveiling multifaceted mechanisms for plant growth promotion under As stress. Journal of Applied Microbiology, 135(9): lxae228

[253]

Yang L , Gao Y C , Bajpai V K , El-Kammar H A , Simal-Gandara J , Cao H , Cheng K W , Wang M F , Arroo R R J , Zou L . et al. (2023). Advance toward isolation, extraction, metabolism and health benefits of kaempferol, a major dietary flavonoid with future perspectives. Critical Reviews in Food Science and Nutrition, 63(16): 2773–2789

[254]

Yang Y X , J Ahammed G , Wu C J , Fan S Y , Zhou Y H . (2015). Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses. Current Protein & Peptide Science, 16(5): 450–461

[255]

Yazdanpanah-Ravari S , Sharifabad H H , Abbaspour H , Iranbakhsh A . (2024). The effects of environmental-based arsenic contamination on photosynthesis, antioxidant profiling, and biosynthesis of pistachio oil. Plant Growth Regulation, 103(1): 101–117

[256]

Yu Y Y , Gui Y , Li Z J , Jiang C H , Guo J H , Niu D D . (2022). Induced systemic resistance for improving plant immunity by beneficial microbes. Plants, 11(3): 386

[257]

Zafar SBilal MAli M FMahmood AKijsomporn JWong L SHarshini MKumar VAlotaibi S S (2024). Nano-biofertilizer an eco-friendly and sustainable approach for the improvement of crops under abiotic stresses. Environmental and Sustainability Indicators, 24: 100470

[258]

Zaheer M S , Aijaz N , Hameed A , Buttar N A , Rehman S , Riaz M W , Ahmad A , Manzoor M A , Asaduzzaman M . (2024). Cultivating resilience in wheat: mitigating arsenic toxicity with seaweed extract and Azospirillum brasilense. Frontiers in Microbiology, 15: 1441719

[259]

Zaidi S , Hayat S , Pichtel J . (2024). Arsenic-induced plant stress: mitigation strategies and omics approaches to alleviate toxicity. Plant Physiology and Biochemistry, 213: 108811

[260]

Zecchin S , Crognale S , Zaccheo P , Fazi S , Amalfitano S , Casentini B , Callegari M , Zanchi R , Sacchi G A , Rossetti S . et al. (2021). Adaptation of microbial communities to environmental arsenic and selection of arsenite-oxidizing bacteria from contaminated groundwaters. Frontiers in Microbiology, 12: 634025

[261]

Zeng X B , Bai L Y , Gao X , Shan H , Wu C X , Su S M . (2021). Agricultural planning by selecting food crops with low arsenic accumulation to efficiently reduce arsenic exposure to human health in an arsenic-polluted mining region. Journal of Cleaner Production, 308: 127403

[262]

Zhang C , Li X Y , Yan H F , Ullah I , Zuo Z Y , Li L L , Yu J J . (2020). Effects of irrigation quantity and biochar on soil physical properties, growth characteristics, yield and quality of green-house tomato. Agricultural Water Management, 241: 106263

[263]

Zhang CZhou J NYan H FAkhlaq MNi Y XXue RLi J (2024a). Effects of different irrigation amounts and biochar application on soil physical and mechanical properties in the short term. Irrigation and Drainage, 73(3): 866-881

[264]

Zhang P , Liu F , Abdelrahman M , Song Q Q , Wu F , Li R S , Wu M , Herrera-Estrella L , Tran L S P , Xu J . (2024b). ARR1 and ARR12 modulate arsenite toxicity responses in Arabidopsis roots by transcriptionally controlling the actions of NIP1;1 and NIP6;1. The Plant Journal, 120(4): 1536–1551

[265]

Zhang S Y , Zhang J J , Niu L L , Chen Q , Zhou Q , Xiao N , Man J , Ma J Q , Wei C L , Zhang S H . et al. (2024c). Escalating arsenic contamination throughout Chinese soils. Nature Sustainability, 7(6): 766–775

[266]

Zhang X , Liu Y , Mo X R , Huang Z L , Zhu Y H , Li H , Jiang L J , Tan Z M , Yang Z H , Zhu Y . et al. (2025). Ectomycorrhizal fungi and biochar promote soil recalcitrant carbon increases under arsenic stress. Journal of Hazardous Materials, 489: 137598

[267]

Zhang X , Zhang P L , Wei X , Peng H Y , Hu L G , Zhu X L . (2024d). Migration, transformation of arsenic, and pollution controlling strategies in paddy soil-rice system: a comprehensive review. Science of the Total Environment, 951: 175500

[268]

Zheng K , Gao T , Li K , Guan Y N , Hu S Y , Li Y J , Liu C G , Yan B . (2025). Risks and mechanistic insights into arsenic-enhanced iodination of bisphenol F in Brassica chinensis L. Frontiers of Environmental Science & Engineering, 19(6): 83

[269]

Zheng X C , Zou D S , Wu Q D , Wang H , Li S H , Liu F , Xiao Z H . (2022). Review on fate and bioavailability of heavy metals during anaerobic digestion and composting of animal manure. Waste Management, 150: 75–89

[270]

Zhou H Y , Nian F Z , Chen B D , Zhu Y G , Yue X R , Zhang N M , Xia Y S . (2023). Synergistic reduction of arsenic uptake and alleviation of leaf arsenic toxicity in maize (Zea mays L.) by arbuscular mycorrhizal fungi (AMF) and exogenous iron through antioxidant activity. Journal of Fungi, 9(6): 677

[271]

Zulfiqar F , Ashraf M . (2022). Antioxidants as modulators of arsenic-induced oxidative stress tolerance in plants: an overview. Journal of Hazardous Materials, 427: 127891

[272]

Zulfiqar F , Moosa A , Ferrante A , Nafees M , Darras A , Nazir M M , Alshaqhaa M A , Elsaid F G . (2023). RETRACTED: melatonin and salicylic acid synergistically improve arsenic induced oxidative stress tolerance in ornamental sword lily. Scientia Horticulturae, 322: 112389

RIGHTS & PERMISSIONS

Higher Education Press 2026

AI Summary AI Mindmap
PDF (8821KB)

73

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/