Migration behaviour of heavy metals and vitrification characteristics in melting of municipal solid waste incineration fly ash

Quanming Li , Yajie Gao , Chao Geng , Xianfeng Shi , Hong Zhang , Cheng Chen , Yukai Wang , Jiaqi Chang , Yajie Wang , Ziyi Ding

ENG. Environ. ›› 2026, Vol. 20 ›› Issue (4) : 52

PDF (6867KB)
ENG. Environ. ›› 2026, Vol. 20 ›› Issue (4) :52 DOI: 10.1007/s11783-026-2152-6
RESEARCH ARTICLE

Migration behaviour of heavy metals and vitrification characteristics in melting of municipal solid waste incineration fly ash

Author information +
History +
PDF (6867KB)

Abstract

Municipal solid waste incineration fly ash (MSWI-FA) is an urgently treatable hazardous waste in China. High-temperature melting is a promising resource utilization technology for global solid waste. This study examines physicochemical properties of grate furnace incineration fly ash from northern and southern China, finding Cd, Pb, and Zn leaching toxicity exceeds national standards by 9.14, 8.59, and 1.09 times for northern samples, and 17.58, 7.13, and 1.25 times for southern samples, respectively. Clinker ignition loss during melting reaches approximately 40% for both fly ash types. Heavy metal migration (Pb, Zn, Cd, Cr, Cu, Ni) was analyzed across 200–1600 °C. Cr and Ni, predominantly in the slag phase, exhibited low volatility (~20% at 1600 °C). Fe and Cu showed moderate volatility, exceeding 70% at 1600 °C. Pb, Cd, and Zn demonstrated high volatility, surpassing 90% at 1200 °C. The volatilization sequence is Cd > Pb > Zn > Cu > Ni > Cr. XRD, SEM, TGA analyses revealed melting behavior and vitrification mechanisms. Heavy metals accumulate in secondary fly ash mainly as chlorides (PbCl2, ZnCl2, ZnCdCl4). Slag minerals transition from low-temperature CaCl2, CaClOH, NaCl, KCl to high-temperature chlorinated (Ca5Al2SiO8Cl4) and non-chlorinated (Ca5Al2SiO10) calcium aluminum silicates. However, no glass peaks were observed in XRD spectra of both fly ashes at 1600 °C. Thermodynamic analysis points to high CaO content as the main cause of elevated melting points. To achieve vitrification below 1500 °C, the optimal SiO2:CaO:Al2O3 ratio should be approximately (3.5–9.0):(0–4.0):(0–3.5).

Graphical abstract

Keywords

Hazardous waste / Heavy metals / MSWI fly ash / Melting / Vitrification

Highlight

● The thermal ignition loss rate of the FA-B and FA-J fly ashes is about 40%.

● The order in which the six heavy metals’ volatility drops is Cd > Pb > Zn > Cu > Ni > Cr.

● CaCl2 in both types of MSWI-FA did not completely evaporate at 1400 °C.

● FA-B and FA-J have a melting point higher than 1400 °C.

● High CaO content in MSWI-FA raises its melting point.

Cite this article

Download citation ▾
Quanming Li, Yajie Gao, Chao Geng, Xianfeng Shi, Hong Zhang, Cheng Chen, Yukai Wang, Jiaqi Chang, Yajie Wang, Ziyi Ding. Migration behaviour of heavy metals and vitrification characteristics in melting of municipal solid waste incineration fly ash. ENG. Environ., 2026, 20(4): 52 DOI:10.1007/s11783-026-2152-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barracco F , Demichelis F , Sharifikolouei E , Ferraris M , Fino D , Tommasi T . (2023). Life cycle assessment for the production of MSWI fly-ash based porous glass-ceramics: scenarios based on the contribution of silica sources, methane aided, and energy recoveries. Waste Management, 157: 301–311

[2]

Cao W X , Lv X S , Ban J X , Lu J X , Liu Z , Chen Z , Poon C S . (2024). High-efficient stabilization and solidification of municipal solid waste incineration fly ash by synergy of alkali treatment and supersulfated cement. Environmental Pollution, 355: 124261

[3]

Chen Y D , Wang H , Ghofrani-Isfahani P , Gu L , Liu X G , Dai X H . (2024). Electronic regulation to achieve efficient anaerobic digestion of organic fraction of municipal solid waste (OFMSW): strategies, challenges and potential solutions. Frontiers of Environmental Science & Engineering, 18(4): 52

[4]

Dahlan A V , Kitamura H , Tian Y , Sakanakura H , Shimaoka T , Yamamoto T , Takahashi F . (2020). Heterogeneities of fly ash particles generated from a fluidized bed combustor of municipal solid waste incineration. Journal of Material Cycles and Waste Management, 22(3): 836–850

[5]

Dai S J , Xia F F , Yang B , Wu D L , Niu D J , Zhao Y C , Fei X C , Cheng Z B , He H P . (2025). Compaction as a cost-effective strategy to upgrade the disposal of MSWI fly ash: feasibility and potential. Frontiers of Environmental Science & Engineering, 19(3): 35

[6]

Fan W D , Liu B , Luo X , Yang J , Guo B , Zhang S G . (2019). Production of glass–ceramics using municipal solid waste incineration fly ash. Rare Metals, 38(3): 245–251

[7]

Fu J W , He Y F , Zhao H X , Yang H , Li Q , Chen R , Li Y Y . (2025). Biochar mediated microbial synergy in partial nitrification-anammox systems: enhancing nitrogen removal efficiency and stability. Frontiers of Environmental Science & Engineering, 19(7): 95

[8]

Fu J W , Hou Z Y , Zhao H X , Li Q , Chen R , Li Y Y . (2024). Enhanced nitrogen removal from low strength anaerobic membrane bioreactor (AnMBR) permeate using complete nitrification and partial denitrification-anammox processes. Frontiers of Environmental Science & Engineering, 18(12): 155

[9]

Geng C , Chen C , Shi X F , Wu S C , Jia Y F , Du B , Liu J G . (2020a). Recovery of metals from municipal solid waste incineration fly ash and red mud via a co-reduction process. Resources, Conservation and Recycling, 154: 104600

[10]

Geng C , Liu J G , Wu S C , Jia Y F , Du B , Yu S Y . (2020b). Novel method for comprehensive utilization of MSWI fly ash through co-reduction with red mud to prepare crude alloy and cleaned slag. Journal of Hazardous Materials, 384: 121315

[11]

Gong B , Deng Y , Yang Y Y , Wang C Y , He Y , Sun X L , Liu Q N , Yang W Z . (2017). Effects of microwave-assisted thermal treatment on the fate of heavy metals in municipal solid waste incineration fly ash. Energy & Fuels, 31(11): 12446–12454

[12]

Guo X L , Hu J J , Wang C . (2025). Ultrasonic-assisted hydrothermal synthesis autoclaved bricks from municipal solid waste incineration fly ash and coal fly ash (MSWI-FA). Journal of Wuhan University of Technology-Materials Science Edition, 40(2): 439–448

[13]

Heberlein J , Murphy A B . (2008). Thermal plasma waste treatment. Journal of Physics D: Applied Physics, 41(5): 053001

[14]

Huang B B , Gan M , Ji Z Y , Fan X H , Zhang D , Chen X L , Sun Z Q , Huang X X , Fan Y . (2022). Recent progress on the thermal treatment and resource utilization technologies of municipal waste incineration fly ash: a review. Process Safety and Environmental Protection, 159: 547–565

[15]

Huang J L , Jin Y Y . (2024). Fate of Cl and chlorination mechanism during municipal solid waste incineration fly ash reutilization using thermal treatment: a review. Environmental Science and Pollution Research, 31(3): 3320–3342

[16]

Karyappa R , Jin Ong P , Bu J , Tao L G , Zhu Q , Wang C . (2025). Recent advances in immobilization of heavy metals from municipal solid waste incineration fly ash. Fuel, 381: 133216

[17]

Kitamura H , Dahlan A V , Tian Y , Shimaoka T , Yamamoto T , Takahashi F . (2019). Intra- and inter-particle heterogeneity of municipal solid waste incineration fly ash particles. Journal of Material Cycles and Waste Management, 21(4): 925–941

[18]

Kumar SGupta SSingh N. (2023). Characterization and sustainable utilization of municipal solid waste incineration ash: a review. In: Al Khaddar R, Singh S K, Kaushika N D, Tomar R K, Jain S K, eds. Recent Developments in Energy and Environ-mental Engineering. Singapore: Springer, 383–395

[19]

Lane D J , Hartikainen A , Sippula O , Lähde A , Mesceriakovas A , Peräniemi S , Jokiniemi J . (2020). Thermal separation of zinc and other valuable elements from municipal solid waste incineration fly ash. Journal of Cleaner Production, 253: 120014

[20]

Li Q M , Geng C , Zhang H , Shi X F , Liu J G , Chen C . (2025). The large-scale sustainable utilization status of bauxite residue (red mud): challenges and perspectives for China. Environmental Reviews, 33: 1–16

[21]

Li Y , Zhang J L , Liu Z J , Chen L Z , Wang Y Z . (2021). Harmless treatment of municipal solid waste incinerator fly ash through shaft furnace. Waste Management, 124: 110–117

[22]

Li Y K , Feng D D , Bai C X , Sun S Z , Zhang Y , Zhao Y J , Li Y Z , Zhang F , Chang G Z , Qin Y K . (2022). Thermal synergistic treatment of municipal solid waste incineration (MSWI) fly ash and fluxing agent in specific situation: melting characteristics, leaching characteristics of heavy metals. Fuel Processing Technology, 233: 107311

[23]

Liang D H , Wang F , Lv G J . (2024). The resource utilization and environmental assessment of MSWI fly ash with solidification and stabilization: a review. Waste and Biomass Valorization, 15(1): 37–56

[24]

Liu S W , Cao X , Yang W C , Liu R J , Fang L , Ma R , Peng J , Zheng S F , Ji F . (2023a). Preparation of magnesium potassium phosphate cement from municipal solid waste incineration fly ash and lead slag co-blended: Ca-induced crystal reconstruction process and Pb-Cl synergistic solidification mechanism. Journal of Hazardous Materials, 457: 131690

[25]

Liu Z X , Fang W Y , Cai Z X , Zhang J , Yue Y , Qian G R . (2023b). Garbage-classification policy changes characteristics of municipal-solid-waste fly ash in China. Science of the Total Environment, 857: 159299

[26]

Long Y Y , Pu K , Yang Y Q , Huang H L , Fang H Y , Shen D S , Geng H R , Ruan J M , Gu F Q . (2023a). Preparation of high-strength ceramsite from municipal solid waste incineration fly ash and clay based on CaO-SiO2-Al2O3 system. Construction and Building Materials, 368: 130492

[27]

Long Y Y , Song Y H , Yang Y Q , Huang H L , Fang H Y , Shen D S , Geng H R , Ruan J M , Gu F Q . (2023b). Co-vitrification of hazardous waste incineration fly ash and hazardous waste sludge based on CaO-SiO2-Al2O3 system. Journal of Environmental Management, 338: 117776

[28]

Luan J D , Chai M Y , Li R D , Yao P F , Khan A S . (2016). The mineral phase evolution behaviour in the production of glass–ceramics from municipal solid waste incineration fly ash by melting technology. Environmental Technology, 37(8): 1036–1044

[29]

Luo Z T , Chen L G , Zhang M X , Liu L , Zhao J , Mu Y D . (2020). Analysis of melting reconstruction treatment and cement solidification on ultra-risk municipal solid waste incinerator fly ash–blast furnace slag mixtures. Environmental Science and Pollution Research, 27(25): 32139–32151

[30]

Ma W C , Fang Y H , Chen D M , Chen G Y , Xu Y X , Sheng H Z , Zhou Z H . (2017). Volatilization and leaching behavior of heavy metals in MSW incineration fly ash in a DC arc plasma furnace. Fuel, 210: 145–153

[31]

Mocholi-Arce M , Sala-Garrido R , Molinos-Senante M , Maziotis A . (2025). A comprehensive evaluation of eco-productivity of the municipal solid waste service in Chile. Frontiers of Environ-mental Science & Engineering, 19(1): 11

[32]

Pei S L , Chen T L , Pan S Y , Yang Y L , Sun Z H , Li Y J . (2020). Addressing environmental sustainability of plasma vitrification technology for stabilization of municipal solid waste incineration fly ash. Journal of Hazardous Materials, 398: 122959

[33]

Ping X D , Wang F , Wang H F , Pan J L , Lu L J , Qiu J . (2024). High temperature melting of municipal solid waste incineration (MSWI) fly ash and co-disposal technology with blast furnaces. Waste Management, 183: 191–198

[34]

Qi S Q , Chen Q Q , Shen D S , Fang Y , Cui Y X , Shentu J L . (2025). In-situ stabilization of multiple heavy metals (Pb, Zn, As) by ferrous sulfate-from batch experiments to pilot study. Frontiers of Environmental Science & Engineering, 19(3): 36

[35]

Sun H W , Li X L , Lv X T , Qu Z M , Yang X Y , Wang G , Zhang Y X , Liu Y C , Zhang S J . (2025). Rapid enrichment of Ca. Nitrospira inopinata using anammox and kanamycin: a path toward sustainable nitrification. Frontiers of Environmental Science & Engineering, 19(7): 99

[36]

Voišnienė V , Kizinievič O , Kizinievič V . (2020). Effect of municipal solid waste incineration fly ash on the properties, microstructure and durability of clay bricks. Ceramics-Silikáty, 64(4): 423–433

[37]

Wang Q H , Peng Y Q , Chen M , Xu M X , Ding J M , Yao Q , Lu S Y . (2024). Synthesis of layered double hydroxides from municipal solid waste incineration fly ash for heavy metal adsorption. Science of the Total Environment, 912: 169482

[38]

Wong G , Fan X H , Gan M , Ji Z Y , Ye H D , Zhou Z A , Wang Z C . (2020). Resource utilization of municipal solid waste incineration fly ash in iron ore sintering process: a novel thermal treatment. Journal of Cleaner Production, 263: 121400

[39]

Xing J X , Tang Q Y , Gan M , Ji Z Y , Fan X H , Sun Z Q , Chen X L , Jing Q . (2024). Preparation of glass ceramic by low-temperature melting of municipal solid waste incineration fly ash and municipal sludge. Materials Letters, 359: 135962

[40]

Xu D D , Huang Y , Jin X , Sun T . (2022). Synergistic treatment of heavy metals in municipal solid waste incineration fly ash with geopolymer and chemical stabilizers. Process Safety and Environmental Protection, 160: 763–774

[41]

Yang G Y , Ren Q Q , Zhou L , Li P P , Lyu Q . (2022). Effect of Si/Al additives on Cl fate during MSWI fly ash thermal treating process. Fuel Processing Technology, 231: 107230

[42]

Yu J , Qiao Y , Jin L M , Ma C , Paterson N , Sun L S . (2015). Removal of toxic and alkali/alkaline earth metals during co-thermal treatment of two types of MSWI fly ashes in China. Waste Management, 46: 287–297

[43]

Yu J , Sun L S , Ma C , Qiao Y , Xiang J , Hu S , Yao H . (2016). Mechanism on heavy metals vaporization from municipal solid waste fly ash by MgCl2·6H2O. Waste Management, 49: 124–130

[44]

Zhang J J , Liu B , Zhang X Y , Shen H L , Liu J , Zhang S G . (2022). Co-vitrification of municipal solid waste incinerator fly ash and bottom slag: glass detoxifying characteristics and porous reformation. Ecotoxicology and Environmental Safety, 243: 113995

[45]

Zhang Z , Zhao C T , Rao Y , Yu C J , Luo Z L , Zhao H J , Wang X N , Wu C F , Wang Q H . (2023). Solidification/stabilization and risk assessment of heavy metals in municipal solid waste incineration fly ash: a review. Science of the Total Environment, 892: 164451

[46]

Zhao C L , Zhao Y C , Lin K S , Wang Z Y , Zhou T . (2023). Comprehensive assessment of thermal characteristics, kinetics and environmental impacts of municipal solid waste incineration fly ash during thermal treatment. Process Safety and Environ-mental Protection, 175: 619–631

[47]

Zhao K X , Hu Y Y , Wang Y Z , Chen D Z , Feng Y H . (2019). Speciation and risk assessment of heavy metals in municipal solid waste incineration fly ash during thermal processing. Energy & Fuels, 33(10): 10066–10077

[48]

Zhao Y H , Liu J , Pang B , Liu R Q , Zhang Z M . (2025). Pretreatments behavior of municipal solid waste incineration fly ash using different alkaline reagents. Water, Air, & Soil Pollution, 236(1): 11

RIGHTS & PERMISSIONS

Higher Education Press 2026

AI Summary AI Mindmap
PDF (6867KB)

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/