Physicochemical properties of traffic-related particles by single-particle analysis

Lian Duan , Yalong Wang , Yiming Zhang , Qili Dai , Wenfei Zhu , Fei Zhang , Pengfei Liu , Jianfei Peng , Hongliang Zhang

ENG. Environ. ›› 2026, Vol. 20 ›› Issue (4) : 63

PDF (5583KB)
ENG. Environ. ›› 2026, Vol. 20 ›› Issue (4) :63 DOI: 10.1007/s11783-026-2163-3
REVIEW ARTICLE

Physicochemical properties of traffic-related particles by single-particle analysis

Author information +
History +
PDF (5583KB)

Abstract

Traffic-related particles significantly contribute to urban air pollution, impacting global climate, air quality, and human health. Such impacts are dependent on their microstructure and physicochemical properties. While single-particle analysis has improved our understanding of these particles, such studies often focus on specific particle types, limiting a comprehensive view of their sources, aging mechanisms, and environmental behavior. In this review, we reviewed current research on the characterization of traffic-related particles using both online and offline single-particle techniques. Exhaust particles primarily consist of soot, organic matter, sulfates, and mixed particles. Non-exhaust particles are classified into tire wear particles (TWPs), brake wear particles (BWPs), road wear particles (RWPs), and road resuspended dust (RRD), which are rich in metals and minerals. These particles display pronounced physicochemical heterogeneity and complex mixing states, providing valuable insights into emission sources and atmospheric aging processes. Exhaust emissions are significantly influenced by engine types, fuel compositions, and operating conditions. This review deepens scientific knowledge of the physicochemical properties and aging processes of traffic-related particles, providing a valuable foundation for the development of targeted emission control strategies for traffic-related sources.

Graphical abstract

Keywords

Traffic-related particles / Single-particle analysis / Electron microscopy / Aging process / Source apportionment

Highlight

● Traffic-related particles show diverse physicochemical characteristics.

● Core–shell structures are formed via condensation and heterogeneous reactions.

● Aging alters hygroscopicity, optical properties, and reactivity of particles.

Cite this article

Download citation ▾
Lian Duan, Yalong Wang, Yiming Zhang, Qili Dai, Wenfei Zhu, Fei Zhang, Pengfei Liu, Jianfei Peng, Hongliang Zhang. Physicochemical properties of traffic-related particles by single-particle analysis. ENG. Environ., 2026, 20(4): 63 DOI:10.1007/s11783-026-2163-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adachi K , Buseck P R . (2008). Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City. Atmospheric Chemistry and Physics, 8(21): 6469–6481

[2]

Adachi K , Chung S H , Friedrich H , Buseck P R . (2007). Fractal parameters of individual soot particles determined using electron tomography: implications for optical properties. Journal of Geophysical Research: Atmospheres, 112(D14): D14202

[3]

Agarwal A K , Krishnamoorthi M . (2023). Review of morphological and chemical characteristics of particulates from compression ignition engines. International Journal of Engine Research, 24(7): 2807–2865

[4]

Alanen J , Simonen P , Saarikoski S , Timonen H , Kangasniemi O , Saukko E , Hillamo R , Lehtoranta K , Murtonen T , Vesala H . et al. (2017). Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics. Atmospheric Chemistry and Physics, 17(14): 8739–8755

[5]

Alexander D T L , Crozier P A , Anderson J R . (2008). Brown carbon spheres in East Asian outflow and their optical properties. Science, 321(5890): 833–836

[6]

Ali J , Wang X F , Wang X J , Shang E X , Hussain Z , Mohiuddin M , Zhao J , Xia X H , Li Y . (2025). Effect of different climate zone’s humic and fulvic acid on aggregation of UV irradiated graphene oxide. Frontiers of Environmental Science & Engineering, 19(3): 28

[7]

Amato F , Alastuey A , Karanasiou A , Lucarelli F , Nava S , Calzolai G , Severi M , Becagli S , Gianelle V L , Colombi C . et al. (2016). AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in five southern European cities. Atmospheric Chemistry and Physics, 16(5): 3289–3309

[8]

Amato F , Pandolfi M , Escrig A , Querol X , Alastuey A , Pey J , Perez N , Hopke P K . (2009). Quantifying road dust resuspension in urban environment by Multilinear Engine: a comparison with PMF2. Atmospheric Environment, 43(17): 2770–2780

[9]

Arı A , Arı P E , Gaga E O . (2020). Chemical characterization of size-segregated particulate matter (PM) by inductively coupled plasma – tandem mass spectrometry (ICP-MS/MS). Talanta, 208: 120350

[10]

Arnold F , Pirjola L , Rönkkö T , Reichl U , Schlager H , Lähde T , Heikkilä J , Keskinen J . (2012). First online measurements of sulfuric acid gas in modern heavy-duty diesel engine exhaust: implications for nanoparticle formation. Environmental Science & Technology, 46(20): 11227–11234

[11]

Ashraf F , Babar Z B , Park J H , Dao P D Q , Cho C S , Lim H J . (2022). Determination of volatility parameters of secondary organic aerosol components via thermal analysis. Atmosphere, 13(5): 709

[12]

Beddows D C S , Dall’Osto M , Olatunbosun O A , Harrison R M . (2016). Detection of brake wear aerosols by aerosol time-of-flight mass spectrometry. Atmospheric Environment, 129: 167–175

[13]

Belkacem I , Helali A , Khardi S , Slimi K . (2022). Investigations on vehicle non-exhaust particle emissions: real-time measurements. International Journal of Environmental Science and Technology, 19(12): 11749–11762

[14]

Bharti S K , Kumar D , Anand S , Poonam S C , Barman N . (2017). Characterization and morphological analysis of individual aerosol of PM10 in urban area of Lucknow, India. Micron, 103: 90–98

[15]

Bhave P V , Fergenson D P , Prather K A , Cass G R . (2001). Source apportionment of fine particulate matter by clustering single-particle data: tests of receptor model accuracy. Environmental Science & Technology, 35(10): 2060–2072

[16]

Bond T C , Doherty S J , Fahey D W , Forster P M , Berntsen T , DeAngelo B J , Flanner M G , Ghan S , Kärcher B , Koch D . et al. (2013). Bounding the role of black carbon in the climate system: a scientific assessment. Journal of Geophysical Research: Atmospheres, 118(11): 5380–5552

[17]

Bondy A L , Bonanno D , Moffet R C , Wang B B , Laskin A , Ault A P . (2018). The diverse chemical mixing state of aerosol particles in the southeastern United States. Atmospheric Chemistry and Physics, 18(16): 12595–12612

[18]

Bugarski A D , Hummer J A , Stachulak J S , Miller A , Patts L D , Cauda E G . (2016). Emissions from a diesel engine using Fe-based fuel additives and a sintered metal filtration system. Annals of Occupational Hygiene, 60(2): 252–262

[19]

Burtscher H , Künzel S , Hüglin C . (1998). Characterization of particles in combustion engine exhaust. Journal of Aerosol Science, 29(4): 389–396

[20]

Buseck P R , Adachi K , Gelencsér A , Tompa É , Pósfai M . (2014). Ns-soot: a material-based term for strongly light-absorbing carbonaceous particles. Aerosol Science and Technology, 48(7): 777–788

[21]

Candeias C , Vicente E , Tomé M , Rocha F , Ávila P , Célia A . (2020). Geochemical, mineralogical and morphological characterisation of road dust and associated health risks. International Journal of Environmental Research and Public Health, 17(5): 1563

[22]

Casotti Rienda I , Alves C A . (2021). Road dust resuspension: a review. Atmospheric Research, 261: 105740

[23]

Chang J H , Lee Y L , Chang L T , Chang T Y , Hsiao T C , Chung K F , Ho K F , Kuo H P , Lee K Y , Chuang K J . et al. (2023). Climate change, air quality, and respiratory health: a focus on particle deposition in the lungs. Annals of Medicine, 55(2): 2264881

[24]

Chen F R , Van Dyck D , Kisielowski C . (2016). In-line three-dimensional holography of nanocrystalline objects at atomic resolution. Nature Communications, 7: 10603

[25]

China S , Mazzoleni C , Gorkowski K , Aiken A C , Dubey M K . (2013). Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles. Nature Communications, 4(1): 2122

[26]

Clements A L , Buzcu-Guven B , Fraser M P , Kulkarni P , Chellam S . (2013). Role of particulate metals in heterogenous secondary sulfate formation. Atmospheric Environment, 75: 233–240

[27]

Coufalík P , Matoušek T , Křůmal K , Vojtíšek-Lom M , Beránek V , Mikuška P . (2019). Content of metals in emissions from gasoline, diesel, and alternative mixed biofuels. Environmental Science and Pollution Research, 26(28): 29012–29019

[28]

Dahl A , Gharibi A , Swietlicki E , Gudmundsson A , Bohgard M , Ljungman A , Blomqvist G , Gustafsson M . (2006). Traffic-generated emissions of ultrafine particles from pavement–tire interface. Atmospheric Environment, 40(7): 1314–1323

[29]

Dall’Osto M , Beddows D C S , Gietl J K , Olatunbosun O A , Yang X G , Harrison R M . (2014). Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS). Atmospheric Environment, 94: 224–230

[30]

Du Z F , Hu M , Peng J F , Zhang W B , Zheng J , Gu F T , Qin Y H , Yang Y D , Li M R , Wu Y S . et al. (2018). Comparison of primary aerosol emission and secondary aerosol formation from gasoline direct injection and port fuel injection vehicles. Atmospheric Chemistry and Physics, 18(12): 9011–9023

[31]

Dutcher D D , Stolzenburg M R , Thompson S L , Medrano J M , Gross D S , Kittelson D B , McMurry P H . (2011). Emissions from ethanol-gasoline blends: a single particle perspective. Atmosphere, 2(2): 182–200

[32]

Fang T , Kapur S , Edwards K C , Hagino H , Wingen L M , Perraud V , Thomas A E , Bliss B , Herman D A , De Vizcaya Ruiz A . et al. (2024). Aqueous OH radical production by brake wear particles. Environmental Science & Technology Letters, 11(4): 315–322

[33]

Farley R N , Lee J E , Rivellini L H , Lee A K Y , Dal Porto R , Cappa C D , Gorkowski K , Shawon A S M , Benedict K B , Aiken A C . et al. (2024). Chemical properties and single-particle mixing state of soot aerosol in Houston during the TRACER campaign. Atmospheric Chemistry and Physics, 24(7): 3953–3971

[34]

Ferrari A C , Robertson J . (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 61(20): 14095–14107

[35]

Frenklach M . (2002). Reaction mechanism of soot formation in flames. Physical Chemistry Chemical Physics, 4(11): 2028–2037

[36]

Fussell J C , Franklin M , Green D C , Gustafsson M , Harrison R M , Hicks W , Kelly F J , Kishta F , Miller M R , Mudway I S . et al. (2022). A review of road traffic-derived non-exhaust particles: emissions, physicochemical characteristics, health risks, and mitigation measures. Environmental Science & Technology, 56(11): 6813–6835

[37]

Gard E , Mayer J E , Morrical B D , Dienes T , Fergenson D P , Prather K A . (1997). Real-time analysis of individual atmospheric aerosol particles: design and performance of a portable ATOFMS. Analytical Chemistry, 69(20): 4083–4091

[38]

Gasser M , Riediker M , Mueller L , Perrenoud A , Blank F , Gehr P , Rothen-Rutishauser B . (2009). Toxic effects of brake wear particles on epithelial lung cells in vitro. Particle and Fibre Toxicology, 6(1): 30

[39]

Ge H W , Ye Z P , He R . (2019). Raman spectroscopy of diesel and gasoline engine-out soot using different laser power. Journal of Environmental Sciences, 79: 74–80

[40]

Gehrig R , Zeyer K , Bukowiecki N , Lienemann P , Poulikakos L D , Furger M , Buchmann B . (2010). Mobile load simulators – a tool to distinguish between the emissions due to abrasion and resuspension of PM10 from road surfaces. Atmospheric Environment, 44(38): 4937–4943

[41]

Giechaskiel B , Maricq M , Ntziachristos L , Dardiotis C , Wang X L , Axmann H , Bergmann A , Schindler W . (2014). Review of motor vehicle particulate emissions sampling and measurement: from smoke and filter mass to particle number. Journal of Aerosol Science, 67: 48–86

[42]

Gonet T , Maher B A , Nyirő-Kósa I , Pósfai M , Vaculík M , Kukutschová J . (2021). Size-resolved, quantitative evaluation of the magnetic mineralogy of airborne brake-wear particulate emissions. Environmental Pollution, 288: 117808

[43]

Greenwell L L , Moreno T , Richards R J . (2003). Pulmonary antioxidants exert differential protective effects against urban and industrial particulate matter. Journal of Biosciences, 28(1): 101–107

[44]

Grigoratos T , Martini G . (2015). Brake wear particle emissions: a review. Environmental Science and Pollution Research, 22(4): 2491–2504

[45]

Gustafsson M , Blomqvist G , Gudmundsson A , Dahl A , Swietlicki E , Bohgard M , Lindbom J , Ljungman A . (2008). Properties and toxicological effects of particles from the interaction between tyres, road pavement and winter traction material. Science of the Total Environment, 393(2−3): 226–240

[46]

Halonen J I , Blangiardo M , Toledano M B , Fecht D , Gulliver J , Ghosh R , Anderson H R , Beevers S D , Dajnak D , Kelly F J . et al. (2016). Is long-term exposure to traffic pollution associated with mortality? A small-area study in London. Environmental Pollution, 208: 25–32

[47]

Harris E , Sinha B , Hoppe P , Ono S . (2013). High-precision measurements of 33S and 34S fractionation during SO2 oxidation reveal causes of seasonality in SO2 and sulfate isotopic composition. Environmental Science & Technology, 47(21): 12174–12183

[48]

Harrison R M , Alghamdi M A . (2023). Measurement of tyre dust particles in the atmosphere using chemical tracers. Atmospheric Environment, 298: 119607

[49]

Harrison R M , Allan J , Carruthers D , Heal M R , Lewis A C , Marner B , Murrells T , Williams A . (2021). Non-exhaust vehicle emissions of particulate matter and VOC from road traffic: a review. Atmospheric Environment, 262: 118592

[50]

Harrison R M , Jones A M , Gietl J , Yin J X , Green D C . (2012). Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements. Environmental Science & Technology, 46(12): 6523–6529

[51]

Hopke P K , Dai Q L , Li L X , Feng Y C . (2020). Global review of recent source apportionments for airborne particulate matter. Science of the Total Environment, 740: 140091

[52]

Hou C, Shao L Y, Hu W, Zhang D Z, Zhao C M, Xing J P, Huang X F, Hu M (2018). Characteristics and aging of traffic-derived particles in a highway tunnel at a coastal city in southern China, Science of the Total Environment, 619–620: 1385–1393

[53]

Hu W , Niu H Y , Zhang D Z , Wu Z J , Chen C , Wu Y S , Shang D J , Hu M . (2016). Insights into a dust event transported through Beijing in spring 2012: morphology, chemical composition and impact on surface aerosols. Science of the Total Environment, 565: 287–298

[54]

Huang X F , Peng Y , Wei J , Peng J F , Lin X Y , Tang M X , Cheng Y , Men Z Y , Fang T G , Zhang J S . et al. (2024). Microphysical complexity of black carbon particles restricts their warming potential. One Earth, 7(1): 136–145

[55]

Iijima A , Sato K , Yano K , Kato M , Kozawa K , Furuta N . (2008). Emission factor for antimony in brake abrasion dusts as one of the major atmospheric antimony sources. Environmental Science & Technology, 42(8): 2937–2942

[56]

Ishiguro T , Takatori Y , Akihama K . (1997). Microstructure of diesel soot particles probed by electron microscopy: first observation of inner core and outer shell. Combustion and Flame, 108(1−2): 231–234

[57]

Jacobson M Z . (2001). Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409(6821): 695–697

[58]

Jeong C H , McGuire M L , Godri K J , Slowik J G , Rehbein P J G , Evans G J . (2011). Quantification of aerosol chemical composition using continuous single particle measurements. Atmospheric Chemistry and Physics, 11(14): 7027–7044

[59]

Jose J , Srimuruganandam B . (2021). Application of micro-morphology in the physical characterization of urban road dust. Particuology, 54: 146–155

[60]

Karin P , Koko P , Charoenphonphanich C , Chollacoop N , Hanamura K . (2021). Physicochemical characterization of diesel engine’s soot and metal oxide ash nanoparticles using electron microscopy, EDS and TGA. Emission Control Science and Technology, 7(2): 91–104

[61]

Karjalainen P , Rönkkö T , Pirjola L , Heikkilä J , Happonen M , Arnold F , Rothe D , Bielaczyc P , Keskinen J . (2014). Sulfur driven nucleation mode formation in diesel exhaust under transient driving conditions. Environmental Science & Technology, 48(4): 2336–2343

[62]

KEMI (2003). HA Oils in Automotive Tyres—Prospects of a National Ban. Stockholm: Swedish National Chemicals Inspectorate, 360760

[63]

Kittelson D B . (1998). Engines and nanoparticles: a review. Journal of Aerosol Science, 29(5−6): 575–588

[64]

Kliengchuay W , Suwanmanee S , Worakhunpiset S , Tawatsupa B , Laor P , Siriratruengsuk W , Kawichai S , Phosri A , Kingkaew S , Sahanavin N . et al. (2025). Climate change and its impact on environmental health: a narrative review of tropical countries. Frontiers of Environmental Science & Engineering, 19(5): 59

[65]

Kocbach A , Li Y J , Yttri K E , Cassee F R , Schwarze P E , Namork E . (2006). Physicochemical characterisation of combustion particles from vehicle exhaust and residential wood smoke. Particle and Fibre Toxicology, 3(1): 1

[66]

Kostenidou E , Martinez-Valiente A , R’Mili B , Marques B , Temime-Roussel B , Durand A , André M , Liu Y , Louis C , Vansevenant B . et al. (2021). Technical note: emission factors, chemical composition, and morphology of particles emitted from Euro 5 diesel and gasoline light-duty vehicles during transient cycles. Atmospheric Chemistry and Physics, 21(6): 4779–4796

[67]

Kreider M L , Panko J M , McAtee B L , Sweet L I , Finley B L . (2010). Physical and chemical characterization of tire-related particles: comparison of particles generated using different methodologies. Science of the Total Environment, 408(3): 652–659

[68]

Krivanek O L , Chisholm M F , Nicolosi V , Pennycook T J , Corbin G J , Dellby N , Murfitt M F , Own C S , Szilagyi Z S , Oxley M P , . J . et al. (2010). Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature, 464(7288): 571–574

[69]

Kuang Y , Huang S , Xue B , Luo B , Song Q C , Chen W , Hu W W , Li W , Zhao P S , Cai M F . et al. (2021). Contrasting effects of secondary organic aerosol formations on organic aerosol hygroscopicity. Atmospheric Chemistry and Physics, 21(13): 10375–10391

[70]

Kupiainen K J , Tervahattu H , Räisänen M , Mäkelä T , Aurela M , Hillamo R . (2005). Size and composition of airborne particles from pavement wear, tires, and traction sanding. Environmental Science & Technology, 39(3): 699–706

[71]

Laborde M , Schnaiter M , Linke C , Saathoff H , Naumann K H , Möhler O , Berlenz S , Wagner U , Taylor J W , Liu D . et al. (2012). Single Particle Soot Photometer intercomparison at the AIDA chamber. Atmospheric Measurement Techniques, 5(12): 3077–3097

[72]

Lang J L , Liang X Y , Li S Y , Zhou Y , Chen D S , Zhang Y Y , Xu L T . (2021). Understanding the impact of vehicular emissions on air pollution from the perspective of regional transport: a case study of the Beijing-Tianjin-Hebei region in China. Science of the Total Environment, 785: 147304

[73]

Lapuerta M , Oliva F , Agudelo J R , Boehman A L . (2012). Effect of fuel on the soot nanostructure and consequences on loading and regeneration of diesel particulate filters. Combustion and Flame, 159(2): 844–853

[74]

Laskin A , Moffet R C , Gilles M K . (2019). Chemical imaging of atmospheric particles. Accounts of Chemical Research, 52(12): 3419–3431

[75]

Lawrence S , Sokhi R , Ravindra K , Mao H J , Prain H D , Bull I D . (2013). Source apportionment of traffic emissions of particulate matter using tunnel measurements. Atmospheric Environment, 77: 548–557

[76]

Lazzeri PClauser GIacob ELui ATonidandel GAnderle M (2003). ToF-SIMS and XPS characterisation of urban aerosols for pollution studies. Applied Surface Science, 203–204: 203–204

[77]

Lettino A , Calvello M , Esposito F , Fiore S , Lorusso M , Pavese G . (2017). Effects of polluted air-masses advection on atmospheric particles in a semi-rural site in South Italy by SEM-EDX analysis. Aerosol and Air Quality Research, 17(1): 69–83

[78]

Li B , Wang D B , Zhang Q , Shi L Q , Fu M L , Yin H , Jiang J K . (2025). Real-world identification of high-emitting vehicles based on near-road sensor measurement. Frontiers of Environmental Science & Engineering, 19(5): 63

[79]

Li H B , Yu M H , Wang F X , Liu P , Liang Y , Xiao J , Wang C X , Tong Y X , Yang G W . (2013). Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nature Commu-nications, 4: 1894

[80]

Li K N , Wang X F , Lu X H , Chen H , Yang X . (2022). Effects of volatile components on mixing state and size distribution of individual black carbon aerosols. Aerosol and Air Quality Research, 22(4): 210400

[81]

Li K X , Sinha B , Hoppe P . (2016a). Speciation of nitrogen-bearing species using negative and positive secondary ion spectra with nano secondary ion mass spectrometry. Analytical Chemistry, 88(6): 3281–3288

[82]

Li L F , Liu P , Huang Q S , Zhang X W , Chao X Y , Pang S F , Wang W G , Cheng Y F , Su H , Zhang Y H . et al. (2024a). Rethinking urban haze formation: atmospheric sulfite conversion rate scales with aerosol surface area, not volume. One Earth, 7(6): 1082–1095

[83]

Li S , Zhang H , Wang Z L , Chen Y H . (2023). Advances in the research on brown carbon aerosols: its concentrations, radiative forcing, and effects on climate. Aerosol and Air Quality Research, 23(8): 220336

[84]

Li W JRiemer NXu LWang Y YAdachi KShi Z BZhang D ZZheng Z HLaskin A (2024b). Microphysical properties of atmospheric soot and organic particles: measurements, modeling, and impacts. npj Climate and Atmospheric Science, 7(1): 65

[85]

Li W J , Shao L Y . (2010). Characterization of mineral particles in winter fog of Beijing analyzed by TEM and SEM. Environmental Monitoring and Assessment, 161(1): 565–573

[86]

Li W J , Shao L Y , Zhang D Z , Ro C U , Hu M , Bi X H , Geng H , Matsuki A , Niu H Y , Chen J M . (2016b). A review of single aerosol particle studies in the atmosphere of East Asia: morphology, mixing state, source, and heterogeneous reactions. Journal of Cleaner Production, 112: 1330–1349

[87]

Li W J , Sun J X , Xu L , Shi Z B , Rieme N , Sun Y L , Fu P Q , Zhang J C , Lin Y T , Wang X F . et al. (2016c). A conceptual framework for mixing structures in individual aerosol particles. Journal of Geophysical Research: Atmospheres, 121(22): 13784–13798

[88]

Li X , Dallmann T R , May A A , Presto A A . (2020). Seasonal and long-term trend of on-road gasoline and diesel vehicle emission factors measured in traffic tunnels. Applied Sciences, 10(7): 2458

[89]

Li ZSong C LSong J OLv GDong S RZhao Z (2011). Evolution of the nanostructure, fractal dimension and size of in-cylinder soot during diesel combustion process. Combustion and Flame, 158(8): 1624-1630

[90]

Liati A , Schreiber D , Arroyo Rojas Dasilva Y , Dimopoulos Eggenschwiler P . (2018). Ultrafine particle emissions from modern Gasoline and Diesel vehicles: an electron microscopic perspective. Environmental Pollution, 239: 661–669

[91]

Liati A , Schreiber D , Dimopoulos Eggenschwiler P , Arroyo Rojas Dasilva Y . (2013). Metal particle emissions in the exhaust stream of diesel engines: an electron microscope study. Environmental Science & Technology, 47(24): 14495–14501

[92]

Ličbinský R , Frýbort A , Huzlík J , Adamec V , Effenberger K , Mikuška P , Vojtěšek M , Křůmal K . (2010). Usage of scanning electron microscopy for particulate matter sources identification. Transactions on Transport Sciences, 3(3): 137–144

[93]

Lim J , Lim C , Yu L E . (2009). Composition and size distribution of metals in diesel exhaust particulates. Journal of Environmental Monitoring, 11(9): 1614–1621

[94]

Lin Q H , Yang Y X , Fu Y Z , Zhang G H , Jiang F , Peng L , Lian X F , Liu F X , Bi X H , Li L . et al. (2019). Enrichment of submicron sea-salt-containing particles in small cloud droplets based on single-particle mass spectrometry. Atmospheric Chemistry and Physics, 19(16): 10469–10479

[95]

Lin Y C , Li Y C , Amesho K T T , Chou F C , Cheng P C . (2020). Filterable PM2.5, metallic elements, and organic carbon emissions from the exhausts of diesel vehicles. Aerosol and Air Quality Research, 20(6): 1319–1328

[96]

Liu D , Allan J D , Young D E , Coe H , Beddows D , Fleming Z L , Flynn M J , Gallagher M W , Harrison R M , Lee J . et al. (2014). Size distribution, mixing state and source apportionment of black carbon aerosol in London during wintertime. Atmospheric Chemistry and Physics, 14(18): 10061–10084

[97]

Liu D Y , Wenzel R J , Prather K A . (2003). Aerosol time-of-flight mass spectrometry during the Atlanta supersite experiment: 1. Measurements. Journal of Geophysical Research: Atmospheres, 108(D7): 8426

[98]

Liu F S , Wong C , Snelling D R , Smallwood G J . (2013). Investigation of absorption and scattering properties of soot aggregates of different fractal dimension at 532 nm using RDG and GMM. Aerosol Science and Technology, 47(12): 1393–1405

[99]

Liu H , Pan X L , Liu D T , Liu X Y , Chen X S , Tian Y , Sun Y L , Fu P Q , Wang Z F . (2020). Mixing characteristics of refractory black carbon aerosols at an urban site in Beijing. Atmospheric Chemistry and Physics, 20(9): 5771–5785

[100]

Liu J Y , Peng J F , Men Z Y , Fang T G , Zhang J S , Du Z F , Zhang Q J , Wang T , Wu L , Mao H J . (2023a). Brake wear-derived particles: single-particle mass spectral signatures and real-world emissions. Environmental Science and Ecotechnology, 15: 100240

[101]

Liu PLiu Y XHuang Q SChao X YZhong M RYin J YZhang X WLi L FKang X YChen Z, et al. (2025). Sulfate formation through copper-catalyzed SO2 oxidation by NO2 at aerosol surfaces. npj Climate and Atmospheric Science, 8(1): 57

[102]

Liu S Y , Chan T L , Lin J Z , Yu M Z . (2019). Numerical study on fractal-like soot aggregate dynamics of turbulent ethylene-oxygen flame. Fuel, 256: 115857

[103]

Liu YWu S JFan C YWang XLiu F JChen H B (2023b). Variations in surface functional groups, carbon chemical state and graphitization degree during thermal deactivation of diesel soot particles. Journal of Environmental Sciences, 124, 678–687

[104]

Liu Z G , Vasys V N , Kittelson D B . (2007). Nuclei-mode particulate emissions and their response to fuel sulfur content and primary dilution during transient operations of old and modern diesel engines. Environmental Science & Technology, 41(18): 6479–6483

[105]

Lu Z Z , Deng S X , Liu X , Huang L H , Zhang R X , Song H , Li G H . (2021). Morphology and composition of particles emitted from conventional and alternative fuel vehicles. Environmental Science and Pollution Research, 28(16): 19810–19821

[106]

Luo J , Zhang Q X , Zhang C C , Zhang Y M , Chakrabarty R K . (2021). The fractal characteristics of atmospheric coated soot: implication for morphological analysis. Journal of Aerosol Science, 157: 105804

[107]

Lühmann T , Wunderlich R , Schmidt-Grund R , Barzola-Quiquia J , Esquinazi P , Grundmann M , Meijer J . (2017). Investigation of the graphitization process of ion-beam irradiated diamond using ellipsometry, Raman spectroscopy and electrical transport measurements. Carbon, 121: 512–517

[108]

Malmborg V B , Eriksson A C , Shen M , Nilsson P , Gallo Y , Waldheim B , Martinsson J , Andersson Ö , Pagels J . (2017). Evolution of in-cylinder diesel engine soot and emission characteristics investigated with online aerosol mass spectrometry. Environmental Science & Technology, 51(3): 1876–1885

[109]

Mao L Y , Yang S X , Cheng X Y , Liu S L , Chen D Y , Zhou Z , Li M , Pei C L , Cheng C L . (2024). One-year observation of the mixing states of oxygenated organics-containing single particles in Guangzhou, China. Frontiers of Environmental Science & Engineering, 18(5): 64

[110]

Mathissen M , Scheer V , Vogt R , Benter T . (2011). Investigation on the potential generation of ultrafine particles from the tire–road interface. Atmospheric Environment, 45(34): 6172–6179

[111]

Matti Maricq M . (2007). Chemical characterization of particulate emissions from diesel engines: a review. Journal of Aerosol Science, 38(11): 1079–1118

[112]

Mattonai M , Nacci T , Modugno F . (2022). Analytical strategies for the quali-quantitation of tire and road wear particles – a critical review. TrAC Trends in Analytical Chemistry, 154: 116650

[113]

Mayama N , Miura Y , Misawa K , Takami A , Sakamoto T , Fujii M . (2013). Characterization of black carbon in fine aerosol particles using high lateral resolution TOF-SIMS. Analytical Sciences, 29(4): 479–481

[114]

Men Z Y , Zhang X F , Peng J F , Zhang J , Fang T G , Guo Q Y , Wei N , Zhang Q J , Wang T , Wu L . et al. (2022). Determining factors and parameterization of brake wear particle emission. Journal of Hazardous Materials, 434: 128856

[115]

Miazgowicz A, Krennhuber K, Lanzerstorfer C (2020). Metals concentrations in road dust from high traffic and low traffic area: a size dependent comparison. International Journal of Environmental Science and Technology, 17: 3365–3372

[116]

Nah T , Guo H Y , Sullivan A P , Chen Y L , Tanner D J , Nenes A , Russell A , Ng N L , Huey L G , Weber R J . (2018). Characterization of aerosol composition, aerosol acidity, and organic acid partitioning at an agriculturally intensive rural southeastern US site. Atmospheric Chemistry and Physics, 18(15): 11471–11491

[117]

Nie D Y , Chen M D , Wu Y , Ge X L , Hu J L , Zhang K , Ge P X . (2018). Characterization of fine particulate matter and associated health burden in Nanjing. International Journal of Environmental Research and Public Health, 15(4): 602

[118]

Oroumiyeh F , Jerrett M , Del Rosario I , Lipsitt J , Liu J , Paulson S E , Ritz B , Schauer J J , Shafer M M , Shen J Q . et al. (2022). Elemental composition of fine and coarse particles across the greater Los Angeles area: spatial variation and contributing sources. Environmental Pollution, 292: 118356

[119]

Oshima N , Koike M , Zhang Y , Kondo Y , Moteki N , Takegawa N , Miyazaki Y . (2009). Aging of black carbon in outflow from anthropogenic sources using a mixing state resolved model: Model development and evaluation. Journal of Geophysical Research: Atmospheres, 114(D6): D06210

[120]

Pai S J , Carter T S , Heald C L , Kroll J H . (2022). Updated world health organization air quality guidelines highlight the importance of non-anthropogenic PM2.5. Environmental Science & Technology Letters, 9(6): 501–506

[121]

Panko J M , Hitchcock K M , Fuller G W , Green D . (2019). Evaluation of tire wear contribution to PM2.5 in urban environments. Atmosphere, 10(2): 99

[122]

Pant P , Harrison R M . (2013). Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review. Atmospheric Environment, 77: 78–97

[123]

Park I , Kim H , Lee S . (2018). Characteristics of tire wear particles generated in a laboratory simulation of tire/road contact conditions. Journal of Aerosol Science, 124: 30–40

[124]

Park I , Lee J , Lee S . (2017). Laboratory study of the generation of nanoparticles from tire tread. Aerosol Science and Technology, 51(2): 188–197

[125]

Park K , Cao F , Kittelson D B , McMurry P H . (2003). Relationship between particle mass and mobility for diesel exhaust particles. Environmental Science & Technology, 37(3): 577–583

[126]

Patel M , Aswath P B . (2012). Morphology, structure and chemistry of extracted diesel soot: part II: X-ray absorption near edge structure (XANES) spectroscopy and high resolution transmission electron microscopy. Tribology International, 52: 17–28

[127]

Peng X X , Pelz P M , Zhang Q B , Chen P C , Cao L Y , Zhang Y Q , Liao H G , Zheng H M , Wang C , Sun S G . et al. (2022). Observation of formation and local structures of metal-organic layers via complementary electron microscopy techniques. Nature Communications, 13(1): 5197

[128]

Pósfai M , Buseck P R . (2010). Nature and climate effects of individual tropospheric aerosol particles. Annual Review of Earth and Planetary Sciences, 38: 17–43

[129]

Rana S , Saxena M R , Maurya R K . (2022). A review on morphology, nanostructure, chemical composition, and number concentration of diesel particulate emissions. Environmental Science and Pollution Research, 29(11): 15432–15489

[130]

Riemer NAult A PWest MCraig R LCurtis J H (2019). The diversity and complexity of atmospheric aerosol. Reviews of Geophysics, 57: 187–249

[131]

Saha P K , Khlystov A , Grieshop A P . (2018). Downwind evolution of the volatility and mixing state of near-road aerosols near a US interstate highway. Atmospheric Chemical and Physics, 18(3): 2139–2154

[132]

Sanderson P , Su S S , Chang I T H , Delgado Saborit J M , Kepaptsoglou D M , Weber R J M , Harrison R M . (2016). Characterisation of iron-rich atmospheric submicrometre particles in the roadside environment. Atmospheric Environment, 140: 167–175

[133]

Sanz Rodriguez E , Perron M M G , Strzelec M , Proemse B C , Bowie A R , Paull B . (2020). Analysis of levoglucosan and its isomers in atmospheric samples by ion chromatography with electrospray lithium cationisation-triple quadrupole tandem mass spectro-metry. Journal of Chromatography A, 1610: 460557

[134]

Schill G P , DeMott P J , Levin E J T , Kreidenweis S M . (2018). Use of the Single Particle Soot Photometer (SP2) as a pre-filter for ice nucleation measurements: effect of particle mixing state and determination of SP2 conditions to fully vaporize refractory black carbon. Atmospheric Measurement Techniques, 11(5): 3007–3020

[135]

Schwarz J P , Stark H , Spackman J R , Ryerson T B , Peischl J , Swartz W H , Gao R S , Watts L A , Fahey D W . (2009). Heating rates and surface dimming due to black carbon aerosol absorption associated with a major U.S. city. Geophysical Research Letters, 36(15): L15807

[136]

Seong H , Choi S , Zaluzec N J , Lee S , Wu T P , Shao H E , Remias J E . (2021). Identification of engine oil-derived ash nanoparticles and ash formation process for a gasoline direct-injection engine. Environmental Pollution, 272: 116390

[137]

Shao L Y , Liu P J , Jones T , Yang S S , Wang W H , Zhang D Z , Li Y W , Yang C X , Xing J P , Hou C . et al. (2022). A review of atmospheric individual particle analyses: methodologies and applications in environmental research. Gondwana Research, 110: 347–369

[138]

Shields L G , Suess D T , Prather K A . (2007). Determination of single particle mass spectral signatures from heavy-duty diesel vehicle emissions for PM2.5 source apportionment. Atmospheric Environment, 41(18): 3841–3852

[139]

Sijbrandij S , Lombardi A , Sireuil A , Khanom F , Lewis B , Guillermier C , Runt D , Notte J . (2019). NanoFab SIMS: high spatial resolution imaging and analysis using inert-gas ion beams. Microscopy Today, 27(3): 22–27

[140]

Sinha A , Ischia G , Menapace C , Gialanella S . (2020). Experimental characterization protocols for wear products from disc brake materials. Atmosphere, 11(10): 1102

[141]

Skillas G , Künzel S , Burtscher H , Baltensperger U , Siegmann K . (1998). High fractal-like dimension of diesel soot agglomerates. Journal of Aerosol Science, 29(4): 411–419

[142]

Spikes H . (2025). Mechanisms of ZDDP—an update. Tribology Letters, 73(1): 38

[143]

Stevens R , Ryjkov A , Majdzadeh M , Dastoor A . (2022). An improved representation of aerosol mixing state for air quality–weather interactions. Atmospheric Chemistry and Physics, 22(20): 13527–13549

[144]

Sun C Z , Zhang Y Y , Liang B L , Gao M , Sun X , Li F , Ni X , Sun Q B , Ou H J , Chen D X . et al. (2024). Morphological and optical properties of carbonaceous aerosol particles from ship emissions and biomass burning during a summer cruise measurement in the South China Sea. Atmospheric Chemistry and Physics, 24(5): 3043–3063

[145]

Švábenská E , Roupcová P , Schneeweiss O . (2023). Spectroscopic methods in the analysis of wear particles. Chemical Papers, 77(12): 7319–7329

[146]

Tang M J , Chan C K , Li Y J , Su H , Ma Q X , Wu Z J , Zhang G H , Wang Z , Ge M F , Hu M . et al. (2019). A review of experimental techniques for aerosol hygroscopicity studies. Atmospheric Chemical and Physics, 19(19): 12631–12686

[147]

Thorpe A , Harrison R M . (2008). Sources and properties of non-exhaust particulate matter from road traffic: a review. Science of the Total Environment, 400(1−3): 270–282

[148]

Tomiyasu BSuzuki KGotoh TOwari MNihei Y (2004). TOF-SIMS measurement for the complex particulate matter in urban air environment. Applied Surface Science, 231–232: 231–232

[149]

Toner S M , Sodeman D A , Prather K A . (2006). Single particle characterization of ultrafine and accumulation mode particles from heavy duty diesel vehicles using aerosol time-of-flight mass spectrometry. Environmental Science & Technology, 40(12): 3912–3921

[150]

Tree D R , Svensson K I . (2007). Soot processes in compression ignition engines. Progress in Energy and Combustion Science, 33(3): 272–309

[151]

Tumolva L , Park J Y , Kim J S , Miller A L , Chow J C , Watson J G , Park K . (2010). Morphological and elemental classification of freshly emitted soot particles and atmospheric ultrafine particles using the TEM/EDS. Aerosol Science and Technology, 44(3): 202–215

[152]

Virtanen A K K , Ristimäki J M , Vaaraslahti K M , Keskinen J . (2004). Effect of engine load on diesel soot particles. Environ-mental Science & Technology, 38(9): 2551–2556

[153]

Wahlström J , Olander L , Olofsson U . (2010). Size, shape, and elemental composition of airborne wear particles from disc brake materials. Tribology Letters, 38: 15–24

[154]

Walter S , Schwanzer P , Hagen G , Rabl H P , Dietrich M , Moos R . (2023). Soot monitoring of gasoline particulate filters using a radio-frequency-based sensor. Sensors, 23(18): 7861

[155]

Wang B , Lau YS , Huang Y H , Organ B , Chuang H C , Ho S S H , Qu L L , Lee S C , Ho K F . (2021a). Chemical and toxicological characterization of particulate emissions from diesel vehicles. Journal of Hazardous Materials, 405: 124613

[156]

Wang J M , Jeong C H , Hilker N , Healy R M , Sofowote U , Debosz J , Su Y S , Munoz A , Evans G J . (2021b). Quantifying metal emissions from vehicular traffic using real world emission factors. Environmental Pollution, 268: 115805

[157]

Wang W H , Shao L Y , Li J , Chang L L , Zhang D Z , Zhang C C , Jiang J K . (2019). Characteristics of individual particles emitted from an experimental burning chamber with coal from the lung cancer area of Xuanwei, China. Aerosol and Air Quality Research, 19(2): 355–363

[158]

Wei Y , Zhang Q , Thompson J E . (2013). Atmospheric black carbon can exhibit enhanced light absorption at high relative humidity. Atmospheric Chemistry and Physics, 13(11): 29413–29445

[159]

Weinbruch S , Worringen A , Ebert M , Scheuvens D , Kandler K , Pfeffer U , Bruckmann P . (2014). A quantitative estimation of the exhaust, abrasion and resuspension components of particulate traffic emissions using electron microscopy. Atmospheric Environment, 99: 175–182

[160]

Willis M D , Lee A K Y , Onasch T B , Fortner E C , Williams L R , Lambe A T , Worsnop D R , Abbatt J P D . (2014). Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon. Atmospheric Measurement Techniques, 7(12): 4507–4516

[161]

World Health Organization (2021). WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Geneva: WHO.

[162]

Wu Y F , Xia Y J , Huang R J , Deng Z Z , Tian P , Xia X G , Zhang R J . (2019). A study of the morphology and effective density of externally mixed black carbon aerosols in ambient air using a size-resolved single-particle soot photometer (SP2). Atmospheric Measurement Techniques, 12(8): 4347–4359

[163]

Xing J P , Shao L Y , Chen F F , Wang W H , Zhang D Z . (2022). Characteristics and aging of traffic-emitted particles with sulfate and organic compound formation in urban air. Atmosphere, 13(4): 608

[164]

Xing J P , Shao L Y , Zhang W B , Peng J F , Wang W H , Shuai S J , Hu M , Zhang D Z . (2020). Morphology and size of the particles emitted from a gasoline-direct-injection-engine vehicle and their ageing in an environmental chamber. Atmospheric Chemistry and Physics, 20(5): 2781–2794

[165]

Xing J P , Shao L Y , Zheng R , Peng J F , Wang W H , Guo Q , Wang Y H , Qin Y H , Shuai S J , Hu M . (2017). Individual particles emitted from gasoline engines: impact of engine types, engine loads and fuel components. Journal of Cleaner Production, 149: 461–471

[166]

Xu J Z , Zhang Q , Shi J S , Ge X L , Xie C H , Wang J F , Kang S C , Zhang R X , Wang Y H . (2018). Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry. Atmospheric Chemistry and Physics, 18(1): 427–443

[167]

Xu L , Zhang D Z , Li W J . (2019). Microscopic comparison of aerosol particles collected at an urban site in North China and a coastal site in Japan. Science of the Total Environment, 669: 948–954

[168]

Xu Y J , Wang Z H , Pei C L , Wu C , Huang B , Cheng C L , Zhou Z , Li M . (2024). Single particle mass spectral signatures from on-road and non-road vehicle exhaust particles and their application in refined source apportionment using deep learning. Science of the Total Environment, 930: 172822

[169]

Yang X Z , Lu D W , Zhu B , Sun Z D , Li G , Li J , Liu Q , Jiang G B . (2022). Phase transformation of silica particles in coal and biomass combustion processes. Environmental Pollution, 292: 118312

[170]

Yang Z , Zheng M L , Yan Z L , Liu H , Liu X Y , Jin J Q , Wu J G , Ou C Q . (2024). Magnitude and direction of temperature variability affect hospitalization for myocardial infarction and stroke: population-based evidence from Guangzhou, China. Frontiers of Environmental Science & Engineering, 18(3): 27

[171]

Yuan Q , Xu J Z , Liu L , Zhang A X , Liu Y M , Zhang J , Wan X , Li M M , Qin K , Cong Z Y . et al. (2021). Evidence for large amounts of brown carbonaceous tarballs in the Himalayan atmosphere. Environmental Science & Technology Letters, 8(1): 16–23

[172]

Zhang H , Wang Z L . (2011). Advances in the study of black carbon effects on climate. Advances in Climate Change Research, 2(1): 23–30

[173]

Zhang J , Liu L , Wang Y Y , Ren Y , Wang X , Shi Z B , Zhang D Z , Che H Z , Zhao H J , Liu Y F . et al. (2017). Chemical composition, source, and process of urban aerosols during winter haze formation in Northeast China. Environmental Pollution, 231: 357–366

[174]

Zhang P , Chen T Z , Ma Q X , Chu B W , Wang Y H , Mu Y J , Yu Y B , He H . (2022). Diesel soot photooxidation enhances the heterogeneous formation of H2SO4. Nature Communications, 13(1): 5364

[175]

Zhang Q J , Liu J Y , Wei N , Song C B , Peng J F , Wu L , Mao H J . (2023). Identify the contribution of vehicle non-exhaust emissions: a single particle aerosol mass spectrometer test case at typical road environment. Frontiers of Environmental Science & Engineering, 17(5): 62

[176]

Zhang R L , Kook S . (2015). Structural evolution of soot particles during diesel combustion in a single-cylinder light-duty engine. Combustion and Flame, 162(6): 2720–2728

[177]

Zhao Y , Huang H Y , Zhang Y Y , Wu K , Zeng F G , Wang J G , Yu X F , Zhu Z H , Yu X Y , Wang F Y . (2020). Atmospheric particulate characterization by ToF-SIMS in an urban site in Beijing. Atmospheric Environment, 220: 117090

[178]

Zhao Y L , Lambe A T , Saleh R , Saliba G , Robinson A L . (2018). Secondary organic aerosol production from gasoline vehicle exhaust: effects of engine technology, cold start, and emission certification standard. Environmental Science & Technology, 52(3): 1253–1261

[179]

Zheng MCass G RSchauer J JEdgerton E S (2002). Source apportionment of PM2.5 in the southeastern United States using solvent-extractable organic compounds as tracers. Environmental Science & Technology, 36(11), 2361–2371

[180]

Zhong Z C , Palenstijn W J , Viganò N R , Batenburg K J . (2018). Numerical methods for low-dose EDS tomography. Ultra-microscopy, 194: 133–142

[181]

Zhou L Y , Li M , Cheng C L , Zhou Z , Nian H Q , Tang R Z , Chan C K . (2022). Real-time chemical characterization of single ambient particles at a port city in Chinese domestic emission control area — impacts of ship emissions on urban air quality. Science of the Total Environment, 819: 153117

[182]

Zhu Y , Xu M Q , Zhou W . (2018a). High-resolution electron microscopy for heterogeneous catalysis research. Chinese Physics B, 27(5): 056804

[183]

Zhu Y H , Huang L , Li J Y , Ying Q , Zhang H L , Liu X G , Liao H , Li N , Liu Z X , Mao Y H . et al. (2018b). Sources of particulate matter in China: Insights from source apportionment studies published in 1987–2017. Environment International, 115: 343–357

RIGHTS & PERMISSIONS

Higher Education Press 2026

AI Summary AI Mindmap
PDF (5583KB)

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/