Design of Sn-doped MoS2 piezocatalyst for high-efficiency antibiotic degradation: mechanism and performance

Mingyang Xu , Xiang Wang , Jingyu Yu , Zhenlin Mu , Shengjun Yang , Chenxi Guo , Guoxuan Li , Yinglong Wang , Fanqing Meng

ENG. Environ. ›› 2026, Vol. 20 ›› Issue (1) : 17

PDF (11363KB)
ENG. Environ. ›› 2026, Vol. 20 ›› Issue (1) : 17 DOI: 10.1007/s11783-026-2117-9
RESEARCH ARTICLE

Design of Sn-doped MoS2 piezocatalyst for high-efficiency antibiotic degradation: mechanism and performance

Author information +
History +
PDF (11363KB)

Abstract

Harnessing renewable energy to decrease pollution is a significant area of investigation within environmental management. In this paper, tin-doped molybdenum disulfide (Sn-MoS2) piezoelectric materials with excellent piezoelectric properties have been prepared. PFM and electrochemical test results show that Sn-MoS2 has enhanced piezoelectric properties. The findings from UV-Vis diffuse reflectance and XPS valence band analysis indicate that the introduction of tin modifies the band gap of MoS2, thereby facilitating electron flow within the material. In an ultrasonic environment, Sn-MoS2 achieved a tetracycline removal efficiency of 98.3% in just 50 min, 1.51 times more effective than pure MoS2. The EPR results revealed that hydroxyl (–OH) and superoxide radicals (–O2) significantly contribute to the breakdown of tetracycline (TC). In addition, the potential degradation mechanisms and pathways have been suggested. This research offers a viable approach for addressing waterborne organic contaminants and holds significant potential for wider applications.

Graphical abstract

Keywords

Molybdenum disulfide / Sn-doped / Miezoelectric catalysis / Tetracycline / Degradation mechanism

Highlight

● Successfully prepared Sn-doped molybdenum disulfide piezoelectric material.

● Studied the effect of Sn-doped on the piezoelectric properties of MoS2.

● Under ultrasonic activation, Sn-MoS2 could degrade 98.3% of TC.

● Discussed the degradation pathways of TC and toxicity assessment.

Cite this article

Download citation ▾
Mingyang Xu, Xiang Wang, Jingyu Yu, Zhenlin Mu, Shengjun Yang, Chenxi Guo, Guoxuan Li, Yinglong Wang, Fanqing Meng. Design of Sn-doped MoS2 piezocatalyst for high-efficiency antibiotic degradation: mechanism and performance. ENG. Environ., 2026, 20(1): 17 DOI:10.1007/s11783-026-2117-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albornoz L L , Bortolozzi J P , Banús E D , Brussino P , Da Silva S W , Bernardes A M , Ulla M A . (2021). Synthesis and characterization of immobilized titanium-zirconium Sn-doped oxides onto metallic meshes and their photocatalytic activity for erythro-mycin mineralization. Chemical Engineering Journal, 414: 128891

[2]

Chen S FHu Y FMeng S GFu X L (2014). Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3. Applied Catalysis B: Environmental, 150–151: 150–151

[3]

Chen Z , Liu W C , Zheng L J , Chen Q Q , Liu Y F , Lan S Y , Zhu M S . (2025). Enhancing production of hydrogen and simultaneous degradation of ciprofloxacin over Sn doped SrTiO3 piezocatalyst. Separation and Purification Technology, 353: 128307

[4]

Cheng Y H , Chen J , Wang P F , Liu W , Che H N , Gao X , Liu B , Ao Y H . (2022). Interfacial engineering boosting the piezocatalytic performance of Z-scheme heterojunction for carbamazepine degradation: mechanism, degradation pathway and DFT calculation. Applied Catalysis B: Environmental, 317: 121793

[5]

Chu L B , Wang J L . (2023). Degradation of antibiotics in activated sludge by ionizing radiation: Effect of adsorption affinity of antibiotics. Chemical Engineering Journal, 468: 143821

[6]

Fan X B , Xu P T , Zhou D K , Sun Y F , Li Y C , Nguyen M A T , Terrones M , Mallouk T E . (2015). Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Letters, 15(9): 5956–5960

[7]

Gao B W , Sun M X , Ding W , Ding Z P , Liu W Z . (2021). Decoration of γ-graphyne on TiO2 nanotube arrays: improved photo-electrochemical and photoelectrocatalytic properties. Applied Catalysis B: Environmental, 281: 119492

[8]

Ghosh D , Ghosal Chowdhury M , Biswas R , Haldar K K , Patra A . (2023). Europium molybdate/molybdenum disulfide nano-structures with efficient electrocatalytic activity for the hydrogen evolution reaction. ACS Applied Nano Materials, 6(9): 7218–7228

[9]

Ghosh S , Withanage S S , Chamlagain B , Khondaker S I , Harish S , Saha B B . (2020). Low pressure sulfurization and characterization of multilayer MoS2 for potential applications in supercapacitors. Energy, 203: 117918

[10]

Gopannagari M , Rangappa A P , Seo S , Kim E , Reddy K a J , Bhavani P , Reddy D A , Kumar D P , Kim T K . (2022). Atomically engineered molybdenum di-sulfide by dual heteroatom doping for accelerating hydrogen evolution reaction on cadmium sulfide nanorods. Solid State Sciences, 134: 107047

[11]

Guo F , Huang X L , Chen Z H , Ren H J , Li M Y , Chen L Z . (2020). MoS2 nanosheets anchored on porous ZnSnO3 cubes as an efficient visible-light-driven composite photocatalyst for the degradation of tetracycline and mechanism insight. Journal of Hazardous Materials, 390: 122158

[12]

Guo S Y , Luo H H , Li Y , Chen J Z , Mou B , Shi X Q , Sun G X . (2021). Structure-controlled three-dimensional BiOI/MoS2 microspheres for boosting visible-light photocatalytic degra-dation of tetracycline. Journal of Alloys and Compounds, 852: 157026

[13]

Guo Z R , Zhang X , Li X Y , Cui C , Zhang Z L , Li H S , Zhang D X , Li J Y , Xu X Y , Zhang J T . (2024). Enhanced charge separation by incomplete calcination modified co-doped TiO2 nanoparticle for isothiazolinone photocatalytic degradation. Nano Research, 17(6): 4834–4843

[14]

Huang W , Li Y F , Fu Q M , Chen M . (2022). Fabrication of a novel biochar decorated nano-flower-like MoS2 nanomaterial for the enhanced photodegradation activity of ciprofloxacin: perfor-mance and mechanism. Materials Research Bulletin, 147: 111650

[15]

Huang X , Zeng Z Y , Zhang H . (2013). Metal dichalcogenide nanosheets: preparation, properties and applications. Chemical Society Reviews, 42(5): 1934–1946

[16]

Huo B J , Meng F Q , Yang J W , Wang Y L , Qi J G , Ma W , Wang Z C , Wang J X , Wang Z H . (2022). High efficiently piezocatalysis degradation of tetracycline by few-layered MoS2/GDY: mechanism and toxicity evaluation. Chemical Engineering Journal, 436: 135173

[17]

Jin C Y , Kang J , Li Z L , Wang M , Wu Z M , Xie Y H . (2020). Enhanced visible light photocatalytic degradation of tetracycline by MoS2/Ag/g-C3N4 Z-scheme composites with peroxy-monosulfate. Applied Surface Science, 514: 146076

[18]

Kang Z H , Qin N , Lin E Z , Wu J , Yuan B W , Bao D H . (2020). Effect of Bi2WO6 nanosheets on the ultrasonic degradation of organic dyes: roles of adsorption and piezocatalysis. Journal of Cleaner Production, 261: 121125

[19]

Karmakar S , Biswas S , Kumbhakar P . (2018). A comparison of temperature dependent photoluminescence and photo-catalytic properties of different MoS2 nanostructures. Applied Surface Science, 455: 379–391

[20]

Karmakar S , Pramanik A , Kole A K , Chatterjee U , Kumbhakar P . (2022). Syntheses of flower and tube-like MoSe2 nanostructures for ultrafast piezocatalytic degradation of organic dyes on cotton fabrics. Journal of Hazardous Materials, 424: 127702

[21]

Khan S , He X X , Khan J A , Khan H M , Boccelli D L , Dionysiou D D . (2017). Kinetics and mechanism of sulfate radical- and hydroxyl radical-induced degradation of highly chlorinated pesticide lindane in UV/peroxymonosulfate system. Chemical Engineering Journal, 318: 135–142

[22]

Kumar A , Rana S , Dhiman P , Sharma P , Lai C W , Sharma G . (2025). Recent progress in integration of photocatalysis and nano-filtration for advanced wastewater treatment. Frontiers of Environmental Science & Engineering, 19(11): 150

[23]

Kumar P , Deng Z Y , Tsai P Y , Chiu C Y , Lin C W , Chaudhary P , Huang Y C , Chen K L . (2024). Enhanced visible-light photo-catalytic activity of Fe3O4@MoS2@Au nanocomposites for methylene blue degradation through Plasmon-Induced charge transfer. Separation and Purification Technology, 342: 126988

[24]

Lan S Y , Feng J X , Xiong Y , Tian S H , Liu S W , Kong L J . (2017). Performance and mechanism of piezo-catalytic degradation of 4-chlorophenol: finding of effective piezo-dechlorination. Environ-mental Science & Technology, 51(11): 6560–6569

[25]

Li S , Liu W Y , Shi X M , Liu S , Hu T , Song L , Lu H Z , Chen X , Wu C S . (2019). Non-dominant trees significantly enhance species richness of epiphytic lichens in subtropical forests of southwest China. Fungal Ecology, 37: 10–18

[26]

Li W H , Zhang X L , Yang J , Zhou S , Song C Y , Cheng P , Zhang Y Q , Feng B J , Wang Z X , Lu Y H . et al. (2023). Emergence of ferroelectricity in a nonferroelectric monolayer. Nature Commu-nications, 14(1): 2757

[27]

Li X G , Guo Y X , Yan L G , Yan T , Song W , Feng R , Zhao Y W . (2022). Enhanced activation of peroxymonosulfate by ball-milled MoS2 for degradation of tetracycline: Boosting molybdenum activity by sulfur vacancies. Chemical Engineering Journal, 429: 132234

[28]

Liu C H , Dai H L , Tan C Q , Pan Q Y , Hu F P , Peng X M . (2022a). Photo-fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: mechanism insight, degradation pathways and DFT calculation. Applied Catalysis B: Environ-mental, 310: 121326

[29]

Liu C X , Xu Q M , Yu S C , Cheng J S , Yuan Y J . (2020). Bio-removal of tetracycline antibiotics under the consortium with probiotics Bacillus clausii T and Bacillus amyloliquefaciens producing biosurfactants. Science of the Total Environment, 710: 136329

[30]

Liu J Q , Guo C J , Wu N N , Li C G , Qu R J , Wang Z Y , Jin R Y , Qiao Y N , He Z D , Lu J . et al. (2022b). Efficient photocatalytic degradation of PFOA in N-doped In2O3/simulated sunlight irradiation system and its mechanism. Chemical Engineering Journal, 435: 134627

[31]

Löffler P , Escher B I , Baduel C , Virta M P , Lai F Y . (2023). Antimicrobial transformation products in the aquatic environ-ment: global occurrence, ecotoxicological risks, and potential of antibiotic resistance. Environmental Science & Technology, 57(26): 9474–9494

[32]

Marinov A D , Bravo Priegue L , Shah A R , Miller T S , Howard C A , Hinds G , Shearing P R , Cullen P L , Brett D J L . (2023). Ex situ characterization of 1T/2H MoS2 and their carbon composites for energy applications, a review. ACS Nano, 17(6): 5163–5186

[33]

Najeeb-Uz-Zaman Haider S , Qureshi W A , Khan S , Ali R N , Naveed A , Ali A , Moradian J M , Wahab R , Liu Q Q , Yang J . (2024). Z-scheme Bi2WO6/KCN heterojunction towards efficient photo-catalytic degradation of tetracycline hydrochloride. Materials Today Sustainability, 27: 100921

[34]

Nie J K , Yu X J , Liu Z B , Zhang J , Ma Y , Chen Y Y , Ji Q G , Zhao N N , Chang Z . (2022). Energy band reconstruction mechanism of Cl-doped Cu2O and photocatalytic degradation pathway for levofloxacin. Journal of Cleaner Production, 363: 132593

[35]

Peng F , Yin R , Liao Y H , Xie X , Sun J L , Xia D H , He C . (2020). Kinetics and mechanisms of enhanced degradation of ibuprofen by piezo-catalytic activation of persulfate. Chemical Engineering Journal, 392: 123818

[36]

Ramki K , Rajapriya A , Sakthivel P , Murugadoss G , Thangamuthu R , Rajesh Kumar M . (2020). Rapid degradation of organic dyes under sunlight using tin-doped ZnS nanoparticles. Journal of Materials Science: Materials in Electronics, 31(11): 8750–8760

[37]

Ren T T , Tian W R , Shen Q , Yuan Z T , Chen D Y , Li N J , Lu J M . (2021). Enhanced piezocatalysis of polymorphic few-layered MoS2 nanosheets by phase engineering. Nano Energy, 90: 106527

[38]

Ruan L J , Jia Y M , Guan J F , Xue B , Huang S H , Wu Z , Li G R , Cui X Z . (2022). Highly piezocatalysis of metal-organic frameworks material ZIF-8 under vibration. Separation and Purification Technology, 283: 120159

[39]

Singh G , Sharma M , Vaish R . (2021). Flexible Ag@LiNbO3/PVDF composite film for piezocatalytic dye/pharmaceutical degradation and bacterial disinfection. ACS Applied Materials & Interfaces, 13(19): 22914–22925

[40]

Song Z , Ma Y L , Li C E . (2019). The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO2/graphene nanocomposite. Science of the Total Environment, 651: 580–590

[41]

Talukdar K , Saravanakumar K , Kim Y , Fayyaz A , Kim G , Yoon Y , Park C M . (2021). Rational construction of CeO2–ZrO2@MoS2 hybrid nanoflowers for enhanced sonophotocatalytic degradation of naproxen: Mechanisms and degradation pathways. Composites Part B: Engineering, 215: 108780

[42]

Wang C , Zhang T A , Luo J L , Wu M L , Niu J F , Shang E X , Ni C S , Ni J P . (2022). Synergistic enhancement of piezocatalysis and electrochemical oxidation for the degradation of ciprofloxacin by PbO2 intercalation material. Separation and Purification Technology, 297: 121528

[43]

Wang R Y , Liu H J , Zhang K , Zhang G , Lan H C , Qu J H . (2021). Ni(II)/Ni(III) redox couple endows Ni foam-supported Ni2P with excellent capability for direct ammonia oxidation. Chemical Engineering Journal, 404: 126795

[44]

Wang X Y , Hu X Y , Qu Z J , Sun T , Huang L H , Xu S M . (2024). MoS2@MWCNTs with rich vacancy defects for effective piezocatalytic degradation of norfloxacin via innergenerated-H2O2: enhanced nonradical pathway and synergistic mechanism with radical pathway. ACS Applied Materials & Interfaces, 16(20): 26257–26271

[45]

Wang Y M , Ma H C , Liu J J , Zhang Z A , Yu Y C , Zuo S L . (2023). Enhanced non-layer-dependent piezo-response in sailboat-like vertical molybdenum disulfide nanosheets for piezo-catalytic hydrogen evolution and dye degradation: Effect of microstructure and phase composition. Journal of Colloid and Interface Science, 642: 304–320

[46]

Xiang Y B , Huang Y H , Xiao B , Wu X Y , Zhang G K . (2020). Magnetic yolk-shell structure of ZnFe2O4 nanoparticles for enhanced visible light photo-Fenton degradation towards antibiotics and mechanism study. Applied Surface Science, 513: 145820

[47]

Xu R Y , Shen Q H , Chen L J . (2025). The γ-MnO2/NF mediated peroxymonosulfate activation for expeditious 2,4,6-trichloro-phenol degradation: performance, pathways, and mechanism. Frontiers of Environmental Science & Engineering, 19(8): 108

[48]

Yin X D , Sun X J , Mao Y F , Wang R Z , Li D H , Xie W Y , Liu Z H , Liu Z S . (2023). Synergistically enhanced photocatalytic degradation of tetracycline hydrochloride by Z-scheme hetero-junction MT-BiVO4 microsphere/P-doped g-C3N4 nanosheet composite. Journal of Environmental Chemical Engineering, 11(2): 109412

[49]

Yu C , Lan S Y , Cheng S T , Zeng L X , Zhu M S . (2022). Ba substituted SrTiO3 induced lattice deformation for enhanced piezocatalytic removal of carbamazepine from water. Journal of Hazardous Materials, 424: 127440

[50]

Yu W L , Fang N J , Wang R B , Liu Z B , Chu Y H , Huang C X . (2024). Molecule dipole and steric hindrance engineering to modulate electronic structure of PTCDA/PTA for highly efficient photocatalytic hydrogen evolution and antibiotics degradation. Advanced Functional Materials, 34(17): 2314894

[51]

Zhang Y X , Zhao Y Y , Li J , Li L , Liu Y , Ma D , Li D C , Li X H . (2018). Facile synthesis of monodispersed yolk-shelled molyb-denum disulfide microspheres with enhanced photo-catalytic properties. Inorganic Chemistry Frontiers, 5(12): 3082–3090

[52]

Zheng Y , Cheng M Q , Wu X Y , Zhang S , Liu Z , Li Y Q , Shao W Q , Lin Q , Tan J S , Gao S W . et al. (2022). Sm-doped(1–x) Pb(Mg1/3Nb2/3)O3-xPbTiO3 nanostructures for piezocatalytic dye degradation. ACS Applied Nano Materials, 5(1): 277–287

RIGHTS & PERMISSIONS

Higher Education Press 2026

AI Summary AI Mindmap
PDF (11363KB)

Supplementary files

Supplementary materials

225

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/