Electron transfer-mediated synchronization of N,N-dimethylformamide catabolism and nitrate reduction driven by zero-valent iron

Jing Wang , Yong Tu , Xuwang Wu , Ling Pan , Dan Chen , Xinbai Jiang , Ling Zhang , Jinyou Shen

ENG. Environ. ›› 2026, Vol. 20 ›› Issue (2) : 33

PDF (6294KB)
ENG. Environ. ›› 2026, Vol. 20 ›› Issue (2) :33 DOI: 10.1007/s11783-026-2133-9
RESEARCH ARTICLE

Electron transfer-mediated synchronization of N,N-dimethylformamide catabolism and nitrate reduction driven by zero-valent iron

Author information +
History +
PDF (6294KB)

Abstract

The co-occurrence of N,N-dimethylformamide (DMF) and residual nitrogen in industrial wastewater presents significant challenges for conventional biological treatment. To overcome these limitations, this study developed an innovative zero-valent iron (ZVI) enhanced nitrate-reducing bioreactor (ZVI-NR) that establishes an efficient electron transfer pathway for simultaneous DMF mineralization and nitrate removal. The ZVI-NR system achieved complete DMF removal (100%) and high nitrate reduction efficiency (96.17% ± 1.50%), representing 40.37% ± 2.30% and 34.23% ± 1.30% improvements over conventional NR system. The key innovation involves establishing an Fe2+/Fe3+ electron shuttle system, coupled with the selective enrichment of iron-cycling genera (such as Dojkabacteria and Denitratisoma). These genera maintain iron bioavailability and facilitate extracellular electron transfer. The increased enzymatic activity (136.96%–161.23% for nitrate/nitrite reductases), and dynamic extracellular polymeric substance (EPS) secretion (154.73 ± 4.65 mg/g VSS) featuring α-helix-dominated protein structures that improve microbial aggregation (Dojkabacteria, Chryseobacterium and Arenimonas, etc.). The superior performance of the system is further attributed to dual metabolic regulation through feoAB-mediated Fe2+ transport and a formate dehydrogenase mediated mechanism that is hypothesized to contribute to the proton motive force. This study demonstrates a technological breakthrough in industrial wastewater treatment, which achieves stable and complete DMF mineralization at high loading rates. The unique iron-mediated electron transfer that enhances efficient DMF degradation and optimized nitrogen removal, addressing the challenge of treating refractory wastewater containing high organic and nitrogen loads.

Graphical abstract

Keywords

N,N-dimethylformamide / Mineralization / Iron-cycling / Electron transfer / Functional genes / Metabolic mechanism

Highlight

● ZVI-NR system completely removed DMF, while it was 59.63% ± 2.30% for the NR system.

● Fe2+/Fe3+ shuttle boosted microbial activity and iron bioavailability.• Enhanced enzymatic activity and EPS improved microbial aggregation.

● Fe2+ transport and formate dehydrogenase enhanced ZVI-NR via proton motive.

● Iron-driven electron distribution and bacterial response were elucidated.

Cite this article

Download citation ▾
Jing Wang, Yong Tu, Xuwang Wu, Ling Pan, Dan Chen, Xinbai Jiang, Ling Zhang, Jinyou Shen. Electron transfer-mediated synchronization of N,N-dimethylformamide catabolism and nitrate reduction driven by zero-valent iron. ENG. Environ., 2026, 20(2): 33 DOI:10.1007/s11783-026-2133-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Antwi P , Li J Z , Boadi P O , Meng J , Shi E , Chi X , Deng K W , Ayivi F . (2017). Dosing effect of zero valent iron (ZVI) on biomethanation and microbial community distribution as revealed by 16S rRNA high-throughput sequencing. International Biodeterioration & Biodegradation, 123: 191–199

[2]

Bai Y Y , Yun Z C , Xia F , Deng S , Liu Q Y , Wu S X , Han X , Yang Y , Jiang Y H . (2025). Insights on mitigation of chemical clogging of zero-valent iron for nitrobenzene reduction: the role of oxygenated anion modification. Frontiers of Environmental Science & Engineering, 19(9): 117

[3]

Cao L L , Su C Y , Lu Y Y , Wu J Y , Wei L X , Liao J J , Xian Y C , Gao S . (2023). Long-term performance study applying a tandem AnSBR-ASBR to treat wastewater containing N,N-dimethylformamide: sludge physicochemical properties, micro-ecology, and functional genes. Journal of Environmental Chemical Engineering, 11(2): 109447

[4]

Chen H, Liu Y F, Xu X Q, Sun M, Jiang M J, Xue G, Li X, Liu Z H (2019). How does iron facilitate the aerated biofilter for tertiary simultaneous nutrient and refractory organics removal from real dyeing wastewater? Water Research, 148: 344–358

[5]

Chen J J , Xie Y , Sun S S , Zhang M P , Yan P , Xu F , Tang L , He S B . (2023). Efficient nitrogen removal through coupling biochar with zero-valent iron by different packing modes in bioretention system. Environmental Research, 223: 115375

[6]

Chen Z L , Shao W Z , Zhang M , Qiao W C , Gu C . (2025a). The construction of coupling degradation system low temperature plasma and microbiological denitrification: interfacial reaction process and synergistic mechanism. Journal of Environmental Management, 375: 124278

[7]

Chen Z L , Tao S Q , Liu Y , Zhao C Y , Wei W X , Qiao W C , Zhang M . (2025b). Interface-engineered Fe-doped biomass carbon with embedded carbon nanotubes: a universal catalyst for efficient pollutant degradation via peroxymonosulfate activation. Journal of Environmental Chemical Engineering, 13(5): 118921

[8]

Chen Z L , Wang X H , Zhang M , Liu C Y , Li W H , Tian T , Wei W X , Qiao W C , Gu C , Li J S . (2024). Selective oxidation behavior based on iron-doped MOF derived carbon-based catalysts: active site regulation and degradation mechanism analysis. Journal of Colloid and Interface Science, 670: 323–336

[9]

Chen Z L , Zhang M , Liu Y , Liu C Y , Cao S H , Qiao W C , Gu C , Li J S . (2026). Spatially programmed reactivity: Layer-by-layer degradation of persistent pollutants in CoFe/C@TiO2 nanoreactors with PAA/sunlight activation. Applied Catalysis B: Environment and Energy, 382: 125997

[10]

Cheng Y , Lu C H , Gao S J , Koju R , Li H Y , Zhu Z Q , Hu C Z , Qu J H . (2024). Synchronous in-situ sludge reduction and enhanced denitrification through improving electron transfer during endogenous metabolisms with Fe(II) addition. Water Research, 255: 121472

[11]

Deng J Y , Xiao X M , Li Y Y , Liu J Y . (2023). Low-carbon nitrogen removal from power plants circulating cooling water and municipal wastewater by partial denitrification-anammox. Bioresource Technology, 380: 129071

[12]

Fan Y Y , Sun S S , Gu X S , Zhang M P , Peng Y Y , Yan P , He S B . (2024). Boosting the denitrification efficiency of iron-based constructed wetlands in-situ via plant biomass-derived biochar: intensified iron redox cycle and microbial responses. Water Research, 253: 121285

[13]

Haferburg G , Krichler T , Hedrich S . (2022). Prokaryotic communities in the historic silver mine Reiche Zeche. Extremophiles, 26(1): 2

[14]

Hou J Y , Zhang Y , Wu X H , Liu L M , Wu Y C , Liu W X , Christie P . (2022). Zero-valent iron-induced successive chemical transformation and biodegradation of lindane in historically contaminated soil: an isotope-informed metagenomic study. Journal of Hazardous Materials, 433: 128802

[15]

Jia Y Y , Wang P D , Ou Y Y , Yan Y J , Zhou S N , Sun L P , Lu H . (2022). Insights into the microbial response mechanisms to ciprofloxacin during sulfur-mediated biological wastewater treatment using a metagenomics approach. Water Research, 223: 118995

[16]

Kane A L , Brutinel E D , Joo H , Maysonet R , VanDrisse C M , Kotloski N J , Gralnick J A . (2016). Formate metabolism in Shewanella oneidensis generates proton motive force and prevents growth without an electron acceptor. Journal of Bacteriology, 198(8): 1337–1346

[17]

Kim T I , Lim D H , Baek K S , Jang S S , Park B Y , Mayakrishnan V . (2018). Production of chitinase from Escherichia fergusonii, chitosanase from Chryseobacterium indologenes, Comamonas koreensis and its application in N-acetylglucosamine production. International Journal of Biological Macromolecules, 112: 1115–1121

[18]

Kong Z , Li L , Wu J , Zhang T , Li Y Y . (2019). Insights into the methanogenic degradation of N,N-dimethylformamide: the functional microorganisms and their ecological relationships. Bioresource Technology, 271: 37–47

[19]

Kong Z , Xue Y , Hao T W , Zhang Y L , Wu J , Chen H , Song L Y , Rong C , Li D P , Pan Y . et al. (2022). Carbon-neutral treatment of N,N-dimethylformamide-containing industrial wastewater by anaerobic membrane bioreactor (AnMBR): bio-energy recovery and CO2 emission reduction. Bioresource Technology, 358: 127396

[20]

Li J H , Dijkstra P , Lu Q H , Wang S N , Chen S H , Li D Q , Wang Z H , Jia Z L , Wang L , Shim H . (2021). Genomics-informed insights into microbial degradation of N,N-dimethylformamide. International Biodeterioration & Biodegradation, 163: 105283

[21]

Liu C Y , Shen X F , Tao S Q , Liu Y , Chen Z L , Qiao W C , Gu C , Zhang M . (2025a). Harnessing visible light-activated humic acid and size-exclusion catalysis for efficient pollutant degradation in complex water system. Journal of Environmental Chemical Engineering, 13(6): 119461

[22]

Liu C Y , Wang X H , Xia Y , Chen Z L , Tian T , Li W H , Wei W X , Qiao W C , Gu C , Zhang M . (2025b). Based on size-exclusion effect of selective removal of organic pollutants in complex water quality by low temperature plasma: degradation behavior and selective mechanism analysis. Separation and Purification Technology, 354: 129252

[23]

Liu X H , Yang Y , Takizawa S , Graham N J D , Chen C , Pu J , Ng H Y . (2024). New insights into the concentration-dependent regulation of membrane biofouling formation via continuous nanoplastics stimulation. Water Research, 253: 121268

[24]

Liu Y , Gao J F , Zhu Q Y , Zhou X , Chu W H , Huang J X , Liu C K , Yang B , Yang M T . (2023). Zerovalent iron/Cu combined degradation of halogenated disinfection byproducts and quantitative structure-activity relationship modeling. Environmental Science & Technology, 57(30): 11241–11250

[25]

Long M , Long X X , Zheng C W , Luo Y H , Zhou C , Rittmann B E . (2021). Para-Chlorophenol (4-CP) removal by a palladium-coated biofilm: coupling catalytic dechlorination and microbial mineralization via denitrification. Environmental Science & Technology, 55(9): 6309–6319

[26]

Long M , Zeng C , Wang Z C , Xia S Q , Zhou C . (2020). Complete dechlorination and mineralization of para-chlorophenol (4-CP) in a hydrogen-based membrane biofilm reactor (MBfR). Journal of Cleaner Production, 276: 123257

[27]

Miao Y J , Wang H , Yang C P , Zhang R C , Zhang H , Sun P Z . (2024). Elucidation of the last steps of photo-ammonification: analytical method development and mechanism elucidation. Frontiers of Environmental Science & Engineering, 18(8): 100

[28]

Qin H J , Guan X H , Tratnyek P G . (2019). Effects of sulfidation and nitrate on the reduction of N-Nitrosodimethylamine by zerovalent iron. Environmental Science & Technology, 53(16): 9744–9754

[29]

Sang W J , Cui J Q , Mei L J , Zhang Q , Li Y Y , Li D Y , Zhang W J , Li Z X . (2019). Degradation of liquid phase N,N-dimethylformamide by dielectric barrier discharge plasma: mechanism and degradation pathways. Chemosphere, 236: 124401

[30]

Shi S H , Lin Z Y , Zhou J , Fan X , Huang Y Y , Zhou J . (2022). Enhanced thermophilic denitrification performance and potential microbial mechanism in denitrifying granular sludge system. Bioresource Technology, 344: 126190

[31]

Tan C , Chen S Y , Zhang H Y , Ma Y , Qu Z Y , Yan N , Zhang Y M , Rittmann B E . (2023). The roles of Rhodococcus ruber in denitrification with quinoline as the electron donor. Science of the Total Environment, 902: 166128

[32]

Wang A Q , Hou J , Tao C M , Miao L Z , Wu J , Xing B S . (2023a). Performance enhancement of biogenetic sulfidated zero-valent iron for trichloroethylene degradation: role of extracellular polymeric substances. Environmental Science & Technology, 57(8): 3323–3333

[33]

Wang J , Chi Q , Pan L , Zhang R R , Mu Y , Shen J Y . (2023b). New insights into enhanced biodegradation of 4-bromphenol in a nitrate-reducing system: process performance and mechanism. Water Research, 242: 120200

[34]

Wang J , Liu X L , Jiang X B , Zhang L B , Hou C , Su G Y , Wang L J , Mu Y , Shen J Y . (2020a). Facilitated bio-mineralization of N,N-dimethylformamide in anoxic denitrification system: long-term performance and biological mechanism. Water Research, 186: 116306

[35]

Wang Y , Wei W , Wu S L , Ni B J . (2020b). Zerovalent iron effectively enhances medium-chain fatty acids production from waste activated sludge through improving sludge biodegradability and electron transfer efficiency. Environmental Science & Technology, 54(17): 10904–10915

[36]

Wang Z Y , Yao Y N , Steiner N , Cheng H H , Wu Y J , Woo S G , Criddle C S . (2020c). Impacts of nitrogen-containing coagulants on the nitritation/denitrification of anaerobic digester centrate. Environmental Science: Water Research & Technology, 6(12): 3451–3459

[37]

Xia Y , Tao S T , Liu Y , Zhao C Y , Qiao W C , Chen S , Ruan J Q , Zhang M , Gu C . (2025). Zn/Fe-MOF-derived carbon nanofibers via electrospinning for efficient plasma-catalytic antibiotic removal. Catalysts, 15(10): 944

[38]

Yang L , Liu Y J , Li C , Li P F , Zhang A N , Liu Z , Wang Z , Wei C X , Yang Z Z , Li Z H . (2024). Optimizing carbon sources regulation in the biochemical treatment systems for coal chemical wastewater: aromatic compounds biodegradation and microbial response strategies. Water Research, 256: 121627

[39]

Yang X , Tang Z W , Xiao L Q , Zhang S H , Jin J , Zhang S Y . (2022). Effect of electric current intensity on performance of polycaprolactone/FeS2-based mixotrophic biofilm-electrode reactor. Bioresource Technology, 361: 127757

[40]

Yang X L , Zang L , Chen J J , Xu H , Yang Y J , Song H L . (2023). Nitrogen removal enhanced by its migration and transformation in a three-chamber microbial electrolysis cell. Journal of Water Process Engineering, 53: 103683

[41]

Zhang J X , Qu Y Y , Qi Q X , Zhang P S , Zhang Y B , Tong Y W , He Y L . (2020). The bio-chemical cycle of iron and the function induced by ZVI addition in anaerobic digestion: a review. Water Research, 186: 116405

[42]

Zhang L , Fan X P , Dong T J , Song Z X , Wang Y P , Peng Y Z , Yang J C . (2023a). ZVI-mediated high-rate nitrogen removal from fulvic acid (FA)-containing wastewater by anammox: revealing the genomic and molecular level mechanisms. ACS ES&T Engineering, 3(9): 1286–1296

[43]

Zhang P Y , Xie C , Li Y L , Sun B , Yao S , He J Y , Zhang K S , Zhu S G , Kong L T . (2023b). Effective reinforcement ozone oxidation degradation of N,N-dimethylformamide with cobalt doping micro electrolysis composite. Separation and Purification Technology, 314: 123639

[44]

Zhao Z S , Zhang Y B , Li Y , Quan X , Zhao Z Q . (2018). Comparing the mechanisms of ZVI and Fe3O4 for promoting waste-activated sludge digestion. Water Research, 144: 126–133

[45]

Zhong Y J , He J G , Zhang P F , Zou X , Pan X L , Zhang J . (2022). Effects of different particle size of zero-valent iron (ZVI) during anaerobic digestion: Performance and mechanism from genetic level. Chemical Engineering Journal, 435: 134977

RIGHTS & PERMISSIONS

Higher Education Press 2026

AI Summary AI Mindmap
PDF (6294KB)

Supplementary files

Supplementary materials

460

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/