Robust and efficient membrane contactor for carbon dioxide capture enabled by thin-film composite Janus membrane

Wenting Zhou , Chunlei Su , Dejun Feng , Yuanmiaoliang Chen , Liting Pan , Di He , Zhangxin Wang

ENG. Environ. ›› 2026, Vol. 20 ›› Issue (3) : 36

PDF (4742KB)
ENG. Environ. ›› 2026, Vol. 20 ›› Issue (3) :36 DOI: 10.1007/s11783-026-2136-6
RESEARCH ARTICLE

Robust and efficient membrane contactor for carbon dioxide capture enabled by thin-film composite Janus membrane

Author information +
History +
PDF (4742KB)

Abstract

Gas-liquid membrane contactor (GLMC) technology shows significant promise for industrial carbon dioxide (CO2) capture, but its adoption is hindered by the poor wetting resistance or low CO2 absorption rate of conventional monolithic hydrophobic membranes. This work presents a thin-film composite (TFC) Janus membrane fabricated by coating a polyvinyl alcohol (PVA) layer featuring density and hydrophilicity onto a commercial hydrophobic polyvinylidene fluoride (PVDF) membrane substrate for GLMC applications. The TFC Janus membrane demonstrated robust wetting resistance during a 72-h GLMC experiment while maintaining a relatively high CO2 absorption rate (2.85 × 10−3 mol/(m2·s)), enabling robust and efficient CO2 capture. Diffusion experiments and breakthrough pressure tests attributed the exceptional wetting resistance to a combination of size exclusion and high capillary pressure within the dense PVA layer, which effectively hinders CO2 absorbent solutions from accessing the hydrophobic PVDF substrate. Furthermore, membrane impedance measurements and ultrasonic time-domain reflectometry analysis revealed that the high CO2 absorption rate resulted from an expanded gas-liquid interface created by the PVA layer penetrating into the PVDF substrate. Overall, this work offers valuable insights into the design and optimization of high-performance GLMC membranes, advancing practical applications of GLMC technology.

Graphical abstract

Keywords

Gas-liquid membrane contactor / Thin-film composite membrane / Janus membrane / Carbon dioxide capture / Membrane wetting

Highlight

● A thin-film composite Janus membrane is proposed for gas-liquid membrane contactors.

● The membrane exhibits excellent wetting resistance and a high CO2 absorption rate.

● It breaks the existing trade-off between wetting resistance and CO2 absorption rate.

● The wetting resistance is due to size exclusion and large capillary pressure.

● The high CO2 absorption rate is facilitated by an expanded gas-liquid interface.

Cite this article

Download citation ▾
Wenting Zhou, Chunlei Su, Dejun Feng, Yuanmiaoliang Chen, Liting Pan, Di He, Zhangxin Wang. Robust and efficient membrane contactor for carbon dioxide capture enabled by thin-film composite Janus membrane. ENG. Environ., 2026, 20(3): 36 DOI:10.1007/s11783-026-2136-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Atchariyawut S , Feng C S , Wang R , Jiraratananon R , Liang D T . (2006). Effect of membrane structure on mass-transfer in the membrane gas-liquid contacting process using microporous PVDF hollow fibers. Journal of Membrane Science, 285(1−2): 272–281

[2]

Boo C , Hong S , Elimelech M . (2018). Relating organic fouling in membrane distillation to intermolecular adhesion forces and interfacial surface energies. Environmental Science & Technology, 52(24): 14198–14207

[3]

Boo C , Lee J , Elimelech M . (2016). Omniphobic polyvinylidene fluoride (PVDF) membrane for desalination of shale gas produced water by membrane distillation. Environmental Science & Technology, 50(22): 12275–12282

[4]

Chen Y M L , Lu K J , Gai W X , Chung T S . (2021). Nanofiltration-inspired Janus membranes with simultaneous wetting and fouling resistance for membrane distillation. Environmental Science & Technology, 55(11): 7654–7664

[5]

Dindore V Y , Brilman D W F , Geuzebroek F H , Versteeg G F . (2004). Membrane-solvent selection for CO2 removal using membrane gas-liquid contactors. Separation and Purification Technology, 40(2): 133–145

[6]

Feng D J , Chen Y M L , Wang Z X , Lin S H . (2021). Janus membrane with a dense hydrophilic surface layer for robust fouling and wetting resistance in membrane distillation: new insights into wetting resistance. Environmental Science & Technology, 55(20): 14156–14164

[7]

Geyer F , Schönecker C , Butt H J , Vollmer D . (2017). Enhancing CO2 capture using robust superomniphobic membranes. Advanced Materials, 29(5): 1603524

[8]

Huang A , Chen L H , Chen C H , Tsai H Y , Tung K L . (2018). Carbon dioxide capture using an omniphobic membrane for a gas-liquid contacting process. Journal of Membrane Science, 556: 227–237

[9]

Imtiaz A , Othman M H D , Jilani A , Khan I U , Kamaludin R , Ayub M , Samuel O , Kurniawan T A , Hashim N , Puteh M H . (2023). A critical review in recent progress of hollow fiber membrane contactors for efficient CO2 separations. Chemosphere, 325: 138300

[10]

Ji H L , Gu M Q , Zhang G W , Yue C , Yuan Z Y , Liu D P , Shen S S , Zhou X J , Wyman I . (2022). Janus membrane prepared via one step depositing coatings onto PVDF/PDMS membrane for simultaneous antiwetting and antifouling in DCMD. Desali-nation, 539: 115964

[11]

Kim S , Scholes C A , Heath D E , Kentish S E . (2021). Gas-liquid membrane contactors for carbon dioxide separation: A review. Chemical Engineering Journal, 411: 128468

[12]

Kreulen H , Smolders C A , Versteeg G F , van Swaaij W P M . (1993). Microporous hollow fibre membrane modules as gas-liquid contactors. Journal of Membrane Science, 78(3): 217–238

[13]

Lee Y , Park Y J , Lee J , Bae T H . (2023). Recent advances and emerging applications of membrane contactors. Chemical Engineering Journal, 461: 141948

[14]

Li C X , Li X S , Du X W , Zhang Y , Wang W , Tong T Z , Kota A K , Lee J . (2020). Elucidating the trade-off between membrane wetting resistance and water vapor flux in membrane distillation. Environmental Science & Technology, 54(16): 10333–10341

[15]

Li J L , Chen B H . (2005). Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Separation and Purification Technology, 41(2): 109–122

[16]

Lin Y F , Chang J M , Ye Q , Tung K L . (2015). Hydrophobic fluorocarbon-modified silica aerogel tubular membranes with excellent CO2 recovery ability in membrane contactors. Applied Energy, 154: 21–25

[17]

Lu J G , Zheng Y F , Cheng M D . (2008). Wetting mechanism in mass transfer process of hydrophobic membrane gas absorption. Journal of Membrane Science, 308(1−2): 180–190

[18]

Luo Y S , Shao S L , Mo J H , Yang Y , Wang Z X , Li X H . (2023). Spatio-temporal progression and influencing mechanism of local wetting in membrane distillation. Journal of Membrane Science, 670: 121374

[19]

Meng F M , Han S Y , Lin L , Li J L , Chen K L , Jiang J G . (2024). Process optimization and mechanism study of ionic liquid-based mixed amine biphasic solvents for CO2 capture in biogas upgrading procedure. Frontiers of Environmental Science & Engineering, 18(8): 95

[20]

Mosadegh-Sedghi S , Rodrigue D , Brisson J , Iliuta M C . (2014). Wetting phenomenon in membrane contactors-causes and prevention. Journal of Membrane Science, 452: 332–353

[21]

Pan F S , Jia H P , Jiang Z Y , Zheng X H , Wang J T , Cui L . (2008). P(AA-AMPS)-PVA/polysulfone composite hollow fiber mem-branes for propylene dehumidification. Journal of Membrane Science, 323(2): 395–403

[22]

Rahbari-Sisakht MIsmail A FRana DMatsuura T (2012). A novel surface modified polyvinylidene fluoride hollow fiber membrane contactor for CO2 absorption. Journal of Membrane Science, 415–416: 415–416

[23]

Rosli A , Ahmad A L , Low S C . (2020). Enhancing membrane hydrophobicity using silica end-capped with organosilicon for CO2 absorption in membrane contactor. Separation and Purification Technology, 251: 117429

[24]

Scholes C A , Kentish S E , Qader A . (2020). Membrane gas-solvent contactor pilot plant trials for post-combustion CO2 capture. Separation and Purification Technology, 237: 116470

[25]

Sun T , He Q Y , Wang E Y , Ke X , Ji L , Yan S P . (2025). Engineering in-situ fabrication of omniphobic PVDF membrane for high-performance CO2 capture. Chemical Engineering Journal, 505: 159415

[26]

Sun T , Li W L , Wei J D , Ji L , He Q Y , Yan S P . (2023). Valorization of biogas through simultaneous CO2 and H2S removal by renewable aqueous ammonia solution in membrane contactor. Frontiers of Agricultural Science and Engineering, 10(3): 468–478

[27]

Wan H T , Li X H , Luo Y S , Shi D T , Gong T J , An A K , Shao S L . (2023). Early monitoring of pore wetting in membrane distillation using ultrasonic time-domain reflectometry (UTDR). Water Research, 240: 120081

[28]

Wang L , Zhang Z H , Zhao B , Zhang H W , Lu X L , Yang Q . (2013). Effect of long-term operation on the performance of poly-propylene and polyvinylidene fluoride membrane contactors for CO2 absorption. Separation and Purification Technology, 116: 300–306

[29]

Wang N , Lu J , Wu J , Zhang C , Wang J H , Agathos S N , Feng Y V . (2025). A novel Oocystis algal strain enables highly efficient simultaneous biodegradation of bisphenol A and carbon capture in seawater. Frontiers of Environmental Science & Engineering, 19(10): 131

[30]

Wang R , Zhang H Y , Feron P H M , Liang D T . (2005). Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors. Separation and Purification Technology, 46(1−2): 33–40

[31]

Wang W , Du X W , Vahabi H , Zhao S , Yin Y M , Kota A K , Tong T Z . (2019). Trade-off in membrane distillation with monolithic omniphobic membranes. Nature Communications, 10(1): 3220

[32]

Wu X Q , Wu X , Wang T Y , Zhao L H , Truong Y B , Ng D , Zheng Y M , Xie Z L . (2020). Omniphobic surface modification of electrospun nanofiber membrane via vapor deposition for enhanced anti-wetting property in membrane distillation. Journal of Membrane Science, 606: 118075

[33]

Xiao C C , Yan L Q , Gao H P , Dou Z O , Xie X , Chen Y S . (2024). Selective separation and recovery of Co(II) and Ni(II) from lithium-ion battery using Cyanex 272 adsorptive membrane. Frontiers of Environmental Science & Engineering, 18(12): 148

[34]

Xu Y L , Goh K , Wang R , Bae T H . (2019a). A review on polymer-based membranes for gas-liquid membrane contacting processes: current challenges and future direction. Separation and Purification Technology, 229: 115791

[35]

Xu Y L , Lin Y Q , Chew N G P , Malde C , Wang R . (2019b). Biocatalytic PVDF composite hollow fiber membranes for CO2 removal in gas-liquid membrane contactor. Journal of Membrane Science, 572: 532–544

[36]

Xu Y L , Lin Y Q , Lee M , Malde C , Wang R . (2018). Development of low mass-transfer-resistance fluorinated TiO2-SiO2/PVDF composite hollow fiber membrane used for biogas upgrading in gas-liquid membrane contactor. Journal of Membrane Science, 552: 253–264

[37]

Xue K L , Fu H M , Chen H P , Zhang H , Gao D . (2023). Investigation of membrane wetting for CO2 capture by gas-liquid contactor based on ceramic membrane. Separation and Purification Technology, 304: 122309

[38]

Xue Y L , Huang J , Lau C H , Cao B , Li P . (2020). Tailoring the molecular structure of crosslinked polymers for pervaporation desalination. Nature Communications, 11(1): 1461

[39]

Yang X , Zhang N , Zhang J J , Liu W F , Zhao M W , Lin S H , Wang Z N . (2023). Nanocomposite hydrogel engineered janus membrane for membrane distillation with robust fouling, wetting, and scaling resistance. Environmental Science & Technology, 57(41): 15725–15735

[40]

Zhang H Y , Wang R , Liang D T , Tay J H . (2008). Theoretical and experimental studies of membrane wetting in the membrane gas-liquid contacting process for CO2 absorption. Journal of Membrane Science, 308(1−2): 162–170

[41]

Zhang J H , Li N , Wang D , Li J M , Chen Y , Wang Z N . (2021). Omniphobic palygorskite coated Janus membrane with enhanced fouling and wetting resistance for direct contact membrane distillation. Desalination, 505: 114986

[42]

Zhang Z H , Wu X N , Wang L , Zhao B , Li J J , Zhang H W . (2017). Wetting mechanism of a PVDF hollow fiber membrane in immersed membrane contactors for CO2 capture in the presence of monoethanolamine. RSC Advances, 7(22): 13451–13457

[43]

Zhao S F , Feron P H M , Deng L Y , Favre E , Chabanon E , Yan S P , Hou J W , Chen V , Qi H . (2016). Status and progress of membrane contactors in post-combustion carbon capture: a state-of-the-art review of new developments. Journal of Membrane Science, 511: 180–206

[44]

Zhou W T , Chen Y M L , Feng D J , Xiao L , Li X H , Wang Z X . (2024). Interplay between membrane wetting resistance and the carbon dioxide absorption rate in a membrane contactor: the critical role of the gas-liquid interface. ACS ES&T Engineering, 4(8): 2068–2076

RIGHTS & PERMISSIONS

Higher Education Press 2026

AI Summary AI Mindmap
PDF (4742KB)

Supplementary files

Supplementary materials

78

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/