Mechanistic insight into Mn-Ce synergy drives efficient low-temperature SCR over fly ash

Kaili Chi , Luyang Zhao , Xiao Zhu , Hongyuan Ma , Yue Xuan , Penghao An , Bin Wang , Yang Yun , Dong Wang

ENG. Environ. ›› 2026, Vol. 20 ›› Issue (4) : 51

PDF (6011KB)
ENG. Environ. ›› 2026, Vol. 20 ›› Issue (4) :51 DOI: 10.1007/s11783-026-2151-7
RESEARCH ARTICLE

Mechanistic insight into Mn-Ce synergy drives efficient low-temperature SCR over fly ash

Author information +
History +
PDF (6011KB)

Abstract

Fly ash (FA) is rich in SiO2 and Al2O3, exhibiting potential as a catalyst support for selective catalytic reduction (SCR) reactions. However, its practical application is restricted due to inert oxygen species and insufficient acidic sites. Herein, a series of fly ash-based catalysts were prepared via a sequential method combining acid pretreatment and wet impregnation. The synthesized Mn-Ce/AFA catalyst exhibited outstanding low-temperature denitration performance, reaching a NOx conversion rate of 100% at 150 °C. Additionally, the Mn-Ce/AFA catalyst showed satisfactory H2O vapor tolerance, with the NOx conversion rate maintaining approximately 95% when exposed to 5 vol% water vapor. Compared with the Mn-Ce/Ti catalysts, the Mn-Ce/AFA catalyst exhibited elevated levels of Mn4+ and Ce3+, indicating enhanced electron transfer in the Mn3+ + Ce4+ ⇌ Mn4+ + Ce3+ cycle. Results from H2-temperature-programmed reduction (H2-TPR) and NH3-temperature-programmed desorption (NH3-TPD) suggested that Ce-Mn co-doping enhanced the catalyst’s reducibility and the adsorption strength of NH3 on Lewis acid sites. In-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) results and NO oxidation tests revealed that the enhanced NO oxidation capacity promoted the generation of key monodentate nitrite species, while the strengthened Lewis acidity facilitated the NH3 activation process. This work introduces an innovative approach to convert fly ash into efficient catalysts for environmental remediation, demonstrating waste valorization in green chemistry.

Graphical abstract

Keywords

Air pollution control / Selective catalytic reduction / NOx / Fly ash / Acid sites

Highlight

● The Mn-Ce/AFA catalyst is a low-cost substitution of commercial SCR catalysts.

● Enhanced Mn3+/Ce4+ redox cycling drives the superior SCR activity.

● The enhanced redox ability and oxygen adsorption generate key nitrite species.

● The strengthened Lewis acidity promotes NH3 adsorption and activation process.

● A method for high-value utilization of solid waste is proposed.

Cite this article

Download citation ▾
Kaili Chi, Luyang Zhao, Xiao Zhu, Hongyuan Ma, Yue Xuan, Penghao An, Bin Wang, Yang Yun, Dong Wang. Mechanistic insight into Mn-Ce synergy drives efficient low-temperature SCR over fly ash. ENG. Environ., 2026, 20(4): 51 DOI:10.1007/s11783-026-2151-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen J , Zhou L , Deng X , Liu W , Liu J Y , Ji H W , Wu S H , Liang J X , Ou J H , Liu B Y . (2020). Role of Co content on the gradient microstructure evolution and mechanical properties of bilayer functionally graded cemented carbides. Materials Chemistry and Physics, 248: 122910

[2]

Chen Z CRen SWang M MYang JChen LLiu W ZLiu Q CSu B X (2022). Insights into samarium doping effects on catalytic activity and SO2 tolerance of MnFeOx catalyst for low-temperature NH3-SCR reaction. Fuel. 321: 124113

[3]

Duan X X , Dou J X , Zhao Y Q , Rish S K , Yu J L . (2020). A study on Mn-Fe catalysts supported on coal fly ash for low-temperature selective catalytic reduction of NOx in flue gas. Catalysts, 10(12): 1399

[4]

Fang J , Bi X Z , Si D J , Jiang Z Q , Huang W X . (2007). Spectroscopic studies of interfacial structures of CeO2–TiO2 mixed oxides. Applied Surface Science, 253(22): 8952–8961

[5]

Feng X B , Zhu J R , Song K L , Zeng J L , Zhou X Y , Guo X L , Lin K X , Zhang C H , Xie C , Shi J W . (2024). Insight into the reasons for enhanced NH3-SCR activity and SO2 tolerance of Mn-Co layered oxides. Separation and Purification Technology, 336: 126285

[6]

Gao C , Shi J W , Fan Z Y , Gao G , Niu C M . (2018). Sulfur and water resistance of Mn-based catalysts for low-temperature selective catalytic reduction of NOx: a review. Catalysts, 8(1): 11

[7]

Gao G , Shi J W , Fan Z Y , Gao C , Niu C M . (2017). MnM2O4 microspheres (M = Co, Cu, Ni) for selective catalytic reduction of NO with NH3: comparative study on catalytic activity and reaction mechanism via in-situ diffuse reflectance infrared Fourier transform spectroscopy. Chemical Engineering Journal, 325: 91–100

[8]

Gollakota A R K , Volli V , Shu C M . (2019). Progressive utilisation prospects of coal fly ash: a review. Science of the Total Environment, 672: 951–989

[9]

Gu T T , Liu Y , Weng X L , Wang H Q , Wu Z B . (2010). The enhanced performance of ceria with surface sulfation for selective catalytic reduction of NO by NH3. Catalysis Communications, 12(4): 310–313

[10]

Jin L Y , Xu X T , Wang Y H , Li J Y , Fan K H , Hu B , Shen Y , Liu X S . (2023). Study on H2O2, Ce, W modified MnOx/TiO2 based NH3-SCR catalyst: the status and effect of doped promoters and synergies. Materials Research Bulletin, 168: 112494

[11]

Kong M , Liu Q C , Jiang L J , Tong W , Yang J , Ren S , Li J L , Tian Y M . (2019). K+ deactivation of V2O5-WO3/TiO2 catalyst during selective catalytic reduction of NO with NH3: effect of vanadium content. Chemical Engineering Journal, 370: 518–526

[12]

Larachi F , Pierre J , Adnot A , Bernis A . (2002). Ce 3d XPS study of composite CexMn1−xO2−y wet oxidation catalysts. Applied Surface Science, 195(1−4): 236–250

[13]

Lee K JKumar P AMaqbool M SRao K NSong K HHa H P (2013). Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3 SCR: physico-chemical properties and catalytic activity. Applied Catalysis B: Environmental, 142–143: 142–143

[14]

Li G H , Mao D S , Chao M X , Li G , Yu J , Guo X M . (2020). Significantly enhanced Pb resistance of a Co-modified Mn–Ce–Ox/TiO2 catalyst for low-temperature NH3-SCR of NOx. Catalysis Science & Technology, 10(18): 6368–6377

[15]

Li L , Chen L , Kong M , Liu Q C , Ren S . (2019). New insights into the deactivation mechanism of V2O5-WO3/TiO2 catalyst during selective catalytic reduction of NO with NH3: synergies between arsenic and potassium species. RSC Advances, 9(65): 37724–37732

[16]

Liang Y J , Wang B , Xuan Y , Fan W J , An P H , Meng S , Zhu X , Yun Y , Luan T , Wang D . et al. (2025). Significant promoting effect of toluene oxidation by CO on CuMnOx catalysts: heterostructure and CO co-accelerated active oxygen cycling. Applied Catalysis B: Environment and Energy, 373: 125325

[17]

Liu F D , He H , Ding Y , Zhang C B . (2009). Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 93(1−2): 194–204

[18]

Liu H , Fan Z X , Sun C Z , Yu S H , Feng S , Chen W , Chen D Z , Tang C J , Gao F , Dong L . (2019). Improved activity and significant SO2 tolerance of samarium modified CeO2-TiO2 catalyst for NO selective catalytic reduction with NH3. Applied Catalysis B: Environmental, 244: 671–683

[19]

Liu J , Li X Y , Zhao Q D , Ke J , Xiao H N , Lv X J , Liu S M , Tadé M , Wang S B . (2017). Mechanistic investigation of the enhanced NH3-SCR on cobalt-decorated Ce-Ti mixed oxide: in situ FTIR analysis for structure-activity correlation. Applied Catalysis B: Environmental, 200: 297–308

[20]

Liu YYao W YCao X LWeng X LWang YWang H QWu Z B (2014). Supercritical water syntheses of Cex/TiO2 nano-catalysts with a strong metal-support interaction for selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 160–161: 160–161

[21]

Ma H Y , Xia S W , Liang Y J , Jiang H Y , Wang B , Ma K , Wang D. . (2025). Iron-driven framework engineering in fly ash zeolites: boosting pore diffusion and efficient removal of polar VOCs. Chemical Engineering Journal, 522: 167938

[22]

Meng D M , Zhan W C , Guo Y , Guo Y L , Wang L , Lu G Z . (2015). A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature: promotional role of Sm and its catalytic performance. ACS Catalysis, 5(10): 5973–5983

[23]

Meng S , Wang Y , Wang B , Xuan Y , Liang Y J , Zhu X , Yun Y , Wang D , Peng Y. . (2025). The strong Fe-Mn interaction over red mud accelerating the activation of key oxygen species for toluene oxidation. Chemical Engineering Journal, 509: 161265

[24]

Murugan B , Ramaswamy A V . (2008). Chemical states and redox properties of Mn/CeO2−TiO2 nanocomposites prepared by solution combustion route. The Journal of Physical Chemistry C, 112(51): 20429–20442

[25]

Niu C H , Wang B R , Xing Y , Su W , He C , Xiao L , Xu Y R , Zhao S Q , Cheng Y H , Shi J W . (2021). Thulium modified MnOx/TiO2 catalyst for the low-temperature selective catalytic reduction of NO with ammonia. Journal of Cleaner Production, 290: 125858

[26]

Perumal S K , Samidurai U , Balashanmugam V G , Kim H S , Aghalayam P . (2023). Superior catalytic performance of Zr-incorporated MnCu/SBA-15 catalyst for low-temperature NH3-SCR of NO: effect of support. Separation and Purification Technology, 322: 124181

[27]

Qi G , Yang R T , Chang R . (2004). MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B: Environmental, 51(2): 93–106

[28]

Qi K , Xie J L , Mei D , He F , Fang D . (2018). The utilization of fly ash-MnOx/FA catalysts for NOx removal. Materials Research Express, 5(6): 065526

[29]

Sun P , Guo R T , Liu S M , Wang S X , Pan W G , Li M Y . (2017). The enhanced performance of MnOx catalyst for NH3-SCR reaction by the modification with Eu. Applied Catalysis A: General, 531: 129–138

[30]

Wang M M , Guo R T , Ren S , Sun S , Chen Z C , Yang J , Chen L , Li X D . (2022a). Revealing M (M = Cu, Co and Zr) oxides doping effects on anti-PbCl2 poisoning over Mn-Ce/AC catalysts in low-temperature NH3-SCR reaction. Applied Catalysis A: General, 643: 118749

[31]

Wang M M , Ren S , Jiang Y H , Su B X , Chen Z C , Liu W Z , Yang J , Chen L . (2022b). Insights into co-doping effect of Sm and Fe on anti-Pb poisoning of Mn-Ce/AC catalyst for low-temperature SCR of NO with NH3. Fuel, 319: 123763

[32]

Wei L , Cui S P , Guo H X , Ma X Y , Zhang L J . (2016). DRIFT and DFT study of cerium addition on SO2 of manganese-based catalysts for low temperature SCR. Journal of Molecular Catalysis A: Chemical, 421: 102–108

[33]

Xing X , Li Z , Wang Y X , Tian Z H , Cheng J , Hao Z P . (2025). Exploration of the interaction mechanism in the synergistic degradation of benzene and toluene over MnCoOx catalysts. Frontiers of Environmental Science & Engineering, 19(2): 22

[34]

Xu R Y , Shen Q H , Chen L J . (2025). The γ-MnO2/NF mediated peroxymonosulfate activation for expeditious 2,4,6-trichloro-phenol degradation: performance, pathways, and mechanism. Frontiers of Environmental Science & Engineering, 19(8): 108

[35]

Xuan Y , Wang B , Gao C , Zhang K H , Li B , Wang M X , Wang D , Li J H , Lu C M . (2022). Substantially enhanced anti-lead poisoning performance on the CeO2-WO3 pairs supported by red mud: sacrificial effect of Fe2O3. Chemical Engineering Journal, 450: 138165

[36]

Xuan Y , Zhu X , Wang B , Liang Y J , Gao C , Li B , Wang D , Peng Y . (2025). Ultrahigh alkali resistance and regeneration capacity of the birnessite deNOx catalysts: a recyclable extraction-insertion strategy. Separation and Purification Technology, 368: 133017

[37]

Yang C , Yang J , Jiao Q R , Zhao D , Zhang Y X , Liu L , Hu G , Li J L . (2020). Promotion effect and mechanism of MnOx doped CeO2 nano-catalyst for NH3-SCR. Ceramics International, 46(4): 4394–4401

[38]

Yin Z Z , Wang G , Wang L , Ren P Y , Sun J , Zhao H H , Ji P H . (2024). An effective way to utilize solid waste resources: the application of modified fly ash in removing Cu2+ and Pb2+ in wastewater. Separation and Purification Technology, 350: 127948

[39]

Zhang H , Li H N , Zhang P Y , Hu T X , Wang X J . (2024a). Highly active copper-intercalated weakly crystallized δ-MnO2 for low-temperature oxidation of CO in dry and humid air. Frontiers of Environmental Science & Engineering, 18(5): 62

[40]

Zhang L , Chen J H , Lei Z , He H B , Wang Y S , Li Y H . (2019). Preparation of soybean oil factory sludge catalyst and its application in selective catalytic oxidation denitration process. Journal of Cleaner Production, 225: 220–226

[41]

Zhang L X , Liang L S , Ma H Y , Mi H , Zhang Z H , Li Y , Xu Q , Zhao C , Chen J , Qiao J Y . et al. (2024b). Study on the effect of Fe doping on SCR activity and reaction mechanism of Mn–TiO2 catalysts. Catalysis Letters, 154(6): 2777–2789

[42]

Zhang X , Xuan Y , Wang B , Gao C , Niu S L , Zhao G J , Wang D , Li J H , Lu C M , Crittenden J C . (2022a). Precise regulation of acid pretreatment for red mud SCR catalyst: targeting on optimizing the acidity and reducibility. Frontiers of Environmental Science & Engineering, 16(7): 88

[43]

Zhang X X , Cao J , Tian S H , Zhao Y C , Long L L , Yao X J . (2024c). Mechanistic insights into the influence of preparation methods and Fe3+ doping on the low-temperature performance of MnCeOx catalyst for NH3-SCR reaction. Separation and Purification Technology, 347: 127519

[44]

Zhang X Y , Liu W Q , Peng P , Zhang Z J , Du Q L , Shi J Y , Deng L D . (2023). A dual functional sorbent/catalyst material for in-situ CO2 capture and conversion to ethylene production. Fuel, 351: 128701

[45]

Zhang X Y , Liu W Q , Zhou S M , Li Z X , Sun J , Hu Y C , Yang Y D . (2022b). A review on granulation of CaO-based sorbent for carbon dioxide capture. Chemical Engineering Journal, 446: 136880

[46]

Zhu X , Yuan X , Song Z J , Peng Y , Li J H . (2024). A dual-balance strategy via phosphate modification on MnO2-CeO2 for NOx and chlorobenzene synergistic catalytic control. Applied Catalysis B: Environmental, 342: 123364

[47]

Zhu Y S , Xu M Z , Li M Z , Zhu J Q , Wei Y F , Lei L C , Li Y R , Yu T , Li Z J , Hou Y . et al. (2025). Sustainable utilization of fly ash in crafting shell structure for the reduction of iron sludge in Fenton oxidation via enhanced core-shell interaction. Separation and Purification Technology, 361: 131320

RIGHTS & PERMISSIONS

Higher Education Press 2026

AI Summary AI Mindmap
PDF (6011KB)

Supplementary files

Supplementary_Materials

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/