Fe(II)-driven transformation of jarosite to magnetite: mechanism insights and environmental implications

Xiaoyun Liu , Jiahui Wu , Yunyan Wang , Hongrui Xiang , Chujing Zheng , Meiqing Shi , Xu Yan , Qingwei Wang , Xiaobo Min , Liyuan Chai

ENG. Environ. ›› 2026, Vol. 20 ›› Issue (3) : 48

PDF (6239KB)
ENG. Environ. ›› 2026, Vol. 20 ›› Issue (3) :48 DOI: 10.1007/s11783-026-2148-2
RESEARCH ARTICLE

Fe(II)-driven transformation of jarosite to magnetite: mechanism insights and environmental implications

Author information +
History +
PDF (6239KB)

Abstract

Fe(II) commonly serves as a catalyst in environmental systems, driving the transformation of metastable iron minerals into more stable phases and thereby exerting a profound influence on the mobility and fate of metals. However, the underlying mechanisms underpinning this dual role—both catalytic and reactive remain unclear. In this study, jarosite was selected as a representative mineral to investigate its transformation into magnetite. A combination of Fe stable isotope tracing and Mössbauer spectroscopy was employed to track redox processes and structural evolution of iron phases at the molecular level. Transmission electron microscopy (TEM) provided direct evidence of intermediates, including green rust, akaganéite, and magnetite nanocrystals, revealing the crystallization pathway of magnetite formation. Isotope results confirmed that complete electron transfer between aqueous Fe(II) and structural Fe(III) in jarosite occurred within the first 30 min, triggering reductive dissolution and subsequent recrystallization. Meanwhile, Fe(II) released during jarosite dissolution underwent hydrolysis and transformation, thereby contributing to continued magnetite crystallization. These findings offered new insights into the function of Fe(II) in iron mineral transformations, particularly its role in electron transfer and structural evolution.

Graphical abstract

Keywords

Jarosite / Phase transformation / Magnetite / Mössbauer spectroscopy / Fe isotopes tracking

Highlight

● Time-resolved 57Fe Mössbauer revealed electron transfer in jarosite transformation.

● Key intermediates were captured, clarifying crystallization pathways.

● Fe(II) acts both as electron donor and structural component in magnetite formation.

Cite this article

Download citation ▾
Xiaoyun Liu, Jiahui Wu, Yunyan Wang, Hongrui Xiang, Chujing Zheng, Meiqing Shi, Xu Yan, Qingwei Wang, Xiaobo Min, Liyuan Chai. Fe(II)-driven transformation of jarosite to magnetite: mechanism insights and environmental implications. ENG. Environ., 2026, 20(3): 48 DOI:10.1007/s11783-026-2148-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aeppli M , Kaegi R , Kretzschmar R , Voegelin A , Hofstetter T B , Sander M . (2019). Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite. Environmental Science & Technology, 53(7): 3568–3578

[2]

Basinski J J , Bone S E , Klein A R , Thongsomboon W , Mitchell V , Shukle J T , Druschel G K , Thompson A , Aristilde L . (2024). Unraveling iron oxides as abiotic catalysts of organic phosphorus recycling in soil and sediment matrices. Nature Communications, 15: 5930

[3]

Boland D D , Collins R N , Miller C J , Glover C J , Waite T D . (2014). Effect of solution and solid-phase conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite. Environmental Science & Technology, 48(10): 5477–5485

[4]

Cerantola V , Bykova E , Kupenko I , Merlini M , Ismailova L , McCammon C , Bykov M , Chumakov A I , Petitgirard S , Kantor I . et al. (2017). Stability of iron-bearing carbonates in the deep Earth’s interior. Nature Communications, 8: 15960

[5]

Chen C M , Dong Y J , Thompson A . (2023). Electron transfer, atom exchange, and transformation of iron minerals in soils: the influence of soil organic matter. Environmental Science & Technology, 57(29): 10696–10707

[6]

Chen Y J , Cheng M N , Wang Y D , Jin L , Li J H , Yang H L , Ma S J , Dai G L , Lin Z X , Liu X . (2024). A novel hydrogen accelerated oxygen reduction Fenton reaction system: effectively promoted the cycle of Fe(II)/Fe(III) and self-generation of H2O2. Applied Surface Science, 649: 159161

[7]

Cornell R MSchwertmann U (2003). The Iron Oxides. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA

[8]

Forray F L , Smith A M L , Drouet C , Navrotsky A , Wright K , Hudson-Edwards K A , Dubbin W E . (2010). Synthesis, charac-terization and thermochemistry of a Pb-jarosite. Geochimica et Cosmochimica Acta, 74(1): 215–224

[9]

Gao M S , Li H , Xie Z L , Li Z C , Luo Z Q , Yu R H , C W , He J . (2024). The fate of arsenic associated with the transformation of iron oxides in soils: the mineralogical evidence. Science of the Total Environment, 914: 169795

[10]

Gasharova B , Göttlicher J , Becker U . (2005). Dissolution at the surface of jarosite: an in situ AFM study. Chemical Geology, 215(1−4): 499–516

[11]

Grigg A R C , Notini L , Kaegi R , ThomasArrigo L K , Kretzschmar R . (2024a). Aluminium substitution affects jarosite transformation to iron oxyhydroxides in the presence of aqueous Fe(II). Geochimica et Cosmochimica Acta, 374: 72–84

[12]

Grigg A R C , Wisawapipat W , Barmettler K , Schulz K , Notini L , ThomasArrigo L K , Kretzschmar R . (2024b). Stability and transformation of jarosite and Al-substituted jarosite in an acid sulfate paddy soil under laboratory and field conditions. Geochimica et Cosmochimica Acta, 382: 128–141

[13]

Han R X , Lv J T , Huang Z Q , Zhang S H , Zhang S Z . (2020). Pathway for the production of hydroxyl radicals during the microbially mediated redox transformation of iron (oxyhydr)oxides. Environmental Science & Technology, 54(2): 902–910

[14]

Hao T X , Ye H D , He Y J , Wei J C , Li Q , Dai B , Wu J H , Yang B T , Lin Z , Chai L Y . et al. (2022). Effect of in-situ oxidation on the phase composition and magnetic properties of Fe3O4: impli-cations for zinc hydrometallurgy. Inorganic Chemistry Commu-nications, 144: 109863

[15]

Hu S W , Lu Y , Peng L F , Wang P , Zhu M Q , Dohnalkova A C , Chen H , Lin Z , Dang Z , Shi Z Q . (2018). Coupled kinetics of ferrihydrite transformation and As(V) sequestration under the effect of humic acids: a mechanistic and quantitative study. Environmental Science & Technology, 52(20): 11632–11641

[16]

Huang J Z , Jones A , Waite T D , Chen Y L , Huang X P , Rosso K M , Kappler A , Mansor M , Tratnyek P G , Zhang H C . (2021). Fe(II) redox chemistry in the environment. Chemical Reviews, 121(13): 8161–8233

[17]

Huang J Z , Zhang H C . (2020). Redox reactions of iron and manganese oxides in complex systems. Frontiers of Environmental Science & Engineering, 14(5): 76

[18]

Jin Y C , Qiu Y C , Kumar R , Chan T , Yan L . (2024). Understanding the goethite role on stibnite oxidative dissolution and trans-formation: spectroscopic and DFT study. Science of the Total Environment, 906: 167823

[19]

Kappler A , Bryce C , Mansor M , Lueder U , Byrne J M , Swanner E D . (2021). An evolving view on biogeochemical cycling of iron. Nature Reviews Microbiology, 19(6): 360–374

[20]

Karimian N , Johnston S G , Burton E D . (2017). Antimony and arsenic behavior during Fe(II)-induced transformation of jarosite. Environmental Science & Technology, 51(8): 4259–4268

[21]

Karimian N , Johnston S G , Burton E D . (2018). Antimony and arsenic partitioning during Fe2+-induced transformation of jarosite under acidic conditions. Chemosphere, 195: 515–523

[22]

Latta D , Rosso K M , Scherer M M . (2023). Tracking initial Fe(II)-driven ferrihydrite transformations: a Mössbauer spectroscopy and isotope investigation. ACS Earth and Space Chemistry, 7(10): 1814–1824

[23]

Latta D E , Bachman J E , Scherer M M . (2012). Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption. Environmental Science & Technology, 46(19): 10614–10623

[24]

Li D , Sun J Y , Fu Y B , Hong W T , Wang H L , Yang Q , Wu J H , Yang S , Xu J H , Zhang Y F . et al. (2024). Fluctuating redox conditions accelerate the electron storage and transfer in magnetite and production of dark hydroxyl radicals. Water Research, 248: 120884

[25]

Liang D H , Chang J F , Wu Y , Wang S , Wang X , Ren N Q , Li N . (2024). The screening of iron oxides for long-term transformation into vivianite to recover phosphorus from sewage. Water Research, 265: 122250

[26]

Liu C S , Zhu Z K , Li F B , Liu T X , Liao C Z , Lee J J , Shih K , Tao L , Wu Y D . (2016). Fe(II)-induced phase transformation of ferrihydrite: the inhibition effects and stabilization of divalent metal cations. Chemical Geology, 444: 110–119

[27]

Liu Q J , Li X , Tang J P , Zhou Y M , Lin Q T , Xiao R B , Zhang M . (2019). Characterization of goethite-fulvic acid composites and their impact on the immobility of Pb/Cd in soil. Chemosphere, 222: 556–563

[28]

Maher B . (2024). Ubiquitous magnetite. Nature Geoscience, 17(1): 7

[29]

Montes-Hernandez G , Beck P , Renard F , Quirico E , Lanson B , Chiriac R , Findling N . (2011). Fast precipitation of acicular goethite from ferric hydroxide gel under moderate temperature (30 and 70 °C). Crystal Growth & Design, 11(6): 2264–2272

[30]

Neale Z G , Barta M , Cao G Z . (2021). Faster diffusion and higher lithium-ion intercalation capacity in Pb-jarosite than Na-jarosite. ACS Applied Energy Materials, 4(3): 2248–2256

[31]

Nghiem A A , Prommer H , Mozumder M R H , Siade A , Jamieson J , Ahmed K M , van Geen A , Bostick B C . (2023). Sulfate reduction accelerates groundwater arsenic contamination even in aquifers with abundant iron oxides. Nature Water, 1(2): 151–165

[32]

Notini L , Latta D E , Neumann A , Pearce C I , Sassi M , N’Diaye A T , Rosso K M , Scherer M M . (2018). The role of defects in Fe(II)-goethite electron transfer. Environmental Science & Technology, 52(5): 2751–2759

[33]

Notini L , Latta D E , Neumann A , Pearce C I , Sassi M , N’Diaye A T , Rosso K M , Scherer M M . (2019). A closer look at Fe(II) passivation of goethite. ACS Earth and Space Chemistry, 3(12): 2717–2725

[34]

Notini L , Schulz K , Kubeneck L J , Grigg A R C , Rothwell K A , Fantappiè G , ThomasArrigo L K , Kretzschmar R . (2023). A new approach for investigating iron mineral transformations in soils and sediments using 57Fe-Labeled minerals and 57Fe Mössbauer spectroscopy. Environmental Science & Technology, 57(27): 10008–10018

[35]

Pasakarnis T , McCormick M L , Parkin G F , Thompson A , Scherer M M . (2015). FeIIaq–FeIIIoxide electron transfer and Fe exchange: effect of organic carbon. Environmental Chemistry, 12(1): 52–63

[36]

Roy S D , Das K C , Dhar S S . (2021). Conventional to green synthesis of magnetic iron oxide nanoparticles; its application as catalyst, photocatalyst and toxicity: a short review. Inorganic Chemistry Communications, 134: 109050

[37]

Schoepfer V A , Lum J E , Lindsay M B J. . (2021). Molybdenum(VI) sequestration mechanisms during iron(II)-induced ferrihydrite transformation. ACS Earth and Space Chemistry, 5(8): 2094–2104

[38]

Shen X Y , Zhu H Y , Wang P , Zheng L R , Hu S W , Liu C X . (2022). Mechanistic and modeling insights into the immobilization of Cd and organic carbon during abiotic transformation of ferrihydrite induced by Fe(II). Journal of Hazardous materials, 436: 129216

[39]

Smith A M L , Hudson-Edwards K A , Dubbin W E , Wright K . (2006). Dissolution of jarosite [KFe3(SO4)2(OH)6] at pH 2 and 8: insights from batch experiments and computational modelling. Geochimica et Cosmochimica Acta, 70(3): 608–621

[40]

Usman M , Byrne J M , Chaudhary A , Orsetti S , Hanna K , Ruby C , Kappler A , Haderlein S B . (2018). Magnetite and green rust: synthesis, properties, and environmental applications of mixed-valent iron minerals. Chemical Reviews, 118(7): 3251–3304

[41]

Wang M , Zhu M H , Guan J P , Yao Y , Sun C H , Liu Q , Chen X Q . (2024). Mixed-valent Fe-MOF accelerated Fe(III)/Fe(II) cycle for highly efficient photo-Fenton-like catalytic degradation of organic pollutants: boosting mechanism and degradation path-ways. Journal of Environmental Chemical Engineering, 12(5): 113577

[42]

Wu J H , Shi M Q , Feng F , Hao J T , Zhao D , Wang X Y , Li J W , Zhang W C , Wang Q W , Ke Y . et al. (2023). Recent advances in magnetite crystallization: pathway, modulation, and charac-terization. Crystal Growth & Design, 23(8): 6201–6218

[43]

Xu M Y , Xu X K , Song Y Y , Xiong J P , Ji Y , Yu B , Liu J G . (2025). Overview and perspectives of sustainable recycling of anaerobic digestion biogas residue of organic solid waste in China. Frontiers of Environmental Science & Engineering, 19(11): 144

[44]

Zheng K X , Li F L , He K , Kong X R , Wang W , Chen Y Z , Yin R L , Liu N , Wen Y , Wang H T . (2025). Pyrite-based materials for heavy metals wastewater remediation: progress and challenges. Frontiers of Environmental Science & Engineering, 19(3): 40

RIGHTS & PERMISSIONS

Higher Education Press 2026

AI Summary AI Mindmap
PDF (6239KB)

Supplementary files

Supplementary materials

56

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/