PDF
(3059KB)
Abstract
As the most diverse form of life on Earth, environmental microorganisms represent a vast treasure trove for resource exploitation and environmental applications. Nonetheless, currently, over 90% of microorganisms remain uncultured, which is mainly due to the inherent limitations of the widely employed top-down cultivation methods. Therefore, in this review, we first comprehensively reviewed the progress in microbial cultivation technologies and methods, summarized the major obstacles existing in microbial cultivation, and then proposed a bottom-up cultivation strategy and associated roadmap to complement current top-down cultivation methods. The core of the bottom-up cultivation strategy is the establishment of a standardized, open-ended, and scalable “CPR Module Bank—comprising Core, Population-specific, and Redundant function modules” that can be continuously expanded, refined, and improved by pulling together ideas and efforts of the worldwide microbial cultivation society. Further integration of top-down and bottom-up cultivation strategies may facilitate the comprehensive cultivation of all microorganisms in the future and advance the field of environmental microbiology.
Graphical abstract
Keywords
Microbial cultivation
/
Uncultured microorganisms
/
Environmental microbiome
/
Cultivation methods
Highlight
| ● Breakthroughs in cultivation of environmental microbiomes were reviewed. |
| ● Barriers to current microbial cultivation were summarized and discussed. |
| ● Bottom-up cultivation complementing current top-down cultivation was proposed. |
| ● CPR Module Bank for cultivation was proposed for the bottom-up cultivation. |
Cite this article
Download citation ▾
Yi Su, Shanquan Wang.
Cultivation in a bottom-up manner: a new way to explore environmental microbiome.
ENG. Environ., 2026, 20(3): 46 DOI:10.1007/s11783-026-2146-4
| [1] |
Abu-Ali G S , Mehta R S , Lloyd-Price J , Mallick H , Branck T , Ivey K L , Drew D A , DuLong C , Rimm E , Izard J . et al. (2018). Metatranscriptome of human faecal microbial communities in a cohort of adult men. Nature Microbiology, 3(3): 356–366
|
| [2] |
Acuña J J , Marileo L G , Araya M A , Rilling J I , Larama G A , Mora M L , Epstein S , Jorquera M A . (2020). In situ cultivation approach to increase the culturable bacterial diversity in the rhizobiome of plants. Journal of Soil Science and Plant Nutrition, 20(3): 1411–1426
|
| [3] |
Allers E , Moraru C , Duhaime M B , Beneze E , Solonenko N , Barrero-Canosa J , Amann R , Sullivan M B . (2013). Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses. Environmental Microbiology, 15(8): 2306–2318
|
| [4] |
Aoi Y , Kinoshita T , Hata T , Ohta H , Obokata H , Tsuneda S . (2009). Hollow-fiber membrane chamber as a device for in situ environmental cultivation. Applied and Environmental Micro-biology, 75(11): 3826–3833
|
| [5] |
Aoki M , Ehara M , Saito Y , Yoshioka H , Miyazaki M , Saito Y , Miyashita A , Kawakami S , Yamaguchi T , Ohashi A . et al. (2014). A long-term cultivation of an anaerobic methane-oxidizing microbial community from deep-sea methane-seep sediment using a continuous-flow bioreactor. PLoS One, 9(8): e105356
|
| [6] |
Arrigo K R . (2005). Marine microorganisms and global nutrient cycles. Nature, 437(7057): 349–355
|
| [7] |
Auchtung J M , Robinson C D , Britton R A . (2015). Cultivation of stable, reproducible microbial communities from different fecal donors using minibioreactor arrays (MBRAs). Microbiome, 3: 42
|
| [8] |
Batani G , Bayer K , Böge J , Hentschel U , Thomas T . (2019). Fluorescence in situ hybridization (FISH) and cell sorting of living bacteria. Scientific Reports, 9(1): 18618
|
| [9] |
Bellais S , Nehlich M , Ania M , Duquenoy A , Mazier W , van den Engh G , Baijer J , Treichel N S , Clavel T , Belotserkovsky I . et al. (2022). Species-targeted sorting and cultivation of commensal bacteria from the gut microbiome using flow cytometry under anaerobic conditions. Microbiome, 10(1): 24
|
| [10] |
Berg J . (2018). Revolutionary technologies. Science, 361(6405): 827
|
| [11] |
Bollmann A , Lewis K , Epstein S S . (2007). Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Applied and Environmental Microbiology, 73(20): 6386–6390
|
| [12] |
Bonner W A , Hulett H R , Sweet R G , Herzenberg L A . (1972). Fluorescence activated cell sorting. Review of Scientific Instruments, 43(3): 404–409
|
| [13] |
Buil A , Brown A A , Lappalainen T , Viñuela A , Davies M N , Zheng H F , Richards J B , Glass D , Small K S , Durbin R . et al. (2015). Gene-gene and gene-environment interactions detected by transcriptome sequence analysis in twins. Nature Genetics, 47(1): 88–91
|
| [14] |
Cammarota G , Ianiro G , Ahern A , Carbone C , Temko A , Claesson M J , Gasbarrini A , Tortora G . (2020). Gut microbiome, big data and machine learning to promote precision medicine for cancer. Nature Reviews Gastroenterology & Hepatology, 17(10): 635–648
|
| [15] |
Castelle C J , Banfield J F . (2018). Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell, 172(6): 1181–1197
|
| [16] |
Chaudhary D K , Khulan A , Kim J . (2019). Development of a novel cultivation technique for uncultured soil bacteria. Scientific Reports, 9(1): 6666
|
| [17] |
Chirania P , Holwerda E K , Giannone R J , Liang X Y , Poudel S , Ellis J C , Bomble Y J , Hettich R L , Lynd L R . (2022). Metaproteomics reveals enzymatic strategies deployed by anaerobic microbiomes to maintain lignocellulose deconstruction at high solids. Nature Communications, 13(1): 3870
|
| [18] |
Cross K L , Campbell J H , Balachandran M , Campbell A G , Cooper C J , Griffen A , Heaton M , Joshi S , Klingeman D , Leys E . et al. (2019). Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nature Biotechnology, 37(11): 1314–1321
|
| [19] |
Dall’Agnese A , Young R . (2023). Regulatory architecture of cell identity genes and housekeeping genes. Trends in Cell Biology, 33(12): 1010–1013
|
| [20] |
Diakite A , Dubourg G , Dione N , Afouda P , Bellali S , Ngom I I , Valles C , Tall M L , Lagier J C , Raoult D . (2020). Optimization and standardization of the culturomics technique for human microbiome exploration. Scientific Reports, 10(1): 9674
|
| [21] |
Donati SMattanovich MHjort PJacobsen S A BBlomquist S DMangaard DGurdo NPastor F PMaury JHanke R, et al. (2023). An automated workflow for multi-omics screening of microbial model organisms. npj Systems Biology and Applications, 9(1): 14
|
| [22] |
Edgar R C , Taylor B , Lin V , Altman T , Barbera P , Meleshko D , Lohr D , Novakovsky G , Buchfink B , Al-Shayeb B . et al. (2022). Petabase-scale sequence alignment catalyses viral discovery. Nature, 602(7895): 142–147
|
| [23] |
Edlich A , Magdanz V , Rasch D , Demming S , Aliasghar Zadeh S , Segura R , Kähler C , Radespiel R , Büttgenbach S , Franco-Lara E . et al. (2010). Microfluidic reactor for continuous cultivation of Saccharomyces cerevisiae. Biotechnology Progress, 26(5): 1259–1270
|
| [24] |
Fan Y , Pedersen O . (2021). Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology, 19(1): 55–71
|
| [25] |
Ferrari B C , Winsley T , Gillings M , Binnerup S . (2008). Cultivating previously uncultured soil bacteria using a soil substrate membrane system. Nature Protocols, 3(8): 1261–1269
|
| [26] |
Flemming H C , Wuertz S . (2019). Bacteria and archaea on Earth and their abundance in biofilms. Nature Reviews Microbiology, 17(4): 247–260
|
| [27] |
Fu A Y , Spence C , Scherer A , Arnold F H , Quake S R . (1999). A microfabricated fluorescence-activated cell sorter. Nature Biotechnology, 17(11): 1109–1111
|
| [28] |
Gibson D G , Glass J I , Lartigue C , Noskov V N , Chuang R Y , Algire M A , Benders G A , Montague M G , Ma L , Moodie M M . et al. (2010). Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329(5987): 52–56
|
| [29] |
Gutleben J , Chaib De Mares M , van Elsas J D , Smidt H , Overmann J , Sipkema D . (2018). The multi-omics promise in context: from sequence to microbial isolate. Critical Reviews in Microbiology, 44(2): 212–229
|
| [30] |
Hartmann M , Six J . (2022). Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment, 4: 4–18
|
| [31] |
Heffernan J K , Lai C Y , Gonzalez-Garcia R A , Keld Nielsen L , Guo J H , Marcellin E . (2023). Biogas upgrading using Clostridium autoethanogenum for value-added products. Chemical Engineering Journal, 452: 138950
|
| [32] |
Hoarfrost A , Aptekmann A , Farfañuk G , Bromberg Y . (2022). Deep learning of a bacterial and archaeal universal language of life enables transfer learning and illuminates microbial dark matter. Nature Communications, 13(1): 2606
|
| [33] |
Huang Y M , Sheth R U , Zhao S J , Cohen L A , Dabaghi K , Moody T , Sun Y W , Ricaurte D , Richardson M , Velez-Cortes F . et al. (2023). High-throughput microbial culturomics using automation and machine learning. Nature Biotechnology, 41(10): 1424–1433
|
| [34] |
Huber R , Burggraf S , Mayer T , Barns S M , Rossnagel P , Stetter K O . (1995). Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature, 376(6535): 57–58
|
| [35] |
Hug L A , Baker B J , Anantharaman K , Brown C T , Probst A J , Castelle C J , Butterfield C N , Hernsdorf A W , Amano Y , Ise K . et al. (2016). A new view of the tree of life. Nature Microbiology, 1: 16048
|
| [36] |
Hungate R E . (1969). Chapter IV a roll tube method for cultivation of strict anaerobes. Methods in Microbiology, 3: 117–132
|
| [37] |
Hutchison III C A , Chuang R Y , Noskov V N , Assad-Garcia N , Deerinck T J , Ellisman M H , Gill J , Kannan K , Karas B J , Ma L . et al. (2016). Design and synthesis of a minimal bacterial genome. Science, 351(6280): aad6253
|
| [38] |
Ilango S , Antony U. . (2021). Probiotic microorganisms from non-dairy traditional fermented foods. Trends in Food Science & Technology, 118: 617–638
|
| [39] |
Imachi H , Aoi K , Tasumi E , Saito Y , Yamanaka Y , Saito Y , Yamaguchi T , Tomaru H , Takeuchi R , Morono Y . et al. (2011). Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor. The ISME Journal, 5(12): 1913–1925
|
| [40] |
Imachi H , Nobu M K , Miyazaki M , Tasumi E , Saito Y , Sakai S , Ogawara M , Ohashi A , Takai K . (2022). Cultivation of previously uncultured microorganisms with a continuous-flow down-flow hanging sponge (DHS) bioreactor, using a syntrophic archaeon culture obtained from deep marine sediment as a case study. Nature Protocols, 17(12): 2784–2814
|
| [41] |
Ingham C J , Sprenkels A , Bomer J , Molenaar D , van den Berg A , van Hylckama Vlieg J E T , de Vos W M . (2007). The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 104(46): 18217–18222
|
| [42] |
Jahn L J , Rekdal V M , Sommer M O A . (2023). Microbial foods for improving human and planetary health. Cell, 186(3): 469–478
|
| [43] |
Jiao J Y , Liu L , Hua Z S , Fang B Z , Zhou E M , Salam N , Hedlund B P , Li W J . (2020). Microbial dark matter coming to light: challenges and opportunities. National Science Review, 8(3): nwaa280
|
| [44] |
Jing Y J , Mu C L , Wang H S , Shen J H , Zoetendal E G , Zhu W Y . (2022). Amino acid utilization allows intestinal dominance of Lactobacillus amylovorus. The ISME Journal, 16(11): 2491–2502
|
| [45] |
Jung D , Liu L W , He S . (2021a). Application of in situ cultivation in marine microbial resource mining. Marine Life Science & Technology, 3(2): 148–161
|
| [46] |
Jung D , Machida K , Nakao Y , Kindaichi T , Ohashi A , Aoi Y . (2021b). Triggering growth via growth initiation factors in nature: a putative mechanism for in situ cultivation of previously uncultivated microorganisms. Frontiers in Microbiology, 12: 537194
|
| [47] |
Kapinusova G , Lopez Marin M A , Uhlik O . (2023). Reaching unreachables: obstacles and successes of microbial cultivation and their reasons. Frontiers in Microbiology, 14: 1089630
|
| [48] |
Kim H , Jeon B S , Pandey A , Sang B I . (2018). New coculture system of Clostridium spp. and Megasphaera hexanoica using submerged hollow-fiber membrane bioreactors for caproic acid production. Bioresource Technology, 270: 498–503
|
| [49] |
King W L , Kaminsky L M , Richards S C , Bradley B A , Kaye J P , Bell T H . (2022). Farm-scale differentiation of active microbial colonizers. ISME Communications, 2(1): 39
|
| [50] |
Koch R . (1881). Methods for the study of pathogenic organisms. Mittheilungen aus dem Kaiserlichen Gesundheitsamte, 1: 1–48
|
| [51] |
Kost C , Patil K R , Friedman J , Garcia S L , Ralser M . (2023). Metabolic exchanges are ubiquitous in natural microbial communities. Nature Microbiology, 8(12): 2244–2252
|
| [52] |
Lagier J C , Dubourg G , Million M , Cadoret F , Bilen M , Fenollar F , Levasseur A , Rolain J M , Fournier P E , Raoult D . (2018). Culturing the human microbiota and culturomics. Nature Reviews Microbiology, 16(9): 540–550
|
| [53] |
Lambais M R , Crowley D E , Cury J C , Büll R C , Rodrigues R R . (2006). Bacterial diversity in tree canopies of the Atlantic forest. Science, 312(5782): 1917
|
| [54] |
Lee K S , Palatinszky M , Pereira F C , Nguyen J , Fernandez V I , Mueller A J , Menolascina F , Daims H , Berry D , Wagner M . et al. (2019). An automated Raman-based platform for the sorting of live cells by functional properties. Nature Microbiology, 4(6): 1035–1048
|
| [55] |
Lewis W H , Tahon G , Geesink P , Sousa D Z , Ettema T J G . (2021). Innovations to culturing the uncultured microbial majority. Nature Reviews Microbiology, 19(4): 225–240
|
| [56] |
Li S , Lian W H , Han J R , Ali M , Lin Z L , Liu Y H , Li L , Zhang D Y , Jiang X Z , Li W J . et al. (2023). Capturing the microbial dark matter in desert soils using culturomics-based metagenomics and high-resolution analysis. NPJ Biofilms and Microbiomes, 9(1): 67
|
| [57] |
Liu B , Wan Y Y , Chen E , Huang M Z , Chen X L , Ni H Y , He J . (2023). Sphingomonas caeni sp. nov., a phenolic acid-degrading bacterium isolated from activated sludge. Antonie van Leeuwenhoek, 116(7): 687–695
|
| [58] |
Liu S J , Moon C D , Zheng N , Huws S , Zhao S G , Wang J Q . (2022a). Opportunities and challenges of using metagenomic data to bring uncultured microbes into cultivation. Microbiome, 10(1): 76
|
| [59] |
Liu X , Li X , Wu N N , Luo Y , Zhang J J , Yu Z Q , Shen F . (2022b). Formation and parallel manipulation of gradient droplets on a self-partitioning SlipChip for phenotypic antimicrobial susceptibility testing. ACS Sensors, 7(7): 1977–1984
|
| [60] |
Locey K J , Lennon J T . (2016). Scaling laws predict global microbial diversity. Proceedings of the National Academy of Sciences of the United States of America, 113(21): 5970–5975
|
| [61] |
Lok C . (2015). Mining the microbial dark matter. Nature, 522(7556): 270–273
|
| [62] |
Ma L , Datta S S , Karymov M A , Pan Q C , Begolo S , Ismagilov R F . (2014). Individually addressable arrays of replica microbial cultures enabled by splitting SlipChips. Integrative Biology, 6(8): 796–805
|
| [63] |
MacIntyre L W , Charles M J , Haltli B A , Marchbank D H , Kerr R G . (2019). An Ichip-domesticated sponge bacterium produces an N-acyltyrosine bearing an α-methyl substituent. Organic Letters, 21(19): 7768–7771
|
| [64] |
Maghini D G , Dvorak M , Dahlen A , Roos M , Doyle B , Kuersten S , Bhatt A S . (2024). Quantifying bias introduced by sample collection in relative and absolute microbiome measurements. Nature Biotechnology, 42(2): 328–338
|
| [65] |
Marcy Y , Ouverney C , Bik E M , Lösekann T , Ivanova N , Martin H G , Szeto E , Platt D , Hugenholtz P , Relman D A . et al. (2007). Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proceedings of the National Academy of Sciences of the United States of America, 104(29): 11889–11894
|
| [66] |
Martínez-Pérez C , Greening C , Bay S K , Lappan R J , Zhao Z H , De Corte D , Hulbe C , Ohneiser C , Stevens C , Thomson B . et al. (2022). Phylogenetically and functionally diverse micro-organisms reside under the ross ice shelf. Nature Communi-cations, 13(1): 117
|
| [67] |
Martiny A C . (2019). High proportions of bacteria are culturable across major biomes. The ISME Journal, 13(8): 2125–2128
|
| [68] |
Martiny A C . (2020). The ‘1% culturability paradigm’ needs to be carefully defined. The ISME Journal, 14(1): 10–11
|
| [69] |
Masuda Y , Mise K , Xu Z X , Zhang Z C , Shiratori Y , Senoo K , Itoh H . (2024). Global soil metagenomics reveals distribution and predominance of Deltaproteobacteria in nitrogen-fixing micro-biome. Microbiome, 12(1): 95
|
| [70] |
McCully A L , Loop Yao M , Brower K K , Fordyce P M , Spormann A M . (2023). Double emulsions as a high-throughput enrichment and isolation platform for slower-growing microbes. ISME Communications, 3(1): 47
|
| [71] |
Molly K , Vande Woestyne M , Verstraete W . (1993). Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Applied Microbiology and Biotechnology, 39(2): 254–258
|
| [72] |
Nguyen T M , Seo C , Ji M , Paik M J , Myung S W , Kim J . (2018). Effective soil extraction method for cultivating previously uncultured soil bacteria. Applied and Environmental Micro-biology, 84(24): e01145–18
|
| [73] |
Nichols D , Cahoon N , Trakhtenberg E M , Pham L , Mehta A , Belanger A , Kanigan T , Lewis K , Epstein S S . (2010). Use of Ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Applied and Environmental Microbiology, 76(8): 2445–2450
|
| [74] |
Novick A , Szilard L . (1950). Description of the chemostat. Science, 112(2920): 715–716
|
| [75] |
Pachiadaki M G , Sintes E , Bergauer K , Brown J M , Record N R , Swan B K , Mathyer M E , Hallam S J , Lopez-Garcia P , Takaki Y . et al. (2017). Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science, 358(6366): 1046–1051
|
| [76] |
Paoli L , Ruscheweyh H J , Forneris C C , Hubrich F , Kautsar S , Bhushan A , Lotti A , Clayssen Q , Salazar G , Milanese A . et al. (2022). Biosynthetic potential of the global ocean microbiome. Nature, 607(7917): 111–118
|
| [77] |
Park J , Kerner A , Burns M A , Lin X N . (2011). Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS One, 6(2): e17019
|
| [78] |
Paul D , Pandey G , Pandey J , Jain R K . (2005). Accessing microbial diversity for bioremediation and environmental restoration. Trends in Biotechnology, 23(3): 135–142
|
| [79] |
Petri R J . (1887). A minor modification of the plating technique of Koch. Milestones in Microbiology, 1: 279–280
|
| [80] |
Puskeiler RKusterer AJohn G TWeuster-Botz D (2005). Miniature bioreactors for automated high-throughput bioprocess design (HTBD): reproducibility of parallel fed-batch cultivations with Escherichia coli. Biotechnology and Applied Biochemistry, 42(Pt 3): 227–235
|
| [81] |
Ramoneda J , Hoffert M , Stallard-Olivera E , Casamayor E O , Fierer N . (2024). Leveraging genomic information to predict environ-mental preferences of bacteria. The ISME Journal, 18(1): wrae195
|
| [82] |
Rehman A , Heinsen F A , Koenen M E , Venema K , Knecht H , Hellmig S , Schreiber S , Ott S J . (2012). Effects of probiotics and antibiotics on the intestinal homeostasis in a computer controlled model of the large intestine. BMC Microbiology, 12: 47
|
| [83] |
Rinke C , Schwientek P , Sczyrba A , Ivanova N N , Anderson I J , Cheng J F , Darling A , Malfatti S , Swan B K , Gies E A . et al. (2013). Insights into the phylogeny and coding potential of microbial dark matter. Nature, 499(7459): 431–437
|
| [84] |
Rygaard A M , Thøgersen M S , Nielsen K F , Gram L , Bentzon-Tilia M . (2017). Effects of gelling agent and extracellular signaling molecules on the culturability of marine bacteria. Applied and Environmental Microbiology, 83(9): e00243–17
|
| [85] |
Sánchez-Vargas J , Rivera-Hernández T , Ortega-de-la-Rosa N D , Hernández-Olivares D , López-Macías C . (2023). From shake flask to bioreactor: production of Salmonella Typhi porins as a typhoid vaccine candidate. Biochemical Engineering Journal, 200: 109091
|
| [86] |
Sefrji F O , Marasco R , Michoud G , Seferji K A , Merlino G , Daffonchio D . (2022). Insights into the cultivable bacterial fraction of sediments from the red sea mangroves and physiological, chemotaxonomic, and genomic characterization of Mangrovibacillus cuniculi gen. nov., sp. nov., a novel member of the Bacillaceae family. Frontiers in Microbiology, 13: 777986
|
| [87] |
Shu W S , Huang L N . (2022). Microbial diversity in extreme environments. Nature Reviews Microbiology, 20(4): 219–235
|
| [88] |
Singh B K , Trivedi P , Egidi E , Macdonald C A , Delgado-Baquerizo M . (2020). Crop microbiome and sustainable agriculture. Nature Reviews Microbiology, 18(11): 601–602
|
| [89] |
Sinha A K , Laursen M F , Licht T R . (2025). Regulation of microbial gene expression: the key to understanding our gut microbiome. Trends in Microbiology, 33(4): 397–407
|
| [90] |
Spang A , Caceres E F , Ettema T J G . (2017). Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science, 357(6351): eaaf3883
|
| [91] |
Steen A D , Crits-Christoph A , Carini P , DeAngelis K M , Fierer N , Lloyd K G , Cameron Thrash J . (2019). High proportions of bacteria and archaea across most biomes remain uncultured. The ISME Journal, 13(12): 3126–3130
|
| [92] |
Sun HBjerketorp JLevenfors J JSchnürer A (2020). Isolation of antibiotic-resistant bacteria in biogas digestate and their susceptibility to antibiotics. Environmental Pollution, 266(Pt 1): 115265
|
| [93] |
Szotkowski M , Holub J , Šimanský S , Hubačová K , Sikorová P , Mariničová V , Němcová A , Márová I . (2021). Bioreactor co-cultivation of high lipid and carotenoid producing yeast Rhodotorula kratochvilovae and several microalgae under stress. Microorganisms, 9(6): 1160
|
| [94] |
Terekhov S S , Smirnov I V , Stepanova A V , Bobik T V , Mokrushina Y A , Ponomarenko N A , Belogurov A A Jr , Rubtsova M P , Kartseva O V , Gomzikova M O . et al. (2017). Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 114(10): 2550–2555
|
| [95] |
Torsvik V , Øvreås L . (2002). Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology, 5(3): 240–245
|
| [96] |
Verwei M , Minekus M , Zeijdner E , Schilderink R , Havenaar R . (2016). Evaluation of two dynamic in vitro models simulating fasted and fed state conditions in the upper gastrointestinal tract (TIM-1 and tiny-TIM) for investigating the bioaccessibility of pharmaceutical compounds from oral dosage forms. International Journal of Pharmaceutics, 498(1−2): 178–186
|
| [97] |
Vigneron A , Vincent W F , Lovejoy C . (2023). Discovery of a novel bacterial class with the capacity to drive sulfur cycling and microbiome structure in a paleo-ocean analog. ISME Communications, 3(1): 82
|
| [98] |
Wang S Q , Chng K R , Wilm A , Zhao S Y , Yang K L , Nagarajan N , He J Z . (2014). Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls. Proceedings of the National Academy of Sciences of the United States of America, 111(33): 12103–12108
|
| [99] |
Wang W , Kang S J , Vikesland P J . (2021). Surface-enhanced Raman spectroscopy of bacterial metabolites for bacterial growth monitoring and diagnosis of viral infection. Environmental Science & Technology, 55(13): 9119–9128
|
| [100] |
Ward D M , Weller R , Bateson M M . (1990). 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature, 345(6270): 63–65
|
| [101] |
Wu K J , Zhou L , Tahon G , Liu L Y , Li J , Zhang J C , Zheng F F , Deng C P , Han W H , Bai L P . et al. (2024). Isolation of a methyl-reducing methanogen outside the Euryarchaeota. Nature, 632(8027): 1124–1130
|
| [102] |
Wu Y C , Fu C X , Peacock C L , Sørensen S J , Redmile-Gordon M A , Xiao K Q , Gao C H , Liu J , Huang Q Y , Li Z X . et al. (2023). Cooperative microbial interactions drive spatial segregation in porous environments. Nature Communications, 14(1): 4226
|
| [103] |
Yadav K K , Nimonkar Y , Poddar B J , Kovale L , Sagar I , Shouche Y , Purohit H J , Khardenavis A A , Green S J , Prakash O . (2022). Two-dimensional cell separation: a high-throughput approach to enhance the culturability of bacterial cells from environmental samples. Microbiology Spectrum, 10(3): e0000722
|
| [104] |
Yang Y , Jin H J , Li X Y , Yan J . (2023). Biohydrogenation of 1,3-butadiene to 1-butene under acetogenic conditions by Aceto-bacterium wieringae. Environmental Science & Technology, 57(4): 1637–1645
|
| [105] |
Yu T T , Wu W C , Liang W Y , Wang Y Z , Hou J L , Chen Y R , Elvert M , Hinrichs K U , Wang F P . (2023). Anaerobic degradation of organic carbon supports uncultured microbial populations in estuarine sediments. Microbiome, 11(1): 81
|
| [106] |
Zhang J Z , Dou T , Shen Y , Wang W R , Wang L K , Wu X H , Zhang M , Wang D S , Yu P F. . (2024). Application of nanozymes in problematic biofilm control: progress, challenges and prospects. Frontiers of Environmental Science & Engineering, 18(11): 136
|
| [107] |
Zhang X Z , Jiang X Y , Hao Z H , Qu K M . (2019). Advances in online methods for monitoring microbial growth. Biosensors and Bioelectronics, 126: 433–447
|
| [108] |
Zhao B Y , Chen W , Chen G , Zhao F , Xiao Y . (2025). Substrate competition over 320 days maintains extracellular electron transfer and parallel genomic evolution in Shewanella oneidensis MR-1. Frontiers of Environmental Science & Engineering, 19(12): 166
|
| [109] |
Zhou Z C , Tran P Q , Breister A M , Liu Y , Kieft K , Cowley E S , Karaoz U , Anantharaman K . (2022). METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome, 10(1): 33
|
RIGHTS & PERMISSIONS
Higher Education Press 2026