Passive samplers for detecting viruses in aquatic environments: progress and future perspectives

Chen Gao , Wanting Xu , Zeqiong Xu , Zhen Chen , Meng Hu , Kuankuan Zhang , Ibrahim Ahmed Hamza , Kang Mao , Hua Zhang

ENG. Environ. ›› 2026, Vol. 20 ›› Issue (3) : 45

PDF (2711KB)
ENG. Environ. ›› 2026, Vol. 20 ›› Issue (3) :45 DOI: 10.1007/s11783-026-2145-5
REVIEW ARTICLE

Passive samplers for detecting viruses in aquatic environments: progress and future perspectives

Author information +
History +
PDF (2711KB)

Abstract

Viruses in aquatic environments pose a significant public health risk. Therefore, efficient virus sampling and accurate detection are crucial for the timely assessment of contamination and the interruption of transmission chains. Passive sampling overcomes traditional active sampling drawbacks through its low cost, high efficiency, sensitivity, and long-term monitoring abilities. Passive sampling has been successfully applied in various aquatic environments, including wastewater, surface water, groundwater, and seawater. In this work, first, we describe application scenarios for passive samplers and analyse the adsorption effects of different adsorbent materials, such as cotton-based substrates and negatively charged filter membranes. Second, we present two major detection methods, namely, polymerase chain reaction (PCR) and gene sequencing, and we review the applications of the isothermal amplification of nucleic acid and the gene editing-clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas technique. Last, we consider the potential future integration of microfluidic and paper-based devices with these molecular tools to provide references for onsite rapid detection on the basis of passive sampling, thereby increasing the efficiency and practicality of this approach in environmental and public health monitoring.

Graphical abstract

Keywords

Passive sampler / Viruses / Adsorbent materials / Aquatic environment / Wastewater-based surveillance

Highlight

● Passive sampling techniques are widely used for monitoring viruses in wastewater.

● Cotton-based and electronegative membranes are the main adsorption materials.

● RT-qPCR and gene sequencing are the most common virus detection methods.

● Portable devices have potential for onsite detection of passively collected samples

Cite this article

Download citation ▾
Chen Gao, Wanting Xu, Zeqiong Xu, Zhen Chen, Meng Hu, Kuankuan Zhang, Ibrahim Ahmed Hamza, Kang Mao, Hua Zhang. Passive samplers for detecting viruses in aquatic environments: progress and future perspectives. ENG. Environ., 2026, 20(3): 45 DOI:10.1007/s11783-026-2145-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aguayo-Acosta A , Jiménez-Rodríguez M G , Silva-Lance F , Oyervides-Muñoz M A , Armenta-Castro A , de la Rosa O , Ovalle-Carcaño A , Melchor-Martínez E M , Aghalari Z , Parra-Saldívar R . et al. (2023). Passive sampler technology for viral detection in wastewater-based surveillance: current state and nanomaterial opportunities. Viruses, 15(9): 1941

[2]

Alamin M , Oladipo P , Hartrick J , Islam N , Bahmani A , Turner C L , Shuster W , Ram J L . (2024). Improved passive sampling methods for wastewater to enable more sensitive detection of SARS-CoV-2 and its variants. Science of the Total Environment, 950: 175044

[3]

Al-Hazmi H E , Shokrani H , Shokrani A , Jabbour K , Abida O , Mousavi Khadem S S , Habibzadeh S , Sonawane S H , Saeb M R , Bonilla-Petriciolet A . et al. (2022). Recent advances in aqueous virus removal technologies. Chemosphere, 305: 135441

[4]

Amato E D , Covaci A , Town R M , Hereijgers J , Bellekens B , Giacometti V , Breugelmans T , Weyn M , Dardenne F , Bervoets L . et al. (2018). A novel active-passive sampling approach for measuring time-averaged concentrations of pollutants in water. Chemosphere, 209: 363–372

[5]

Baker D J , Aydin A , Le-Viet T , Kay G L , Rudder S , de Oliveira Martins L , Tedim A P , Kolyva A , Diaz M , Alikhan N F . et al. (2021). CoronaHiT: high-throughput sequencing of SARS-CoV-2 genomes. Genome Medicine, 13(1): 21

[6]

Bhat A I , Aman R , Mahfouz M . (2022). Onsite detection of plant viruses using isothermal amplification assays. Plant Biotechnology Journal, 20(10): 1859–1873

[7]

Bibby KCrank KGreaves JLi XWu Z YHamza I AStachler E (2019). Metagenomics and the development of viral water quality tools. npj Clean Water, 2(1): 9

[8]

Bivins A , Kaya D , Ahmed W , Brown J , Butler C , Greaves J , Leal R , Maas K , Rao G , Sherchan S . et al. (2022). Passive sampling to scale wastewater surveillance of infectious disease: lessons learned from COVID-19. Science of the Total Environment, 835: 155347

[9]

Breulmann M , Kallies R , Bernhard K , Gasch A , Müller R A , Harms H , Chatzinotas A , van Afferden M . (2023). A long-term passive sampling approach for wastewater-based monitoring of SARS-CoV-2 in Leipzig, Germany. Science of the Total Environment, 887: 164143

[10]

Cañas Cañas R , López-Peñalver R S , Casaña Mohedo J , Benavent Cervera J V , Fernández Garrido J , Juárez Vela R , Carcelén A P , García-Algar Ó , Caballero V G , Andreu-Fernández V . (2025). Forecasting SARS-CoV-2 outbreak through wastewater analysis: a success in wastewater-based epidemiology. Frontiers of Environmental Science & Engineering, 19(1): 12

[11]

Cao H M , Bu Q W , Li Q S , Yang L , Tang J F , Yu G . (2024). Evaluation of the DGT passive samplers for integrating fluctuating concentrations of pharmaceuticals in surface water. Science of the Total Environment, 926: 172067

[12]

Cao H R , Mao K , Ran F , Xu P Q , Zhao Y R , Zhang X Y , Zhou H R , Yang Z G , Zhang H , Jiang G B . (2022). Paper device combining CRISPR/Cas12a and reverse-transcription loop-mediated iso-thermal amplification for SARS-CoV-2 detection in wastewater. Environmental Science & Technology, 56(18): 13245–13253

[13]

Cha G , Graham K E , Zhu K J , Rao G , Lindner B G , Kocaman K , Woo S , D’amico I , Bingham L R , Fischer J M . et al. (2023). Parallel deployment of passive and composite samplers for surveillance and variant profiling of SARS-CoV-2 in sewage. Science of the Total Environment, 866: 161101

[14]

Cha G , Zhu K J , Fischer J M , Flores C I , Brown J , Pinto A , Hatt J K , Konstantinidis K T , Graham K E . (2024). Metagenomic evaluation of the performance of passive Moore swabs for sewage monitoring relative to composite sampling over time resolved deployments. Water Research, 253: 121269

[15]

Chen C E , Zhang H , Jones K C . (2012). A novel passive water sampler for in situ sampling of antibiotics. Journal of Environmental Monitoring, 14(6): 1523–1530

[16]

Chen H , Chen Z H , Hu L W , Tang F Z , Kuang D , Han J Y , Wang Y , Zhang X , Cheng Y , Meng J T . et al. (2024). Application of wastewater-based epidemiological monitoring of COVID-19 for disease surveillance in the city. Frontiers of Environmental Science & Engineering, 18(8): 98

[17]

Chen L , Deng Y , Dong S K , Wang H , Li P , Zhang H Y , Chu W H . (2021). The occurrence and control of waterborne viruses in drinking water treatment: a review. Chemosphere, 281: 130728

[18]

de la Rosa O , Aguayo-Acosta A , Valenzuela-Amaro H M , Meléndez-Sánchez E R , Sosa-Hernández J E , Parra-Saldívar R . (2024). Development of biomaterial composite hydrogel as a passive sampler with potential application in wastewater-based surveillance. Heliyon, 10(17): e37014

[19]

Deere D , Ryan U . (2022). Current assumptions for quantitative microbial risk assessment (QMRA) of Norovirus contamination of drinking water catchments due to recreational activities: an update. Journal of Water and Health, 20(10): 1543–1557

[20]

Deng Z J , Liao W J , Bu L Y , Li J H , Li J , Wang L F , Yuan A J , Xie W J , Wang Y W , Peng H Y . (2024). Advancements in CRISPR-diagnostic techniques for rapid on-site monitoring of environ-mental virus. TrAC Trends in Analytical Chemistry, 181: 118046

[21]

do Nascimento M C A , Smith W J M , Liu Y W , Simpson S L , Bivins A , Rahal P , Ahmed W . (2024). Development and comparative assessment of RT-qPCR and duplex RT-LAMP assays for the monitoring of Aichi virus a (AiV-A) in untreated wastewater samples. Science of the Total Environment, 952: 175440

[22]

Farkas K , Kevill J L , Adwan L , Garcia-Delgado A , Dzay R , Grimsley J M S , Lambert-Slosarska K , Wade M J , Williams R C , Martin J . et al. (2024). Near-source passive sampling for monitoring viral outbreaks within a university residential setting. Epidemiology & Infection, 152: e31

[23]

Farkas K , Pântea I , Woodhall N , Williams D , Lambert-Slosarska K , Williams R C , Grimsley J M S , Singer A C , Jones D L . (2023). Diurnal changes in pathogenic and indicator virus concentrations in wastewater. Environmental Science and Pollution Research, 30(59): 123785–123795

[24]

Gayet R V , De Puig H , English M A , Soenksen L R , Nguyen P Q , Mao A S , Angenent-Mari N M , Collins J J . (2020). Creating CRISPR-responsive smart materials for diagnostics and program-mable cargo release. Nature Protocols, 15(9): 3030–3063

[25]

Geissler M , Mayer R , Helm B , Dumke R . (2024). Food and environmental virology: use of passive sampling to characterize the presence of SARS-CoV-2 and other viruses in wastewater. Food and Environmental Virology, 16(1): 25–37

[26]

Gibeaux C , Delafosse D , Reinert L , Fontvieille D , Duclaux L . (2025). Chitosan hydrogels as passive samplers for the analysis of norovirus in various types of water. Journal of Water Process Engineering, 76: 108032

[27]

Gibson K E . (2014). Viral pathogens in water: occurrence, public health impact, and available control strategies. Current Opinion in Virology, 4: 50–57

[28]

Gouthro M THayes E KPrest TGagnon G A (2025). Detection of avian influenza virus in surface waters using passive samplers. npj Viruses, 3(1): 57

[29]

Habtewold J , McCarthy D , McBean E , Law I , Goodridge L , Habash M , Murphy H M . (2022). Passive sampling, a practical method for wastewater-based surveillance of SARS-CoV-2. Environmental Research, 204: 112058

[30]

Hamza I A , Bibby K . (2019). Critical issues in application of molecular methods to environmental virology. Journal of Virological Methods, 266: 11–24

[31]

Hamza I A , Leifels M . (2024). Assessment of PCR inhibitor removal methods to monitor viruses in environmental water samples: DAX-8 outperforms competitors. Water, Air, & Soil Pollution, 235(1): 20

[32]

Haskell B R , Dhiyebi H A , Srikanthan N , Bragg L M , Parker W J , Giesy J P , Servos M R . (2024). Implementing an adaptive, two-tiered SARS-CoV-2 wastewater surveillance program on a university campus using passive sampling. Science of the Total Environment, 912: 168998

[33]

Hayes E K , Gagnon G A . (2024). From capture to detection: a critical review of passive sampling techniques for pathogen surveillance in water and wastewater. Water Research, 261: 122024

[34]

Hayes E K , Gouthro M T , Gagnon G A . (2025). Isothermal amplification as a water safety tool: rapid detection of viruses in surface water and wastewater. Environmental Science: Water Research & Technology, 11(9): 2141–2151

[35]

Hayes E K , Gouthro M T , LeBlanc J J , Gagnon G A . (2023). Simultaneous detection of SARS-CoV-2, influenza A, respiratory syncytial virus, and measles in wastewater by multiplex RT-qPCR. Science of the Total Environment, 889: 164261

[36]

Hayes E K , Stoddart A K , Gagnon G A . (2022). Adsorption of SARS-CoV-2 onto granular activated carbon (GAC) in wastewater: implications for improvements in passive sampling. Science of the Total Environment, 847: 157548

[37]

Hayes E K , Sweeney C L , Anderson L E , Li B , Erjavec G B , Gouthro M T , Krkosek W H , Stoddart A K , Gagnon G A . (2021). A novel passive sampling approach for SARS-CoV-2 in wastewater in a Canadian province with low prevalence of COVID-19. Environmental Science: Water Research & Technology, 7(9): 1576–1586

[38]

Jain N , Hamilton D , Mital S , Ilias A , Brinkmann M , McPhedran K . (2022). Long-term passive wastewater surveillance of SARS-CoV-2 for seven university dormitories in comparison to municipal surveillance. Science of the Total Environment, 852: 158421

[39]

Jones D L , Grimsley J M S , Kevill J L , Williams R , Pellett C , Lambert-Slosarska K , Singer A C , Williams G B , Bargiela R , Brown R W . et al. (2022). Critical evaluation of different passive sampler materials and approaches for the recovery of SARS-CoV-2, faecal-indicator viruses and bacteria from wastewater. Water, 14(21): 3568

[40]

Kabir M P , Plaza-Diaz J , Mercier É , Wan S , Hegazy N , Wong C , Addo F , Renouf E , Lawal O U , Goodridge L . et al. (2025). Passive sampling for genomic surveillance of SARS-CoV-2 in wastewater resource recovery facility: insights for pandemic preparedness. Water Research, 285: 124071

[41]

Karamati N. E , Law I , Weese J S , McCarthy D T , Murphy H M . (2024). Passive sampling of microbes in various water sources: a systematic review. Water Research, 266: 122284

[42]

Kevill J L , Lambert-Slosarska K , Pellett C , Woodhall N , Richardson-O’Neill I , Pântea I , Alex-Sanders N , Farkas K , Jones D L . (2022). Assessment of two types of passive sampler for the efficient recovery of SARS-CoV-2 and other viruses from wastewater. Science of the Total Environment, 838: 156580

[43]

Kitajima M , Murakami M , Ando H , Kadoya S S , Iwamoto R , Kuroita T , Yamaguchi K , Kobayashi H , Okabe S , Katayama H . et al. (2025). Quantitative association of SARS-CoV-2 in wastewater and clinically confirmed cases in different areas of the Tokyo 2020 Olympic and Paralympic Village. Science of the Total Environment, 960: 178209

[44]

Kohoutek J , Maršálek B , Bláha L . (2010). Evaluation of the novel passive sampler for cyanobacterial toxins microcystins under various conditions including field sampling. Analytical and Bioanalytical Chemistry, 397(2): 823–828

[45]

Kuang X X , Liu J G , Scanlon B R , Jiao J J , Jasechko S , Lancia M , Biskaborn B K , Wada Y , Li H L , Zeng Z Z . et al. (2024). The changing nature of groundwater in the global water cycle. Science, 383(6686): eadf0630

[46]

Kumthip K , Khamrin P , Ushijima H , Maneekarn N . (2023). Detection of six different human enteric viruses contaminating environmental water in Chiang Mai, Thailand. Microbiology Spectrum, 11(1): e0351222

[47]

Kweinor Tetteh E , Opoku Amankwa M , Armah E K , Rathilal S . (2020). Fate of COVID-19 occurrences in wastewater systems: emerging detection and treatment technologies: a review. Water, 12(10): 2680

[48]

Li G , Guo K , Chen Y W , Li X , Yu X , Hu D . (2025a). Potential microbial risks and their control in residential secondary water supply systems in China: a review. Frontiers of Environmental Science & Engineering, 19(7): 92

[49]

Li H , Li H F , Du X , Liu Z Y , He F L , Du X Y , Wang Z G , Zhu C L , Fu S Z . (2025b). Two-step wastewater surveillance reveals co-circulation of respiratory pathogens during the 2023–2024 influenza season in a low-resource setting. Frontiers of Environmental Science & Engineering, 19(5): 61

[50]

Li J Y , Ahmed W , Metcalfe S , Smith W J M , Tscharke B , Lynch P , Sherman P , Vo P H N , Kaserzon S L , Simpson S L . et al. (2022a). Monitoring of SARS-CoV-2 in sewersheds with low COVID-19 cases using a passive sampling technique. Water Research, 218: 118481

[51]

Li J Y , Verhagen R , Ahmed W , Metcalfe S , Thai P K , Kaserzon S L , Smith W J M , Schang C , Simpson S L , Thomas K V . et al. (2022b). In situ calibration of passive samplers for viruses in wastewater. ACS ES&T Water, 2(11): 1881–1890

[52]

Liang H , Ning G B , Mao K , Zhu H M , Ma D , Zhou F Q , Li J , Huang Y F , Yang J C , Zhao H . et al. (2024). Bifunctional NiFe-LDH@AgCit nanocomposite-based immunosensor for electrochemical and colorimetric detection of SARS-CoV-2. Microchemical Journal, 207: 111817

[53]

Liao X B , Liu X Y , He Y Y , Tang X P , Xia R J J , Huang Y J , Li W H , Zou J , Zhou Z M , Zhuang M Z. . (2024). Alternate disinfection approaches or raise disinfectant dosages for sewage treatment plants to address the COVID-19 pandemic? From disinfection efficiency, DBP formation, and toxicity perspectives. Frontiers of Environmental Science & Engineering, 18(9): 115

[54]

Lin H S , Yu W Z , A. Sabet K , Bogumil M , Zhao Y C , Hambalek J , Lin S Y , Chandrasekaran S , Garner O , Di Carlo D . et al. (2022). Ferrobotic swarms enable accessible and adaptable automated viral testing. Nature, 611(7936): 570–577

[55]

Liu H Y , Yin H , Xiu L S , Wu W Y , Hu Q Q , Xia Y C , Garcia B , Shifa S , Chen H , Li M . et al. (2025). One-pot isothermal nucleic acid amplification assisted CRISPR/Cas detection technology: challenges, strategies, and perspectives. Advanced Science, 12(37): e06716

[56]

Liu S N , Li Z H , Shen Y , Jia S Y , Liu P , Zhang X X . (2024). Prevalence of class 1 integron and its gene cassettes carrying antibiotic resistance genes in drinking water treatment and distribution systems. Frontiers of Environmental Science & Engineering, 18(10): 126

[57]

Liu X , Zhang R L , Cheng H , Khorram M S , Zhao S Z , Tham T T , Tran T M , Minh T B , Jiang B , Jin B . et al. (2021). Field evaluation of diffusive gradients in thin-film passive samplers for wastewater-based epidemiology. Science of the Total Environ-ment, 773: 145480

[58]

Malhotra B , Swamy M A , Reddy P V J , Kumar N , Tiwari J K . (2016). Evaluation of custom multiplex real - time RT - PCR in comparison to fast - track diagnostics respiratory 21 pathogens kit for detection of multiple respiratory viruses. Virology Journal, 13: 91

[59]

Mangwana N , Archer E , Muller C J F , Preiser W , Wolfaardt G , Kasprzyk-Hordern B , Carstens A , Brocker L , Webster C , Mccarthy D . et al. (2022). Sewage surveillance of SARS-CoV-2 at student campus residences in the Western Cape, South Africa. Science of the Total Environment, 851: 158028

[60]

Mao K , Min X C , Zhang H , Zhang K K , Cao H R , Guo Y K , Yang Z G . (2020a). Paper-based microfluidics for rapid diagnostics and drug delivery. Journal of Controlled Release, 322: 187–199

[61]

Mao K , Zhang H , Pan Y W , Yang Z G . (2021). Biosensors for wastewater-based epidemiology for monitoring public health. Water Research, 191: 116787

[62]

Mao K , Zhang H , Yang Z G . (2020b). An integrated biosensor system with mobile health and wastewater-based epidemiology (iBMW) for COVID-19 pandemic. Biosensors and Bioelectronics, 169: 112617

[63]

Mao K , Zhang H , Yang Z G . (2020c). Can a paper-based device trace COVID-19 sources with wastewater-based epidemiology?. Environmental Science & Technology, 54(7): 3733–3735

[64]

Mao K , Zhang K K , Du W , Ali W , Feng X B , Zhang H . (2020d). The potential of wastewater-based epidemiology as surveillance and early warning of infectious disease outbreaks. Current Opinion in Environmental Science & Health, 17: 1–7

[65]

Mechelke J , Vermeirssen E L M , Hollender J . (2019). Passive sampling of organic contaminants across the water-sediment interface of an urban stream. Water Research, 165: 114966

[66]

Mejías-Molina C , Estarlich-Landajo I , Martínez-Puchol S , Bofill-Mas S , Rusiñol M . (2024). Exploring waterborne viruses in groundwater: quantification and Virome characterization via passive sampling and targeted enrichment sequencing. Water Research, 266: 122305

[67]

Mejías-Molina C , Pico-Tomàs A , Beltran-Rubinat A , Martínez-Puchol S , Corominas L , Rusiñol M , Bofill-Mas S. . (2023). Effectiveness of passive sampling for the detection and genetic characterization of human viruses in wastewater. Environmental Science: Water Research & Technology, 9(4): 1195–1204

[68]

Miao X C , Liu C X , Liu M K , Han X , Zhu L L , Bai X H . (2022). The role of pipe biofilms on dissemination of viral pathogens and virulence factor genes in a full-scale drinking water supply system. Journal of Hazardous Materials, 432: 128694

[69]

Milrot E , Makdasi E , Politi B , Israely T , Laskar O . (2020). A cell-based capture assay for rapid virus detection. Viruses, 12(10): 1165

[70]

Miura T , Kadoya S S , Miura Y , Takino H , Akiba M , Sano D , Masuda T . (2024). Pepper mild mottle virus intended for use as a process indicator for drinking water treatment: present forms and quantitative relations to norovirus and rotavirus in surface water. Water Research, 257: 121713

[71]

Nishat S , Jafry A T , Martinez A W , Awan F R . (2021). Paper-based microfluidics: simplified fabrication and assay methods. Sensors and Actuators B: Chemical, 336: 129681

[72]

Panzarin V , Crimaudo M , Bonfante F , Marciano S , Berto P , Bofill-Mas S , Rusiñol M , Mazzetto E , Bortolami A , Fornasiero D . et al. (2025). Exploring the use of passive samplers for the surveillance of avian influenza viruses in wetlands: a laboratory and field validation study. Food and Environmental Virology, 17(3): 37

[73]

Park J W . (2022). Principles and applications of loop-mediated isothermal amplification to point-of-care tests. Biosensors, 12(10): 857

[74]

Pico-Tomàs A , Mejías-Molina C , Zammit I , Rusiñol M , Bofill-Mas S , Borrego C M , Corominas L . (2023). Surveillance of SARS-CoV-2 in sewage from buildings housing residents with different vulnerability levels. Science of the Total Environment, 872: 162116

[75]

Qian J , Boswell S A , Chidley C , Lu Z X , Pettit M E , Gaudio B L , Fajnzylber J M , Ingram R T , Ward R H , Li J Z . et al. (2020). An enhanced isothermal amplification assay for viral detection. Nature Communications, 11(1): 5920

[76]

Qin X X , Liu J J , Zhang Z , Li J H , Yuan L , Zhang Z Y , Chen L X . (2021). Microfluidic paper-based chips in rapid detection: current status, challenges, and perspectives. TrAC Trends in Analytical Chemistry, 143: 116371

[77]

Redden D J , Stanhope T , Anderson L E , Campbell J , Krkošek W H , Gagnon G A . (2023). An innovative passive sampling approach for the detection of cyanobacterial gene targets in freshwater sources. Science of the Total Environment, 892: 164593

[78]

Rong Q Y , Li Y Y , Luo J , Yan L Y , Jones K C , Zhang H . (2024). Development of a novel DGT passive sampler for measuring polycyclic aromatic hydrocarbons in aquatic systems. Journal of Hazardous Materials, 470: 134199

[79]

Sajal S S A , Islam D Z , Khandker S S , Solórzano-Ortiz E , Fardoun M , Ahmed M F , Jamiruddin M R , Azmuda N , Mehta M , Kumar S . et al. (2024). Strategies to overcome erroneous outcomes in reverse transcription-polymerase chain reaction (RT-PCR) testing: insights from the COVID-19 pandemic. Cureus, 16(11): e72954

[80]

Schang C , Crosbie N D , Nolan M , Poon R , Wang M , Jex A , John N , Baker L , Scales P , Schmidt J . et al. (2021). Passive sampling of SARS-CoV-2 for wastewater surveillance. Environmental Science & Technology, 55(15): 10432–10441

[81]

Shakallis A G , Fallowfield H , Ross K E , Whiley H . (2022). The application of passive sampling devices in wastewater sur-veillance. Water, 14(21): 3478

[82]

Song M L , Yang M , Hao J H . (2021). Pathogenic virus detection by optical nanobiosensors. Cell Reports Physical Science, 2(1): 100288

[83]

Song X K , Zhang S H , Huang H , Ding Q , Guo F , Zhang Y X , Li J , Li M Y , Cai W J , Wang C . (2024). A systematic review of the inequality of health burdens related to climate change. Frontiers of Environmental Science & Engineering, 18(5): 63

[84]

Sorensen J P R , Aldous P , Bunting S Y , McNally S , Townsend B R , Barnett M J , Harding T , La Ragione R M , Stuart M E , Tipper H J . et al. (2021). Seasonality of enteric viruses in groundwater-derived public water sources. Water Research, 207: 117813

[85]

Tang Y , Yeh Y T , Chen H , Yu C M , Gao X H , Diao Y X . (2015). Comparison of four molecular assays for the detection of Tembusu virus. Avian Pathology, 44(5): 379–385

[86]

Trung N T , Son L H P , Hien T X , Quyen D T , Bang M H , Song L H . (2022). CRISPR-Cas12a combination to alleviate the false-positive in loop-mediated isothermal amplification-based diagnosis of Neisseria meningitidis. BMC Infectious Diseases, 22(1): 429

[87]

Varlamov D A , Blagodatskikh K A , Smirnova E V , Kramarov V M , Ignatov K B . (2020). Combinations of PCR and isothermal amplification techniques are suitable for fast and sensitive detection of SARS-CoV-2 viral RNA. Frontiers in Bioengi-neering and Biotechnology, 8: 604793

[88]

Verdier H , Konecny-Dupre L , Marquette C , Reveron H , Tadier S , Grémillard L , Barthès A , Datry T , Bouchez A , Lefébure T . (2022). Passive sampling of environmental DNA in aquatic environments using 3D-printed hydroxyapatite samplers. Molecular Ecology Resources, 22(6): 2158–2170

[89]

Vincent-Hubert F , Morga B , Renault T , Le Guyader F S . (2017). Adsorption of norovirus and ostreid herpesvirus type 1 to polymer membranes for the development of passive samplers. Journal of Applied Microbiology, 122(4): 1039–1047

[90]

Vincent-Hubert F , Wacrenier C , Desdouits M , Jousse S , Schaeffer J , Le Mehaute P , Nakache-Danglot F , Bertrand I , Boni M , Gantzer C . et al. (2022). Development of passive samplers for the detection of SARS-CoV-2 in sewage and seawater: application for the monitoring of sewage. Science of the Total Environment, 833: 155139

[91]

Vincent-Hubert F , Wacrenier C , Morga B , Lozach S , Quenot E , Mège M , Lecadet C , Gourmelon M , Hervio-Heath D , Le Guyader F S . (2021). Passive samplers, a powerful tool to detect viruses and bacteria in marine coastal areas. Frontiers in Microbiology, 12: 631174

[92]

Vitek R , do Nascimento F H , Masini J C . (2022). Polymer monoliths for the concentration of viruses from environmental waters: a review. Journal of Separation Science, 45(1): 134–148

[93]

Wang M , Zhang R , Li J M . (2020). CRISPR/cas systems redefine nucleic acid detection: principles and methods. Biosensors and Bioelectronics, 165: 112430

[94]

Wang Y , Geng M K , Jia H , Cui J C , Zhang M , Zhao Y X , Wang J. . (2024b). Removal of antibiotic resistant bacteria and antibiotic resistance genes: a bibliometric review. Frontiers of Environ-mental Science & Engineering, 18(12): 146

[95]

Wang Y X , Chen H , Lin K , Han Y J , Gu Z X , Wei H J , Mu K , Wang D F , Liu L Y , Jin R H . et al. (2024a). Ultrasensitive single-step CRISPR detection of monkeypox virus in minutes with a vest-pocket diagnostic device. Nature Communications, 15(1): 3279

[96]

Wilson M , Qiu Y Y , Yu J A , Lee B E , McCarthy D T , Pang X L . (2022). Comparison of auto sampling and passive sampling methods for SARS-CoV-2 detection in wastewater. Pathogens, 11(3): 359

[97]

Wu Z Z , Liu T , Chen Q , Chen T Y , Hu J Y , Sun L Y , Wang B X , Li W P , Ni J R . (2024). Unveiling the unknown viral world in groundwater. Nature Communications, 15(1): 6788

[98]

Xiao A T , Tong Y X , Zhang S . (2020). False negative of RT-PCR and prolonged nucleic acid conversion in COVID-19: rather than recurrence. Journal of Medical Virology, 92(10): 1755–1756

[99]

Xiao B , Zhao R M , Wang N , Zhang J , Sun X Y , Chen A L . (2023). Recent advances in centrifugal microfluidic chip-based loop-mediated isothermal amplification. TrAC Trends in Analytical Chemistry, 158: 116836

[100]

Xiao X Y , Chen C L , Li H R , Li L H , Yu X . (2024). The variation of microbiological characteristics in surface waters during persistent precipitation. Frontiers of Environmental Science & Engineering, 18(9): 111

[101]

Xu B R , Gong P , Zhang Y , Wang Y , Tao D G , Fu L T , Khazalwa E M , Liu H L , Zhao S H , Zhang X Y . et al. (2022a). A one-tube rapid visual CRISPR assay for the field detection of Japanese encephalitis virus. Virus Research, 319: 198869

[102]

Xu Z C , Chen D J , Li T , Yan J Y , Zhu J , He T , Hu R , Li Y , Yang Y H , Liu M L . (2022b). Microfluidic space coding for multiplexed nucleic acid detection via CRISPR-Cas12a and recombinase polymerase amplification. Nature Communications, 13(1): 6480

[103]

Zamhuri S A , Soon C F , Nordin A N , Ab Rahim R , Sultana N , Khan M A , Lim G P , Tee K S . (2022). A review on the contamination of SARS-CoV-2 in water bodies: transmission route, virus recovery and recent biosensor detection techniques. Sensing and Bio-Sensing Research, 36: 100482

[104]

Zhang Y P , Bu J W , Shu R X , Liu S L . (2024). Advances in rapid point-of-care virus testing. Analyst, 149(9): 2507–2525

[105]

Zhou M Y , Fan C , Wang L R , Xu T L , Zhang X J . (2022). Enhanced isothermal amplification for ultrafast sensing of SARS-CoV-2 in microdroplets. Analytical Chemistry, 94(10): 4135–4140

RIGHTS & PERMISSIONS

Higher Education Press 2026

AI Summary AI Mindmap
PDF (2711KB)

63

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/