Catalytic oxidation of Hg0 by bromide over Ce-modified regenerated V-Mo/Ti catalyst: a field study conducted in a 600 MW power plant unit

Qiyu Weng , Li Zhong , Fengyang Wang , Pengfei Li , Yuqun Zhuo , Pengbo Hu

ENG. Environ. ›› 2026, Vol. 20 ›› Issue (2) : 20

PDF (5025KB)
ENG. Environ. ›› 2026, Vol. 20 ›› Issue (2) :20 DOI: 10.1007/s11783-026-2120-1
RESEARCH ARTICLE

Catalytic oxidation of Hg0 by bromide over Ce-modified regenerated V-Mo/Ti catalyst: a field study conducted in a 600 MW power plant unit

Author information +
History +
PDF (5025KB)

Abstract

Mercury (Hg) is largely emitted from coal-fired power plants. For Hg purification, the oxidation of elemental Hg (Hg0) to Hg2+ in the flue gas over selective catalytic reduction (SCR) catalysts with halogen involvement is the most important step. Based on laboratory tests of Hg0 oxidation over cerium (Ce)-modified regenerated V2O5-MoO3/TiO2 (V-Mo/Ti) SCR catalysts in the presence of HBr, it is necessary to investigate how the Ce-modified catalysts perform in real power plants for further industrial application. Therefore, a 1-year field verification was conducted in a 600 MW power plant unit. The results showed that with increased CaBr2 addition to coal, the rate-determining factor for Hg0 oxidation shifted from the intrinsic catalytic properties of SCR catalysts to bromide concentrations. Meanwhile, owing to the decomposition of CaBr2, bromide could participate in Hg0 oxidation via adsorptive, homogeneous, and heterogeneous chemical processes. For NOx, its removal efficiency decreased from 96.22% to 61.10% over the Ce-modified catalyst after 1 year of operation, with little effect exerted by CaBr2, compared with a decrease from 95.79% to 43.92% over the unmodified catalysts. For SO3, only 41.78 mg/m3 of SO3 was generated from 6174.27 mg/m3 of SO2 over the Ce-modified catalysts after 1 year of operation compared with 97.29 mg/m3 of SO3 over the unmodified catalysts. This study verifies the long-term commercial applicability of Ce-modified regenerated V-Mo/Ti SCR catalysts in power plants.

Graphical abstract

Keywords

Regenerated V-Mo/Ti catalyst / Ce modification / Field verification / Hg0 oxidation / NOx removal / SO3 generation

Highlight

● High-concentration bromide has bigger effects on Hg0 oxidation than Ce modification.

● Bromides of HBr, Br and Br2 enhance Hg0 oxidation via three chemical processes.

● Ce modification lowers decrease level of Hg0 oxidation efficiencies as SCR proceeds.

● Ce modification contributes to higher NO x removal efficiency and anti-deactivation.

● Small loadings of Ce limits SO2 oxidation to SO3 over the modified SCR catalysts.

Cite this article

Download citation ▾
Qiyu Weng, Li Zhong, Fengyang Wang, Pengfei Li, Yuqun Zhuo, Pengbo Hu. Catalytic oxidation of Hg0 by bromide over Ce-modified regenerated V-Mo/Ti catalyst: a field study conducted in a 600 MW power plant unit. ENG. Environ., 2026, 20(2): 20 DOI:10.1007/s11783-026-2120-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abe H , Mizoguchi H , Eguchi R , Hosono H . (2024). Exploration of heterogeneous catalyst for molecular hydrogen ortho-para conversion. Exploration, 4(3): 20230040

[2]

ASTM (2008). Standard test method for elemental, oxidized, particle-bound and total mercury in flue gas generated from coal-fired stationary sources (Ontario Hydro Method) (D6784-02). Philadelphia: American Society for Testing and Materials International

[3]

Bilirgen H , Romero C . (2012). Mercury capture by boiler modifications with sub-bituminous coals. Fuel, 94: 361–367

[4]

Cao Y , Gao Z Y , Zhu J S , Wang Q H , Huang Y J , Chiu C C , Parker B , Chu P , Pant W P . (2008). Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal. Environ-mental Science & Technology, 42(1): 256–261

[5]

Chen C M , Jia W B , Liu S T , Cao Y . (2018). The enhancement of CuO modified V2O5–WO3/TiO2 based SCR catalyst for Hg° oxidation in simulated flue gas. Applied Surface Science, 436: 1022–1029

[6]

Chen L , Duan Y F , Zhuo Y Q , Yang L G , Zhang L , Yang X H , Yao Q , Jiang Y M , Xu X C . (2007). Mercury transformation across particulate control devices in six power plants of China: the co-effect of chlorine and ash composition. Fuel, 86(4): 603–610

[7]

China National Coal Association (2008). Proximate Analysis of Coal (GB/T 212-2008). Beijing: Standards Press of China (in Chinese)

[8]

Diamantopoulou I , Skodras G , Sakellaropoulos G P . (2010). Sorption of mercury by activated carbon in the presence of flue gas components. Fuel Processing Technology, 91(2): 158–163

[9]

Díaz-Somoano M , Unterberger S , Hein K R G . (2005). Using Wet-FGD systems for mercury removal. Journal of Environmental Monitoring, 7(9): 906–909

[10]

Dranga B A , Lazar L , Koeser H . (2012). Oxidation catalysts for elemental mercury in flue gases: a review. Catalysts, 2(1): 139–170

[11]

Eswaran S , Stenger H G . (2008). Effect of halogens on mercury conversion in SCR catalysts. Fuel Processing Technology, 89(11): 1153–1159

[12]

Fu T Z , Saracho A C , Haigh S K . (2023). Microbially induced carbonate precipitation (MICP) for soil strengthening: a comprehensive review. Biogeotechnics, 1(1): 100002

[13]

Galbreath K CZygarlicke C J (2000). Mercury transformations in coal combustion flue gas. Fuel Processing Technology, 65–66: 65–66

[14]

Gao F Y , Niu Y X , Cui Y , Liu Y Y , Luo N , Wen J J , Duan E H , Wang C Z , Yi H H , Zhou Y S . et al. (2024). Excellent performance of Ce doped CoMn2O4/TiO2 catalyst in NH3-SCR of NOx under H2O&SO2 conditions. Journal of Environmental Chemical Engineering, 12(5): 113849

[15]

Gao Z Y , Sun L W , Lv S K , Yang P F . (2016). Research on the effect of additives on mercury speciation in coal-fired derived flue gas. Environmental Progress & Sustainable Energy, 35(6): 1566–1574

[16]

General Administration of Quality SupervisionInspection of the People’s Republic of ChinaQuarantine Standardization Administration (2014)National . Determination of Chlorine in Coal (GB/T 3558-2014). Beijing: Standards Press of China (in Chinese)

[17]

He J , Reddy G K , Thiel S W , Smirniotis P G , Pinto N G . (2011). Ceria-modified manganese oxide/titania materials for removal of elemental and oxidized mercury from flue gas. The Journal of Physical Chemistry C, 115(49): 24300–24309

[18]

He S , Zhou J S , Zhu Y Q , Luo Z Y , Ni M J , Cen K F . (2009). Mercury oxidation over a vanadia-based selective catalytic reduction catalyst. Energy & Fuels, 23(1): 253–259

[19]

Hu L Y , Cui J H , Lu T , Wang Y L , Jia J P . (2024). Triple signal amplification electrochemical sensing platform for Hg2+ in water without direct modification of the working electrode. Frontiers of Environmental Science & Engineering, 18(7): 90

[20]

Huang W J , Xu H M , Qu Z , Zhao S J , Chen W M , Yan N Q . (2016). Significance of Fe2O3 modified SCR catalyst for gas-phase elemental mercury oxidation in coal-fired flue gas. Fuel Processing Technology, 149: 23–28

[21]

Kamata H , Ueno S I , Naito T , Yukimura A . (2008). Mercury oxidation over the V2O5(WO3)/TiO2 commercial SCR catalyst. Industrial & Engineering Chemistry Research, 47(21): 8136–8141

[22]

Lai H J , Ding X Z , Cui M J , Zheng J J , Chen Z B , Pei J L , Zhang J W . (2023). Mechanisms and influencing factors of biominera-lization based heavy metal remediation: a review. Bio-geotechnics, 1(3): 100039

[23]

Li D L , Weng Q Y , Qin Y D , Zhong L , Yu Z Y , Hu P B , Zhuo Y Q . (2020). Hg0 catalytic oxidation by HBr over Ce-modified regenerated selective catalytic reduction catalyst. Fuel, 276: 118149

[24]

Li H L , Wu C Y , Li Y , Zhang J Y . (2011). CeO2–TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Environmental Science & Technology, 45(17): 7394–7400

[25]

Li H L , Wu S K , Li L Q , Wang J , Ma W W , Shih K . (2015). CuO–CeO2/TiO2 catalyst for simultaneous NO reduction and Hg0 oxidation at low temperatures. Catalysis Science & Technology, 5(12): 5129–5138

[26]

Li M , Wang L , Chen J Y , Jiang Y L , Wang W J . (2014). Adsorption performance and mechanism of bentonite modified by ammonium bromide for gas-phase elemental mercury removal. Journal of Fuel Chemistry and Technology, 42(10): 1266–1272

[27]

Li S , Huang M , Cui M J , Xu K , Jin G X . (2023). Thermal and mechanical properties of bio-cemented quartz sand mixed with steel slag. Biogeotechnics, 1(3): 100036

[28]

Meng F Z , Han S Y , Lin L , Li J L , Chen K L , Jiang J G . (2024). Process optimization and mechanism study of ionic liquid-based mixed amine biphasic solvents for CO2 capture in biogas upgrading procedure. Frontiers of Environmental Science & Engineering, 18(8): 95

[29]

Niksa S , Naik C V , Berry M S , Monroe L . (2009). Interpreting enhanced Hg oxidation with Br addition at Plant Miller. Fuel Processing Technology, 90(11): 1372–1377

[30]

Pavlish J H , Sondreal E A , Mann M D , Olson E S , Galbreath K C , Laudal D L , Benson S A . (2003). Status review of mercury control options for coal-fired power plants. Fuel Processing Technology, 82(2−3): 89–165

[31]

Pudasainee D , Kim J H , Seo Y C . (2009). Mercury emission trend influenced by stringent air pollutants regulation for coal-fired power plants in Korea. Atmospheric Environment, 43(39): 6254–6259

[32]

Pudasainee D , Kim J H , Yoon Y S , Seo Y C . (2012). Oxidation, reemission and mass distribution of mercury in bituminous coal-fired power plants with SCR, CS-ESP and wet FGD. Fuel, 93: 312–318

[33]

Shi R , Shang L , Zhou C , Zhao Y X , Zhang T R . (2022). Interfacial wettability and mass transfer characterizations for gas–liquid –solid triple-phase catalysis. Exploration, 2(3): 20210046

[34]

Van Otten B , Buitrago P A , Senior C L , Silcox G D . (2011). Gas-phase oxidation of mercury by bromine and chlorine in flue gas. Energy & Fuels, 25(8): 3530–3536

[35]

Verma M , Sachan D , Kumar V , Ahmad W , Sharma N , Kim H . (2025). Highly recyclable EDTA-crosslinked chitosan-gelatin biopolymer adsorbent for separation and recovery of rare earth elements from aqueous solution. Frontiers of Environmental Science & Engineering, 19(4): 51

[36]

Wang F Y , Zhong L , Lyu H S , Han L P , Jiang J Z , Xiao P . (2017). Detection of SO3 in flue gas of coal-fired power plants with controlled cooling method. Clean Coal Technology, 23(4): 58–62

[37]

Wang S X , Zhang L , Li G H , Wu Y , Hao J M , Pirrone N , Sprovieri F , Ancora M P . (2010). Mercury emission and speciation of coal-fired power plants in China. Atmospheric Chemistry and Physics, 10(3): 1183–1192

[38]

Wang Z , Liu J , Zhang B K , Yang Y J , Zhang Z , Miao S . (2016). Mechanism of heterogeneous mercury oxidation by HBr over V2O5/TiO2 catalyst. Environmental Science & Technology, 50(10): 5398–5404

[39]

Wang Z , Pehkonen S O . (2004). Oxidation of elemental mercury by aqueous bromine: atmospheric implications. Atmospheric Environment, 38(22): 3675–3688

[40]

Yan N Q , Chen W M , Chen J , Qu Z , Guo Y F , Yang S J , Jia J P . (2011). Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas. Environ-mental Science & Technology, 45(13): 5725–5730

[41]

Yang S X , Zhu W P , Jiang Z P , Chen Z X , Wang J B . (2006). The surface properties and the activities in catalytic wet air oxidation over CeO2–TiO2 catalysts. Applied Surface Science, 252(24): 8499–8505

[42]

Yang W , Sun B B , Wang X , Zhu T Y , Wang J N , Wang B , Wang M W . (2018). Emissions in coal-fired flue gas characteristics of SO3 and particulate from Shanxi power plant. Environmental Engineering, 36(1): 83–87

[43]

Yang Y J , Liu J , Wang Z , Zhang Z . (2017). Homogeneous and heterogeneous reaction mechanisms and kinetics of mercury oxidation in coal-fired flue gas with bromine addition. Proceedings of the Combustion Institute, 36(3): 4039–4049

[44]

Zhang L , Zhuo Y Q , Chen L , Xu X C , Chen C H . (2008). Mercury emissions from six coal-fired power plants in China. Fuel Processing Technology, 89(11): 1033–1040

[45]

Zhao L K , Li C T , Wang Y , Wu H Y , Gao L , Zhang J , Zeng G M . (2016). Simultaneous removal of elemental mercury and NO from simulated flue gas using a CeO2 modified V2O5–WO3/TiO2 catalyst. Catalysis Science & Technology, 6(15): 6076–6086

[46]

Zhao L K , Li C T , Zhang J , Zhang X N , Zhan F M , Ma J F , Xie Y , Zeng G M . (2015). Promotional effect of CeO2 modified support on V2O5–WO3/TiO2 catalyst for elemental mercury oxidation in simulated coal-fired flue gas. Fuel, 153: 361–369

[47]

Zhao M S , Wang X H , Wang S G , Gao M M . (2024). Cr-containing wastewater treatment based on Cr self-catalysis: a critical review. Frontiers of Environmental Science & Engineering, 18(1): 1

[48]

Zhao S L , Duan Y F , Yao T , Liu M , Lu J H , Tan H Z , Wang X B , Wu L T . (2017). Study on the mercury emission and trans-formation in an ultra-low emission coal-fired power plant. Fuel, 199: 653–661

[49]

Zheng D M , Pauporté T , Schwob C , Coolen L . (2024). Models of light absorption enhancement in perovskite solar cells by plasmonic nanoparticles. Exploration, 4(1): 20220146

[50]

Zhou Q , Duan Y F , Chen M M , Liu M , Lu P . (2017). Studies on mercury adsorption species and equilibrium on activated carbon surface. Energy & Fuels, 31(12): 14211–14218

[51]

Zhuang Y , Laumb J , Liggett R , Holmes M , Pavlish J . (2007a). Impacts of acid gases on mercury oxidation across SCR catalyst. Fuel Processing Technology, 88(10): 929–934

[52]

Zhuang Y , Thompson J , Zygarlicke C , Pavlish J . (2007b). Impact of calcium chloride addition on mercury transformations and control in coal flue gas. Fuel, 86(15): 2351–2359

RIGHTS & PERMISSIONS

Higher Education Press 2026

AI Summary AI Mindmap
PDF (5025KB)

Supplementary files

Supplementary materials

326

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/