Nanoflower-like Co3S4/FeOOH heterostructure enables efficient norfloxacin degradation via synergistic radical-non-radical PMS activation

Yuerong Zhou , Ming Yi , Yu Zhao , Rui Yang , He Yan , Xiuwen Cheng

ENG. Environ. ›› 2026, Vol. 20 ›› Issue (5) : 68

PDF (5955KB)
ENG. Environ. ›› 2026, Vol. 20 ›› Issue (5) :68 DOI: 10.1007/s11783-026-2168-y
RESEARCH ARTICLE

Nanoflower-like Co3S4/FeOOH heterostructure enables efficient norfloxacin degradation via synergistic radical-non-radical PMS activation

Author information +
History +
PDF (5955KB)

Abstract

This study developed a monolithic Co3S4/FeOOH nanoflower(NF)-like catalyst through impregnation-boiling and mild hydrothermal methods (120 °C, 3 h), overcoming the drawbacks of both conventional ex-situ loading techniques (uneven distribution) and powdered catalysts (difficult separation). The in-situ grown nanoflower-like Co3S4/FeOOH composite on NF demonstrated superior peroxymonosulfate (PMS) activation, achieving 87.74% norfloxacin (NOR) removal under optimized conditions (1 cm2 catalyst loading with 0.2 g CoCl2·6H2O precursor, 0.3 g/L PMS dose, initial pH 6.3), representing around 11-fold and 1.8-fold higher degradation rates than single-component FeOOH/NF and Co3S4/NF, respectively. Mechanistic insights of such performance enhancement revealed by electrochemical analysis and Density functional theory (DFT) calculations. Quenching experiments and Electron paramagnetic resonance (EPR) analysis confirmed the coexistence of synergistic pathways involving radical species (SO4•−) and non-radical processes (1O2 and electron transfer). The Co3S4/FeOOH/NF & PMS system retains 84.73% NOR degradation after 3 cycles with stable morphology, while achieving broad-spectrum antibiotic removal (83.69%–99.88%). Fluorescence analysis confirms almost complete mineralization of recalcitrant humic substances from the real hospital wastewater within 40 min.

Graphical abstract

Keywords

Co3S4/FeOOH / Nickel foam / In-situ growth / PMS activation / NOR degradation

Highlight

In-situ nanoflower Co3S4/FeOOH/NF by mild impregnation-hydrothermal method.

● Superior PMS activation with 11-fold activity enhancement.

● Enhanced e- transfer at Co3S4/FeOOH/NF vs monometallic components.

● NOR was degraded through both free-radical and non-radical pathways.

● Excellent cyclability, low ecotoxicity and high real-wastewater efficacy.

Cite this article

Download citation ▾
Yuerong Zhou, Ming Yi, Yu Zhao, Rui Yang, He Yan, Xiuwen Cheng. Nanoflower-like Co3S4/FeOOH heterostructure enables efficient norfloxacin degradation via synergistic radical-non-radical PMS activation. ENG. Environ., 2026, 20(5): 68 DOI:10.1007/s11783-026-2168-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aasen D , Clark M P , Ivey D G . (2020). Investigation of transition metal-based (Mn, Co, Ni, Fe) trimetallic oxide nanoparticles on N-doped carbon nanotubes as bifunctional catalysts for Zn-air batteries. Journal of The Electrochemical Society, 167(4): 040503

[2]

Cao Y M , Jin Y , Zhou Z Y , Tian S C , Ren Z Q . (2024). Magnetic catalysts of MnFe2O4-AC activated peroxydisulfate for high-efficient treatment of norfloxacin wastewater. Chemical Physics Letters, 840: 141159

[3]

Chen H H , Park Y K , Kwon E , Fai Tsang Y , Xuan Thanh B , Cong Khiem T , You S M , Hu C , Lin K Y A . (2022a). Nanoneedle-Assembled Copper/Cobalt sulfides on nickel foam as an enhanced 3D hierarchical catalyst to activate monopersulfate for Rhodamine b degradation. Journal of Colloid and Interface Science, 613: 168–181

[4]

Chen Y W , Zhu K , Huang Y Z , Zhang J T , Li X , Zheng Z K , Jiang Z W , Hu D , Luo S J , Fang P . et al. (2024a). Facile synthesis of fine-grained CoFe2O4 anchored on porous carbon for simultaneous removal of tetracycline and arsenite via peroxymonosulfate activation. Separation and Purification Technology, 328: 125131

[5]

Chen Z Q , Pang C , Guan J P , Wen Q X . (2022b). Isolation and characterization of a norfloxacin-degrading bacterial strain Aeromonas hydrophila sp. N215-1. Journal of Water Process Engineering, 48: 102892

[6]

Chen Z Y , Guo J Y , Li S R , Pu L , Huang L . (2024b). Insight in sulfadiazine degradation by peroxymonosulfate activated by polydopamine-derived nitrogen-doped carbon supported CoFe2O4: Co leaching inhibition and degradation enhancement. Ecotoxicology and Environmental Safety, 285: 117126

[7]

Cheng J L , Shen B S , Song Y Y , Liu J , Ye Q , Mao M , Cheng Y L . (2022). FeOOH decorated CoP porous nanofiber for enhanced oxygen evolution activity. Chemical Engineering Journal, 428: 131130

[8]

He L , Lv M , Dong H Y , Chen Q M , Hassan M , Niu J F , Gong Z J . (2024). Photo-assisted peroxymonosulfate activation with the heterostructure of ZIF-67@MIL-100(Fe) for ciprofloxacin degradation: reactivity, stability, and synergistic mechanisms. Separation and Purification Technology, 340: 126645

[9]

Henderson R K , Baker A , Murphy K R , Hambly A , Stuetz R M , Khan S J . (2009). Fluorescence as a potential monitoring tool for recycled water systems: a review. Water Research, 43(4): 863–881

[10]

Hong J , Dong J T , Zhang X M , Liu G P , Li L N , Wang B , Ji M X , Li H M , Xia J X . (2025). The synergistic effect of low concentration of peroxymonosulfate and visible light photocatalysis over FeOOH quantum dots/hollow g-C3N4 nanotubes S-scheme heterojunction for effectively antibiotics degradation. Journal of Environmental Chemical Engineering, 13(2): 115777

[11]

Hu L M , Zhang G S , Liu M , Wang Q , Dong S Y , Wang P . (2019). Application of nickel foam-supported Co3O4-Bi2O3 as a heterogeneous catalyst for BPA removal by peroxymonosulfate activation. Science of the Total Environment, 647: 352–361

[12]

Jia Z Y , Yang Y M , Yang C W , Wang D . (2024). Magnetic γ-Fe2O3/ZnO@CNTs synthesized by a green precipitation method for the degradation of aniline through photocatalysis coupling catalytic ozonation. Applied Surface Science, 659: 159866

[13]

Jiang L P , Wei Z Y , Ding Y H , Ma Y Y , Fu X , Sun J , Ma M , Zhu W X , Wang J L . (2022). In-situ synthesis of self-standing cobalt-doped nickel sulfide nanoarray as a recyclable and integrated catalyst for peroxymonosulfate activation. Applied Catalysis B: Environment and Energy, 307: 121184

[14]

Karthikeyan P , Marigoudar S R , Nagarjuna A , Sharma K V . (2019). Toxicity assessment of cobalt and selenium on marine diatoms and copepods. Environmental Chemistry and Ecotoxicology, 1: 36–42

[15]

Li H R , Huang J , Gao S M , Yu P , Wu S Q , Liu Z J , Xu X M , Wang L , Mou Z H , Wang Z H . et al. (2023a). Highly effective and recyclable ZnCo2O4@NF for peroxymonosulfate activation towards ciprofloxacin degradation: dual reaction sites and enhanced electron transfer mechanisms. Separation and Purification Technology, 325: 124677

[16]

Li H R , Liu C , Mou Z H , Yu P , Wu S Q , Wang W , Wang Z H , Yuan R X . (2025a). Enhancement of peroxymonosulfate activation with nickel foam-supported CuCo2O4 for tetracycline degradation: performance and mechanism insights. Journal of Colloid and Interface Science, 678: 227–241

[17]

Li J P , Li W , Liu K , Guo Y H , Ding C , Han J G , Li P P . (2022a). Global review of macrolide antibiotics in the aquatic environment: sources, occurrence, fate, ecotoxicity, and risk assessment. Journal of Hazardous Materials, 439: 129628

[18]

Li L , Wang Z L , She X J , Pan L , Xi C Y , Wang D , Yi J J , Yang J . (2023b). Ni-modified FeOOH integrated electrode by self-source corrosion of nickel foam for high-efficiency electrochemical water oxidation. Journal of Colloid and Interface Science, 652: 789–797

[19]

Li N , Wang Y S , Cheng X S , Dai H X , Yan B B , Chen G Y , Hou L A , Wang S B . (2022b). Influences and mechanisms of phosphate ions onto persulfate activation and organic degradation in water treatment: a review. Water Research, 222: 118896

[20]

Li P , Wang Y R , Huang B , Guan S Q , Luan T G , Lin G , Yuan K . (2022c). Antibiotics in wastewater of Guangdong, China: distribution patterns, and their environmental risk due to incomplete removal. Science of the Total Environment, 849: 157889

[21]

Li Y , Bu J Q , Sun Y R , Huang Z H , Zhu X H , Li S , Chen P , Tang Y L , He G W , Zhong S A . (2025b). Efficient degradation of norfloxacin by synergistic activation of PMS with a three-dimensional electrocatalytic system based on Cu-MOF. Separation and Purification Technology, 356: 129945

[22]

Li Y , Xiong H P , Shi W , Ni Z M , Xia S J . (2026). Dual-defect engineered LaOCl@CdS heterostructures for enhanced photocatalytic ciprofloxacin degradation: mechanistic insights and reaction pathways. Materials Research Bulletin, 193: 113684

[23]

Li Y H , Yi M , Shang J W , Hou Y L , Zhou S W , Cheng X W . (2025c). Oxygen vacancy modulation of single atom cobalt-activated peroxymonosulfate for highly selective generation of singlet oxygen and effective degradation of organic pollutants in actual water bodies. Chemical Engineering Journal, 515: 163874

[24]

Liu H Y , Hui W T , Gao H Y , Qu G J , Lv W W , Guo X , Li Z X , Li B B , Wu M Q , Yao T J . et al. (2025a). Altering peroxymonosulfate activation path for 1O2 production on ZIF-67 with coordinatively unsaturated metal sites. Frontiers of Environmental Science & Engineering, 19(11): 156

[25]

Liu W B , Zhou S W , Xu W , Shang J W , Yi M , Cheng X W . (2025b). Enhancement of manganese sand activation for PMS degradation of levofloxacin using Co3O4 quantum dots: mechanism and application. Journal of Water Process Engineering, 70: 107101

[26]

Liu Y , Liu W B , Gan X R , Shang J W , Cheng X W . (2024). High-performance, stable CoNi LDH@Ni foam composite membrane with innovative peroxymonosulfate activation for 2,4-dichlorophenol destruction. Journal of Environmental Sciences, 141: 235–248

[27]

Liu Z C , Chen L , Song Y R , Zhong Y , Chen Z J , Zhang X T , Wang X M . (2025c). Highly efficient PMS activation by synergistic effects of FeS2/CoS2 for rapid diuron degradation: advanced oxidation and mechanism. Environmental Research, 270: 121015

[28]

Lv H R , Yu W C , Li Y Y , Sun X , Hou X T , Bian Z Y , Wang H , Wei Y S . (2025). Cyclodextrin-supported sulfide zero-valent iron as PMS activator for simultaneous removing norfloxacin and ARGs in reclaimed water: activation and controlled release of active components. Chemical Engineering Journal, 505: 159656

[29]

Martak D, Henriot C P, Hocquet D (2024). Environment, animals, and food as reservoirs of antibiotic-resistant bacteria for humans: one health or more? Infectious Diseases Now, 54(4): 104895

[30]

Masud M A A , Shin W S , Septian A , Samaraweera H , Khan I J , Mohamed M M , Billah M M , López-Maldonado E A , Rahman M M , Islam A R M T . et al. (2024). Exploring the environmental pathways and challenges of fluoroquinolone antibiotics: a state-of-the-art review. Science of the Total Environment, 926: 171944

[31]

Meng F , Sun S J , Geng J L , Ma L X , Jiang J P , Li B , Yabo S D , Lu L , Fu D L , Shen J M . et al. (2023). Occurrence, distribution, and risk assessment of quinolone antibiotics in municipal sewage sludges throughout China. Journal of Hazardous Materials, 453: 131322

[32]

Meng S , Zhou P , Sun Y M , Zhang P , Zhou C Y , Xiong Z K , Zhang H , Liang J , Lai B . (2022). Reducing agents enhanced Fenton-like oxidation (Fe(III)/Peroxydisulfate): substrate specific reactivity of reactive oxygen species. Water Research, 218: 118412

[33]

Miao L K , Li J F , Ma C X , Qu W Y , Wang W H , Wang J K , He R N . (2023). Norfloxacin degradation in synthetic human urine using nickel converter slag-laterite heterogeneous Electro-Fenton process. Journal of Water Process Engineering, 53: 103723

[34]

Mou Z H , Tu S X , Li H R , Yu P , Wu S Q , Wang Z H , Yuan R X . (2025). Nanostructured NiCo2S4 immobilized on nickel foam as recyclable catalyst for activating peroxymonosulfate toward doxycycline degradation: performance and mechanism. Separation and Purification Technology, 357: 129990

[35]

Pan T , Wang D N , Song Y Y , Liu Y D , Nghiem L D , Duan J , Che C D , Sun X B , Cai Z Q . (2025). The promoted Fenton degradation of norfloxacin by a S-ZnO modified MnFe2O4 with micro-acidic environment. Chemical Engineering Journal, 506: 159898

[36]

Pan X F , Zhu R Y , Zhao L , Ma H , Qiu Z F , Gong X B , Sun M C . (2024). Peroxymonosulfate activation by iron-cobalt bimetallic phosphide modified nickel foam for efficient dye degradation. Environmental Research, 258: 119420

[37]

Qian J , Ma R , Chen Z J , Wang G , Zhang Y C , Du Y F , Chen Y J , An T C , Ni B J . (2023). Hierarchical Co-Fe layered double hydroxides (LDH)/Ni foam composite as a recyclable peroxy-monosulfate activator towards monomethylhydrazine degra-dation: enhanced electron transfer and 1O2 dominated non-radical pathway. Chemical Engineering Journal, 469: 143554

[38]

Ren X XDing S YChen R HFu N (2025). Excellent efficiency of 1 T phase MoS2 on phenol degradation in Fe3+/MoS2/PMS Fenton-like system. Inorganic Chemistry Communications, 181(Pt 2): 115273

[39]

Shen Z H , Zheng X L , Yang Y , Sun Y L , Yi C M , Shang J G , Liu Y H , Guo R X , Chen J Q , Liao Q J H . (2024). Migration and transformation behaviors of antibiotics in water-sediment system under simulated light and wind waves. Journal of Hazardous Materials, 471: 134287

[40]

Song J Y , Ren X F , Hu G C , Hu X L , Cheng W M . (2023a). Enhanced PMS activation by MOF-derived Co3O4/sepiolite composite for norfloxacin degradation: performance, mechanism and degradation pathway. Process Safety and Environmental Protection, 176: 140–154

[41]

Song L X , Cheng X W , Yang Y , Hou Y L , Gan X R , Wang C , Shang J W . (2023b). In-situ growth of Mn2O3/MnCo2O4 on 3D nickel foam as a novel heterogeneous composites peroxymonosulfate activator for the degradation of levofloxacin: performance, stability and mechanism. Chemical Engineering Journal, 471: 144629

[42]

Song L X , Li Y H , Wang C , Man Z H , Shi X Q , Shang J W , Cheng X W . (2024). One-step synthesis of CoxS/Ni3S2@NF on 3D nickel foam with different sulfur sources as a novel heterogeneous catalyst efficient activation of peroxymonosulfate in lomefloxacin degradation. Chemical Engineering Journal, 484: 149562

[43]

Su Y , Qian J , Wang J , Mi X H , Huang Q , Zhang Y C , Jiang Q , Wang Q L . (2024). Unraveling the mechanism of norfloxacin removal and fate of antibiotics resistance genes (ARGs) in the sulfur-mediated autotrophic denitrification via metagenomic and metatranscriptomic analyses. Science of the Total Environment, 922: 171328

[44]

Wang J S , Wang M , Kang J , Tang Y W , Xu Z Q , Dong Q , Ma T Z , Zhu J W . (2023). Sulfamethoxazole degradation by Ni2+ doped Fe2O3 on a nickel foam in peroxymonosulfate assisting photoelectrochemical oxidation system: performance, mechanism and degradation pathway. Separation and Purification Technology, 314: 123584

[45]

Wang M M , Liu L J , Wen J T , Ding Y , Xi J R , Li J C , Lu F Z , Wang W K , Xu J . (2022). Multimetallic CuCoNi oxide nanowires in situ grown on a nickel foam substrate catalyze persulfate activation via mediating electron transfer. Environmental Science & Technology, 56(17): 12613–12624

[46]

Wu L MXu X FHu LWang D H (2025). In situ growth of Mn2O3/NiFe2O4 microflowers on nickel foam as a highly effective and recyclable peroxymonosulfate activator for norfloxacin degradation: the role of singlet oxygen and mediated electron transfer. Separation and Purification Technology, 364(Pt 3): 132568

[47]

Wu L YGuo P PWang XLi H YZhang X RChen K YZhou P (2022). The synergy of sulfur vacancies and heterostructure on CoS@FeS nanosheets for boosting the peroxymonosulfate activation. Chemical Engineering Journal, 446(Pt 2): 136759

[48]

Xie F S , Zhu W H , Lin P , Zhang J B , Hao Z L , Zhang J F , Huang T L . (2022). A bimetallic (Co/Fe) modified nickel foam (NF) anode as the peroxymonosulfate (PMS) activator: characteristics and mechanism. Separation and Purification Technology, 296: 121429

[49]

Xu J G , Wang D , Hu D , Zhang Z W , Chen J H , Wang Y M , Zhang Y F . (2024). Magnetic Co-doped 1D/2D structured γ-Fe2O3/MoS2 effectively activated peroxymonosulfate for efficient abatement of bisphenol A via both radical and non-radical pathways. Frontiers of Environmental Science & Engineering, 18(3): 37

[50]

Xu L S , Sun X B , Hong J M , Zhang Q . (2021a). Peroxymonosulfate activation by α-MnO2/MnFe2O4 for norfloxacin degradation: efficiency and mechanism. Journal of Physics and Chemistry of Solids, 153: 110029

[51]

Xu Z , Wu Y J , Ji Q Y , Li T Z , Xu C M , Qi C D , He H , Yang S G , Li S Y , Yan S C . et al. (2021b). Understanding spatial effects of tetrahedral and octahedral cobalt cations on peroxymonosulfate activation for efficient pollution degradation. Applied Catalysis B: Environmental, 291: 120072

[52]

Yuan R X , Hu L , Yu P , Wang H Y , Wang Z H , Fang J Y . (2018). Nanostructured Co3O4 grown on nickel foam: an efficient and readily recyclable 3D catalyst for heterogeneous peroxy-monosulfate activation. Chemosphere, 198: 204–215

[53]

Yuan R X , Jiang M L , Gao S M , Wang Z H , Wang H Y , Boczkaj G , Liu Z J , Ma J , Li Z J . (2020a). 3D mesoporous α-Co(OH)2 nanosheets electrodeposited on nickel foam: a new generation of macroscopic cobalt-based hybrid for peroxymonosulfate activation. Chemical Engineering Journal, 380: 122447

[54]

Yuan R X , Jiang Z Q , Wang Z H , Gao S M , Liu Z J , Li M L , Boczkaj G . (2020b). Hierarchical MnO2 nanoflowers blooming on 3D nickel foam: a novel micro-macro catalyst for peroxy-monosulfate activation. Journal of Colloid and Interface Science, 571: 142–154

[55]

Zhang H R , Sun R , Zheng T Y , Wang X L , Wang Q Y , Liu L , Yang H Y , Xing X . (2024). Peroxydisulfate activation by B-BC@Fe3S4 for norfloxacin degradation: radical and non-radical pathways. Journal of Water Process Engineering, 59: 105087

[56]

Zhang Q , Zhang G S , Liu D S , Zhang X , Fang R Y , Wang L Q , Chen Y X , Lin L L , Wu H J , Li S . (2022a). A dataset of distribution of antibiotic occurrence in solid environmental matrices in China. Scientific Data, 9(1): 276

[57]

Zhang R L , Zhang R J , Zou S C , Yang Y , Li J , Wang Y H , Yu K F , Zhang G . (2017). Occurrence, distribution and ecological risks of fluoroquinolone antibiotics in the Dongjiang River and the Beijiang River, Pearl River Delta, South China. Bulletin of Environmental Contamination and Toxicology, 99(1): 46–53

[58]

Zhang X Y , Liu W B , Zhou Y R , Li Y H , Yang Y , Gou J F , Shang J W , Cheng X W . (2022b). Photo-assisted bismuth ferrite/manganese dioxide/nickel foam composites activating PMS for degradation of enrofloxacin in water. Separation and Purification Technology, 301: 121988

[59]

Zhang Y QLiu Y HBai W XZhang Z LZhang J BLi D MFeng L B (2025). In situ self-growing CuO nanoclusters on titanium dioxide for high-efficient photocatalytic degradation of norfloxacin under visible light. Inorganic Chemistry Communications, 178(Pt 1): 114524

[60]

Zuo S Y , Wang Y , Wan J Q . (2025). Enhanced peroxymonosulfate activation for emerging contaminant degradation via defect-engineered interfacial electric field in FeNC. Journal of Colloid and Interface Science, 678: 713–721

RIGHTS & PERMISSIONS

Higher Education Press 2026

AI Summary AI Mindmap
PDF (5955KB)

Supplementary files

Supplementary materials

49

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/