Comparative biomineralization of arsenite and arsenate driven by sulfate reduction in landfills

Feng Huang , Xiaocui Xiao , Yuzhou Yang , Yuyang Long , Chengran Fang , Lifang Hu

ENG. Environ. ›› 2026, Vol. 20 ›› Issue (2) : 30

PDF (7284KB)
ENG. Environ. ›› 2026, Vol. 20 ›› Issue (2) :30 DOI: 10.1007/s11783-026-2130-z
RESEARCH ARTICLE

Comparative biomineralization of arsenite and arsenate driven by sulfate reduction in landfills

Author information +
History +
PDF (7284KB)

Abstract

Landfills, serving as the primary disposal sites for municipal solid waste, are increasingly recognized for their potential to contribute to arsenic (As) contamination. The As toxicity and mobility are closely associated with its chemical speciation, with inorganic As species—arsenate [As(V)] and arsenite [As(III)]—being the most prevalent and problematic. The transformation of these species poses substantial risks to both ecosystems and human health. This study delves into the biomineralization behaviors of As(V) and As(III) under the influence of sulfate-reducing bacteria (SRB) isolated from refuse. Results indicate that SRB facilitate the dissimilatory sulfate (SO42–) reduction process, converting SO42– to hydrogen sulfide (H2S)/hydrosulfide (HS), which subsequently reacts with As(III) to form insoluble arsenic-sulfide minerals like As2S3, AsS, and As4S4. As(III) demonstrated a superior biomineralization potential, with mineralization rates reaching 16.09% (T3) and 20.43% (T4) in As(III)-amended reactors, significantly exceeding those in As(V)-amended reactors (T1 and T2). X-ray diffraction and scanning electron microscopy analyses confirmed the predominant formation of AsS in the presence of As(III) reactor, while As(V) reactor contributed to the formation of As4S4. Both environmental parameters, such as pH and SO42– concentration, and the microbial community composition critically influenced the As biomineralization behaviors. Metagenomic sequencing uncovered the pivotal roles of SRB and As(V)-reducing bacteria, including Clostridium and Desulfitobacterium, in mediating SO42– reduction and the detoxification of As(V). This research offers novel insights into the biomineralization mechanisms of As within landfills and lays a theoretical groundwork for the remediation of As pollution.

Graphical abstract

Keywords

Arsenic biomineralization / Landfill / SRB / Metabolic pathways / As2S3 / As4S4

Highlight

● The minerals formed with As(V) and As(III) as initial species exhibit differences.

● The mineralization of As(III) increases with concentration.

● SO42‒, As speciation and SRB drive As mineralization in landfills.

● Functional species of ARB and SRB jointly complete the mineralization process.

Cite this article

Download citation ▾
Feng Huang, Xiaocui Xiao, Yuzhou Yang, Yuyang Long, Chengran Fang, Lifang Hu. Comparative biomineralization of arsenite and arsenate driven by sulfate reduction in landfills. ENG. Environ., 2026, 20(2): 30 DOI:10.1007/s11783-026-2130-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alam R , McPhedran K . (2019). Applications of biological sulfate reduction for remediation of arsenic: a review. Chemosphere, 222: 932–944

[2]

Battaglia-Brunet F , Crouzet C , Burnol A , Coulon S , Morin D , Joulian C . (2012). Precipitation of arsenic sulphide from acidic water in a fixed-film bioreactor. Water Research, 46: 3923–3933

[3]

Bhati RNigam AAhmad SRaza KSingh R (2023). Structural-functional analysis and molecular characterization of arsenate reductase from Enterobacter cloacae RSC3 for arsenic biotransformation. 3 Biotech, 13(9): 305

[4]

Bist P , Choudhary S . (2022). Impact of heavy metal toxicity on the gut microbiota and its relationship with metabolites and future probiotics strategy: a review. Biological Trace Element Research, 200(12): 5328–5350

[5]

Bolan S , Seshadri B , Keely S , Kunhikrishnan A , Bruce J , Grainge I , Talley N J , Naidu R . (2021). Bioavailability of arsenic, cadmium, lead and mercury as measured by intestinal permeability. Scientific Reports, 11(1): 14675

[6]

Bozo-Hurtado L , García-Amado M A , Chistoserdov A , Varela R , Narvaez J J , Colwell R , Suárez P . (2013). Identification of bacteria in enrichment cultures of sulfate reducers in the Cariaco Basin water column employing Denaturing Gradient Gel Electrophoresis of 16S ribosomal RNA gene fragments. Aquatic Biosystems, 9(1): 17

[7]

Briones-Gallardo R , Escot-Espinoza V M , Cervantes-González E . (2017). Removing arsenic and hydrogen sulfide production using arsenic-tolerant sulfate-reducing bacteria. International Journal of Environmental Science and Technology, 14(3): 609–622

[8]

Buchfink B , Reuter K , Drost H G . (2021). Sensitive protein alignments at tree-of-life scale using DIAMOND. Nature Methods, 18(4): 366–368

[9]

Buchfink B , Xie C , Huson D H . (2015). Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12(1): 59–60

[10]

Burton E D , Johnston S G , Planer-Friedrich B . (2013). Coupling of arsenic mobility to sulfur transformations during microbial sulfate reduction in the presence and absence of humic acid. Chemical Geology, 343: 12–24

[11]

Chaturvedi N , Pandey P N . (2014). Phylogenetic analysis of gammaproteobacterial arsenate reductase proteins specific to enterobacteriaceae family, signifying arsenic toxicity. Inter-disciplinary Sciences: Computational Life Sciences, 6(1): 57–62

[12]

Chen C , Huang K , Xie W Y , Chen S H , Tang Z , Zhao F J . (2017). Microbial processes mediating the evolution of methylarsine gases from dimethylarsenate in paddy soils. Environmental Science & Technology, 51(22): 13190–13198

[13]

Chen S F , Zhou Y Q , Chen Y R , Gu J . (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17): i884–i890

[14]

Duan Z H , Scheutz C , Kjeldsen P . (2021). Trace gas emissions from municipal solid waste landfills: a review. Waste Management, 119: 39–62

[15]

Edgar R C . (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10(10): 996–998

[16]

Escudero L V , Casamayor E O , Chong G , Pedrós-Alió C , Demergasso C . (2013). Distribution of microbial arsenic reduction, oxidation and extrusion genes along a wide range of environmental arsenic concentrations. PLoS One, 8(10): e78890

[17]

Fisher J C , Wallschläger D , Planer-Friedrich B , Hollibaugh J T . (2008). A new role for sulfur in arsenic cycling. Environmental Science & Technology, 42(1): 81–85

[18]

Fu L M , Niu B F , Zhu Z W , Wu S T , Li W Z . (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23): 3150–3152

[19]

Gao Z P , Guo H M , Qiao W , Ke T T , Zhu Z J , Cao Y Y , Su X S , Wan L . (2022). Abundant Fe(III) oxide-bound arsenic and depleted Mn oxides facilitate arsenic enrichment in groundwater from a sand-gravel confined aquifer. Journal of Geophysical Research: Biogeosciences, 127(8): e2022JG006942

[20]

Gibney B P , Nüsslein K . (2007). Arsenic sequestration by nitrate respiring microbial communities in urban lake sediments. Chemosphere, 70(2): 329–336

[21]

Gladysheva T B , Oden K L , Rosen B P . (1994). Properties of the arsenate reductase of plasmid R773. Biochemistry, 33(23): 7288–7293

[22]

Godbole P , Meshram P , Jawadand S , Meshram T , Randive K . (2025). A critical analysis of industrial slags, their hazard potential and remediation with reference to Sustainable Development Goals (SDGs). Discover Civil Engineering, 2(1): 117

[23]

Hayakawa T , Kobayashi Y , Cui X , Hirano S . (2005). A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Archives of Toxicology, 79(4): 183–191

[24]

Hoeft S E , Kulp T R , Stolz J F , Hollibaugh J T , Oremland R S . (2004). Dissimilatory arsenate reduction with sulfide as electron donor: experiments with Mono Lake water and isolation of strain MLMS-1, a chemoautotrophic arsenate respirer. Applied and Environmental Microbiology, 70(5): 2741–2747

[25]

Hu L F , Cheng N , Wang Y Q , Zhang D C , Xu K , Lv X F , Long Y Y . (2023). Arsenate microbial reducing behavior regulated by the temperature fields in landfills. Waste Management, 168: 366–375

[26]

Hu L F , Huang F , Qian Y T , Ding T , Yang Y Z , Shen D S , Long Y Y . (2024). Pathways and contributions of sulfate reducing-bacteria to arsenic cycling in landfills. Journal of Hazardous Materials, 473: 134582

[27]

Hu L F , Nie Z Y , Wang W J , Zhang D C , Long Y Y , Fang C R . (2021). Arsenic transformation behavior mediated by arsenic functional genes in landfills. Journal of Hazardous Materials, 403: 123687

[28]

Hu L F , Qian Y T , Ci M T , Long Y Y , Zheng H Z , Xu K , Wang Y Q . (2022a). Localized intensification of arsenic methylation within landfill leachate-saturated zone. Science of the Total Environment, 842: 156979

[29]

Hu L F , Zhang D C , Qian Y T , Nie Z Y , Long Y Y , Shen D S , Fang C R , Yao J . (2022b). Microbes drive changes in arsenic species distribution during the landfill process. Environmental Pollution, 292: 118322

[30]

Huang B, Long J, Liao H (2019). Characteristics of bacterial community and function in paddy soil profile around antimony mine and Its response to antimony and arsenic contamination. International Journal of Environmental Research and Public Health, 16(24):4883

[31]

Jiang Z , Shen X , Shi B , Cui M J , Wang Y H , Li P . (2022). Arsenic mobilization and transformation by ammonium-generating bacteria isolated from high arsenic groundwater in Hetao Plain, China. International Journal of Environmental Research and Public Health, 19(15): 9606

[32]

John Y , David Jr V E , Mmereki D . (2018). A comparative study on removal of hazardous anions from water by adsorption: a review. International Journal of Chemical Engineering, 2018: 3975948

[33]

Jong T , Parry D L . (2005). Evaluation of the stability of arsenic immobilized by microbial sulfate reduction using TCLP extractions and long-term leaching techniques. Chemosphere, 60(2): 254–265

[34]

Kashyap D R , Botero L M , Franck W L , Hassett D J , McDermott T R . (2006). Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. Journal of Bacteriology, 188(3): 1081–1088

[35]

Kim E J , Batchelor B . (2009). Macroscopic and X-ray photoelectron spectroscopic investigation of interactions of arsenic with synthesized pyrite. Environmental Science & Technology, 43(8): 2899–2904

[36]

Kim E J , Yoo J C , Baek K . (2014). Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation. Environmental Pollution, 186: 29–35

[37]

Kirk M F , Roden E E , Crossey L J , Brealey A J , Spilde M N . (2010). Experimental analysis of arsenic precipitation during microbial sulfate and iron reduction in model aquifer sediment reactors. Geochimica et Cosmochimica Acta, 74(9): 2538–2555

[38]

Lanthier M , Villemur R , Lépine F , Bisaillon J G , Beaudet R . (2001). Geographic distribution of Desulfitobacterium frappieri PCP-1 and Desulfitobacterium spp. in soils from the province of Quebec, Canada. FEMS Microbiology Ecology, 36(2−3): 185–191

[39]

Le Pape P , Battaglia-Brunet F , Parmentier M , Joulian C , Gassaud C , Fernandez-Rojo L , Guigner J M , Ikogou M , Stetten L , Olivi L . et al. (2017). Complete removal of arsenic and zinc from a heavily contaminated acid mine drainage via an indigenous SRB consortium. Journal of Hazardous Materials, 321: 764–772

[40]

Li D H , Liu C M , Luo R B , Sadakane K , Lam T W . (2015). MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31(10): 1674–1676

[41]

Li H Q , Shen Y J , Wang W L , Wang H T , Li H , Su J Q . (2021). Soil pH has a stronger effect than arsenic content on shaping plastisphere bacterial communities in soil. Environmental Pollution, 287: 117339

[42]

Li M M , Yao J , Wang Y T , Sunahara G , Duran R , Liu J L , Liu B , Liu H Q , Ma B , Li H . et al. (2024). Contrasting response strategies of sulfate-reducing bacteria in a microbial consortium to As3+ stress under anaerobic and aerobic environments. Journal of Hazardous Materials, 465: 133052

[43]

Liu J B , Zhang D C , Luo Y J , Ding T , Hu L F . (2022). Microbial mediated arsenate reducing behavior in landfill leachate-saturated zone. Environmental Pollution, 314: 120281

[44]

Liu R R , Yang Z C , He Z L , Wu L Y , Hu C Z , Wu W Z , Qu J H . (2016). Treatment of strongly acidic wastewater with high arsenic concentrations by ferrous sulfide (FeS): inhibitive effects of S(0)-enriched surfaces. Chemical Engineering Journal, 304: 986–992

[45]

Macy J M , Santini J M , Pauling B V , O’neill A H , Sly L I . (2000). Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Archives of Microbiology, 173(1): 49–57

[46]

Magoč T , Salzberg S L . (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27(21): 2957–2963

[47]

Malinauskaite J , Jouhara H , Czajczyńska D , Stanchev P , Katsou E , Rostkowski P , Thorne R J , Colón J , Ponsá S , Al-Mansour F . et al. (2017). Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy, 141: 2013–2044

[48]

Mazumder P , Sharma S K , Taki K , Kalamdhad A S , Kumar M . (2020). Microbes involved in arsenic mobilization and respiration: a review on isolation, identification, isolates and implications. Environmental Geochemistry and Health, 42(10): 3443–3469

[49]

Navas-Acien A , Sharrett A R , Silbergeld E K , Schwartz B S , Nachman K E , Burke T A , Guallar E . (2005). Arsenic exposure and cardiovascular disease: a systematic review of the epidemiologic evidence. American Journal of Epidemiology, 162(11): 1037–1049

[50]

Newman D K , Kennedy E K , Coates J D , Ahmann D , Ellis D J , Lovley D R , Morel F M M . (1997). Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Archives of Microbiology, 168(5): 380–388

[51]

Nguyen K T , Ahmed M B , Mojiri A , Huang Y H , Zhou J L , Li D H . (2021). Advances in As contamination and adsorption in soil for effective management. Journal of Environmental Management, 296: 113274

[52]

Noguchi H , Park J , Takagi T . (2006). MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Research, 34(19): 5623–5630

[53]

Nzongo J M (2024). Genetic and transcriptomic characterization of arsenic resistance mechanisms in Citrobacter sp. TSA-1. Ph. D. Dissertation. University of California Santa Cruz, Santa Cruz, CA, USA

[54]

Oremland R S , Stolz J F . (2003). The ecology of arsenic. Science, 300(5621): 939–944

[55]

Pérez J , Buchanan A , Mellbye B , Ferrell R , Chang J H , Chaplen F , Bottomley P J , Arp D J , Sayavedra-Soto L A . (2015). Interactions of Nitrosomonas europaea and Nitrobacter winogradskyi grown in co-culture. Archives of Microbiology, 197(1): 79–89

[56]

Ponthieu M , Pinel-Raffaitin P , Le Hecho I , Mazeas L , Amouroux D , Donard O F X , Potin-Gautier M . (2007). Speciation analysis of arsenic in landfill leachate. Water Research, 41(14): 3177–3185

[57]

Qi Z , Jia T P , Cong W J , Xi J Y . (2025). Mitigation of hydrogen sulfide production in sewer systems by inhibiting sulfate-reducing bacteria: a review. Frontiers of Environmental Science & Engineering, 19(3): 39

[58]

Qian Y T , Hu L F , Wang Y Q , Xu K . (2023). Arsenic methylation behavior and microbial regulation mechanisms in landfill leachate saturated zones. Environmental Pollution, 320: 121064

[59]

Qian Z , Hao T W , Mackey H R , van Loosdrecht M C M , Chen G H . (2019). Recent advances in dissimilatory sulfate reduction: from metabolic study to application. Water Research, 150: 162–181

[60]

Rodriguez-Freire L , Moore S E , Sierra-Alvarez R , Root R A , Chorover J , Field J A . (2016). Arsenic remediation by formation of arsenic sulfide minerals in a continuous anaerobic bioreactor. Biotechnology and Bioengineering, 113(3): 522–530

[61]

Rodriguez-Freire L , Sierra-Alvarez R , Root R , Chorover J , Field J A . (2014). Biomineralization of arsenate to arsenic sulfides is greatly enhanced at mildly acidic conditions. Water Research, 66: 242–253

[62]

Root R A , Vlassopoulos D , Rivera N A , Rafferty M T , Andrews C , O’Day P A . (2009). Speciation and natural attenuation of arsenic and iron in a tidally influenced shallow aquifer. Geochimica et Cosmochimica Acta, 73(19): 5528–5553

[63]

Saltikov C W , Newman D K . (2003). Genetic identification of a respiratory arsenate reductase. Proceedings of the National Academy of Sciences of the United States of America, 100(19): 10983–10988

[64]

Schloss P D , Westcott S L , Ryabin T , Hall J R , Hartmann M , Hollister E B , Lesniewski R A , Oakley B B , Parks D H , Robinson C J . et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23): 7537–7541

[65]

Shen D S , Zhou H M , Jin Z Y , Yang W Y , Ci M , Long Y Y , Hu L F . (2023). Sulfate reduction behavior in pressure-bearing leachate saturated zone. Journal of Environmental Sciences, 126: 545–555

[66]

Shi L , Zhan C T , Bai W J , Wang W , Yuan S J , Hu Z H . (2025). Enhanced degradation of arsanilic acid and in situ recovery of inorganic arsenic in a two-stage bioelectrochemical process. Frontiers of Environmental Science & Engineering, 19(8): 101

[67]

Slyemi D , Bonnefoy V . (2012). How prokaryotes deal with arsenic. Environ Microbiolmental Microbiology Reports, 4(6): 571–586

[68]

Smedley P L , Kinniburgh D G . (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5): 517–568

[69]

Staicu L C , Wójtowicz P J , Molnár Z , Ruiz-Agudo E , Gallego J L R , Baragaño D , Pósfai M . (2022). Interplay between arsenic and selenium biomineralization in Shewanella sp. O23S. Environmental Pollution, 306: 119451

[70]

Sun J , Quicksall A N , Chillrud S N , Mailloux B J , Bostick B C . (2016). Arsenic mobilization from sediments in microcosms under sulfate reduction. Chemosphere, 153: 254–261

[71]

Tang Y , Zhang M Y , Zhang J , Lyu T , Cooper M , Pan G . (2021). Reducing arsenic toxicity using the interfacial oxygen nanobubble technology for sediment remediation. Water Research, 205: 117657

[72]

Tong J R , Li R , Zhang J , Ma X M , Wu F , Suo H R , Liu C X . (2020). Coupled dynamics of As-containing ferrihydrite transformation and As desorption/re-adsorption in presence of sulfide. Journal of Hazardous Materials, 384: 121287

[73]

Upadhyaya G , Jackson J , Clancy T M , Hyun S P , Brown J , Hayes K F , Raskin L . (2010). Simultaneous removal of nitrate and arsenic from drinking water sources utilizing a fixed-bed bioreactor system. Water Research, 44(17): 4958–4969

[74]

Vera-Espíndola F , Jeison D , Gentina J C , Muñoz J , González E . (2024). Reviewing arsenic biomineralization: an upcoming strategy for mining wastewater treatment. Science of the Total Environment, 954: 176538

[75]

Viacava K , Qiao J T , Janowczyk A , Poudel S , Jacquemin N , Meibom K L , Shrestha H K , Reid M C , Hettich R L , Bernier-Latmani R . (2022). Meta-omics-aided isolation of an elusive anaerobic arsenic-methylating soil bacterium. The ISME Journal, 16(7): 1740–1749

[76]

Vilo C , Dong Q F . (2012). Evaluation of the RDP classifier accuracy using 16S rRNA gene variable regions. Metagenomics, 1: 235551

[77]

Visser M , Pieterse M M , Pinkse M W H , Nijsse B , Verhaert P D E M , de Vos W M , Schaap P J , Stams A J M . (2016). Unravelling the one-carbon metabolism of the acetogen Sporomusa strain An4 by genome and proteome analysis. Environmental Microbiology, 18(9): 2843–2855

[78]

Walters W , Hyde E R , Berg-Lyons D , Ackermann G , Humphrey G , Parada A , Gilbert J A , Jansson J K , Caporaso J G , Fuhrman J A . et al. (2015). Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems, 1(1): e00009–15

[79]

Watanabe T , Kojima H , Fukui M . (2016). Identity of major sulfur-cycle prokaryotes in freshwater lake ecosystems revealed by a comprehensive phylogenetic study of the dissimilatory adenylylsulfate reductase. Scientific Reports, 6(1): 36262

[80]

Wilopo W , Sasaki K , Hirajima T . (2008). Identification of sulfate- and arsenate-reducing bacteria in sheep manure as permeable reactive materials after arsenic immobilization in groundwater. Materials Transactions, 49(10): 2275–2282

[81]

Xie C , Mao X Z , Huang J J , Ding Y , Wu J M , Dong S , Kong L , Gao G , Li C Y , Wei L P . (2011). KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research, 39(S2): W316–W322

[82]

Yang Y , Xie X , Chen M N , Xie Z M , Wang J . (2022). Effects of sulfide input on arsenate bioreduction and its reduction product formation in sulfidic groundwater. International Journal of Environmental Research and Public Health, 19(24): 16987

[83]

Yuan Z F , Zhou Y J , Zou L N , Chen Z , Gustave W , Duan D C , Kappler A , Tang X J , Xu J M . (2023). pH dependence of arsenic speciation in paddy soils: the role of distinct methanotrophs. Environmental Pollution, 318: 120880

[84]

Zhang L M , Yang Q C , Wang H , Gu Q B , Zhang Y L . (2022). Genetic interpretation and health risk assessment of arsenic in Hetao Plain of inner Mongolia, China. Environmental Research, 208: 112680

[85]

Zhang X , Yang Y Q , Fu Q L , Hu H Q , Zhu J , Liu M X . (2021). Comparing effects of ammonium and nitrate nitrogen on arsenic accumulation in brown rice and its dynamics in soil-plant system. Journal of Soils and Sediments, 21(7): 2650–2658

RIGHTS & PERMISSIONS

Higher Education Press 2026

AI Summary AI Mindmap
PDF (7284KB)

Supplementary files

Supplementary materials

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/