Next-generation biochar adsorbents from waste biomass: functionalization strategies and real-world water treatment applications

Mohssine Ghazoui , Otmane Boudouch , Rajaa Zahnoune , Aboubacar Sidigh Sylla , Safa Aharrouy , Siham Dabali , Reda Elkacmi

ENG. Environ. ›› 2026, Vol. 20 ›› Issue (1) : 12

PDF (3361KB)
ENG. Environ. ›› 2026, Vol. 20 ›› Issue (1) : 12 DOI: 10.1007/s11783-026-2112-1
REVIEW ARTICLE

Next-generation biochar adsorbents from waste biomass: functionalization strategies and real-world water treatment applications

Author information +
History +
PDF (3361KB)

Abstract

Biochar has emerged as a sustainable and cost-effective adsorbent for the removal of emerging contaminants from wastewater. This review critically explores recent advances in the design and application of engineered biochars derived from diverse waste biomasses, focusing on the link between structural modifications and pollutant-specific removal mechanisms. Functionalization strategies including physical and chemical activation, heteroatom doping, surface grafting, and hybrid composite formation are systematically analyzed for their impact on adsorption efficiency and selectivity toward dyes, heavy metals, pharmaceuticals, and per- and polyfluoroalkyl substances. Particular attention is paid to performance in column systems, regeneration potential, and behaviour in complex real-world matrices, which remain underexplored in current literature. The diversity of adsorption mechanisms such as electrostatic interactions, π–π stacking, hydrogen bonding, ion exchange, and surface complexation is discussed in relation to surface chemistry and pollutant type. Despite promising results, critical challenges persist, including biochar heterogeneity, lack of standard production protocols, potential leaching of dopants, and limitations in large-scale implementation. This review highlights the need for unified assessment frameworks, life cycle analyses, and integration strategies aligned with circular economy principles. By bridging the gap between laboratory innovation and field-scale application, this work provides a comprehensive roadmap for researchers, engineers, and stakeholders seeking to deploy next-generation biochar-based sorbents in sustainable water treatment systems.

Graphical abstract

Keywords

Biochar / Waste biomass valorization / Surface functionalization / Adsorption mechanisms / Emerging contaminants / Water treatment

Highlight

● Waste biomass valorized into engineered biochar for water pollutant removal.

● Surface functionalization enhances selectivity and adsorption efficiency.

● Pollutant-specific mechanisms mapped for dyes, metals, drugs, and PFAS.

● Real effluent tests reveal gaps in scalability and long-term stability.

● Integration with hybrid systems boosts treatment performance and reuse.

Cite this article

Download citation ▾
Mohssine Ghazoui, Otmane Boudouch, Rajaa Zahnoune, Aboubacar Sidigh Sylla, Safa Aharrouy, Siham Dabali, Reda Elkacmi. Next-generation biochar adsorbents from waste biomass: functionalization strategies and real-world water treatment applications. ENG. Environ., 2026, 20(1): 12 DOI:10.1007/s11783-026-2112-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdulhameed A S , Jawad A H , Kashi E , Radzun K A , ALOthman Z A , Wilson L D . (2022). Insight into adsorption mechanism, modeling, and desirability function of crystal violet and methylene blue dyes by microalgae: Box-Behnken design application. Algal Research, 67: 102864

[2]

Abo L D , Areti H A , Jayakumar M , Rangaraju M , Subashini S . (2025). Nanobiomaterials-enabled sensors for heavy metal detection and remediation in wastewater systems: advances in synthesis, characterization, and environmental applications. Results in Engineering, 27: 105694

[3]

Adam M R , Othman M H D , Kurniawan T A , Puteh M H , Ismail A F , Khongnakorn W , Rahman M A , Jaafar J . (2022). Advances in adsorptive membrane technology for water treatment and resource recovery applications: a critical review. Journal of Environmental Chemical Engineering, 10(3): 107633

[4]

Ahmad M , Rajapaksha A U , Lim J E , Zhang M , Bolan N , Mohan D , Vithanage M , Lee S S , Ok Y S . (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99: 19–33

[5]

Ahmed S F , Mehejabin F , Chowdhury A A , Almomani F , Khan N A , Badruddin I A , Kamangar S . (2024). Biochar produced from waste-based feedstocks: mechanisms, affecting factors, economy, utilization, challenges, and prospects. GCB Bioenergy, 16(8): e13175

[6]

Akaniro I R , Wang G H , Wang P X , Zhang R L , Xue W H , Ye J , Wong J W C , Zhao J . (2025). pH-tuneable simultaneous and selective dye wastewater remediation with digestate-derived biochar: adsorption behaviour, mechanistic insights and potential application. Green Chemical Engineering, 6(3): 344–356

[7]

Akhtar M S , Ali S , Zaman W . (2024). Innovative adsorbents for pollutant removal: exploring the latest research and applications. Molecules, 29(18): 4317

[8]

Akpomie K G , Conradie J . (2020). Synthesis, characterization, and regeneration of an inorganic–organic nanocomposite (ZnO@ biomass) and its application in the capture of cationic dye. Scientific Reports, 10(1): 14441

[9]

Alhashimi H A , Aktas C B . (2017). Life cycle environmental and economic performance of biochar compared with activated carbon: a meta-analysis. Resources, Conservation and Recycling, 118: 13–26

[10]

Al-Jabari M , Dwiek H , Zahdeh N , Eqefan N . (2017). Reducing organic pollution of wastewater from milk processing industry by adsorption on marlstone particles. The International Journal of Thermal & Environmental Engineering, 15(1): 57–61

[11]

Alsawaftah N , Abuwatfa W , Darwish N , Husseini G . (2021). Review on membrane fouling. Water, 13(9): w13091327

[12]

Al-Swadi H A , Al-Farraj A S , Al-Wabel M I , Ahmad M , Ahmad J , Mousa M A , Rafique M I , Usama M . (2023). Kaolinite-composited biochar and hydrochar as low-cost adsorbents for the removal of cadmium, copper, lead, and zinc from aqueous solutions. Sustainability, 15(22): 15978

[13]

Ali-Ahmad A , Hamieh T , Roques-Carmes T , Hmadeh M , Toufaily J . (2023). Effect of modulation and functionalization of UiO-66 type MOFs on their surface thermodynamic properties and Lewis acid–base behavior. Catalysts, 13(1): 205

[14]

Alkhaldi H , Alharthi S , Alharthi S , AlGhamdi H A , AlZahrani Y M , Mahmoud S A , Amin L G , Al-Shaalan N H , Boraie W E , Attia M S . et al. (2024). Sustainable polymeric adsorbents for adsorption-based water remediation and pathogen deactivation: a review. RSC Advances, 14(45): 33143–33190

[15]

Alsawy TRashad EEl-Qelish MMohammed R H (2022). A comprehensive review on the chemical regeneration of biochar adsorbent for sustainable wastewater treatment. npj Clean Water, 5(1): 29

[16]

Ambaye T G , Vaccari M , van Hullebusch E D , Amrane A , Rtimi S . (2021). Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. International Journal of Environmental Science and Technology, 18(10): 3273–3294

[17]

Araújo C V M, Gómez L, Silva D C V R, Pintado-Herrera M G, Lara-Martín P A, Hampel M, Blasco J (2019). Risk of triclosan based on avoidance by the shrimp Palaemon varians in a heterogeneous contamination scenario: how sensitive is this approach? Chemosphere, 235: 126–135

[18]

Bag O , Tekin K , Karagoz S . (2020). Microporous activated carbons from lignocellulosic biomass by KOH activation. Fullerenes, Nanotubes and Carbon Nanostructures, 28(12): 1030–1037

[19]

Bibri S E (2018). Approaches to futures studies: a scholarly and planning approach to strategic smart sustainable city develop-ment. In: Bibri S E, ed. Smart Sustainable Cities of the Future. Cham: Springer, 601–660

[20]

Blasi A , Verardi A , Lopresto C G , Siciliano S , Sangiorgio P . (2023). Lignocellulosic agricultural waste valorization to obtain valuable products: an overview. Recycling, 8(4): 61

[21]

Bratovčić A , Tomašić V . (2024). Photocatalytic composites based on biochar for antibiotic and dye removal in water treatment. Processes, 12(12): 2746

[22]

Campbell R M , Anderson N M , Daugaard D E , Naughton H T . (2018). Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty. Applied Energy, 230: 330–343

[23]

Campos-Pereira H , Kleja D B , Ahrens L , Enell A , Kikuchi J , Pettersson M , Gustafsson J P . (2023). Effect of pH, surface charge and soil properties on the solid–solution partitioning of perfluoroalkyl substances (PFASs) in a wide range of temperate soils. Chemosphere, 321: 138133

[24]

Cao X F , Sun S N , Sun R C . (2017). Application of biochar-based catalysts in biomass upgrading: a review. RSC Advances, 7(77): 48793–48805

[25]

Cao S , Zhu R , Wu D , Su H , Liu Z , Chen Z . (2024). Hydrogen bonding and π–π interactions in mephedrone adsorption. Environmental Pollution, 342, 123044:

[26]

Carvalho J , Nascimento L , Soares M , Valério N , Ribeiro A , Faria L , Silva A , Pacheco N , Araújo J , Vilarinho C . (2022). Life cycle assessment (LCA) of biochar production from a circular economy perspective. Processes, 10(12): 2684

[27]

Chavan D, Mayilswamy N, Chame S, Kandasubramanian B (2024). Biochar Adsorption for PFAS Removal. CleanMat, 1(1), 52–77

[28]

Chen Y Q , Wang D H , Wang X L , Wu J , Song S F . (2025). Enhanced adsorption of phenol using EDTA-4Na- and KOH-modified almond shell biochar. Sustainable Environment Research, 35(1): 4

[29]

Chen Z S , Li Y , Cai Y W , Wang S H , Hu B W , Li B F , Ding X D , Zhuang L , Wang X K . (2023). Application of covalent organic frameworks and metal–organic frameworks nanomaterials in organic/inorganic pollutants removal from solutions through sorption-catalysis strategies. Carbon Research, 2(1): 8

[30]

Chistie S M , Naik S U , Rajendra P , Apeksha R K , Mishra G , Albasher S , Chinnam G P , Jeppu Z , Arif J . (2025). Production and characterization of magnetic Biochar derived from pyrolysis of waste areca nut husk for removal of methylene blue dye from wastewater. Scientific Reports, 15(1): 23209

[31]

Claverie M , Garcia J , Prevost T , Brendlé J , Limousy L . (2019). Inorganic and hybrid (organic-inorganic) lamellar materials for heavy metals and radionuclides capture in energy wastes management: a review. Materials, 12(9): 1399

[32]

Collivignarelli M C , Illankoon W A M A N , Milanese C , Calatroni S , Caccamo F M , Medina-Llamas M , Girella A , Sorlini S . (2024). Modified agricultural biochar for metal adsorption. Water, 16(5):

[33]

Condeço J A D , Hariharakrishnan S , Ofili O M , Mateus M M , Bordado J M , Correia M J N. . (2021). Energetic valorisation of agricultural residues by solvent-based liquefaction. Biomass and Bioenergy, 147: 106003

[34]

Dai L L , Zhou N , Li H , Deng W Y , Cheng Y L , Wang Y P , Liu Y H , Cobb K , Lei H W , Chen P . et al. (2020). Recent advances in improving lignocellulosic biomass-based bio-oil production. Journal of Analytical and Applied Pyrolysis, 149: 104845

[35]

Das O , Kim N K , Sarmah A K , Bhattacharyya D . (2017). Development of waste based biochar/wool hybrid biocomposites: flammability characteristics and mechanical properties. Journal of Cleaner Production, 144: 79–89

[36]

Darama S E , Gürkan E H , Terzi Ö , Çoruh S . (2021). Zinc removal using walnut shell biochar. Environmental Management, 67(3): 498–505

[37]

Dawood E A , Mohammed T J , Al-Timimi B A , Khader E H . (2025). Photocatalytic degradation of petroleum wastewater using ZnO-loaded pistachio shell biochar: a sustainable approach for oil and COD removal. Reactions, 6(3): 38

[38]

Dehghani M H , Hassani A H , Karri R R , Younesi B , Shayeghi M , Salari M , Zarei A , Yousefi M , Heidarinejad Z . (2021). Process optimization and enhancement of pesticide adsorption by porous adsorbents by regression analysis and parametric modelling. Scientific Reports, 11(1): 11719

[39]

Deng Y , Li X D , Ni F Q , Liu Q , Yang Y P , Wang M , Ao T Q , Chen W Q . (2021). Synthesis of magnesium modified biochar for removing copper, lead and cadmium in single and binary systems from aqueous solutions: adsorption mechanism. Water, 13(5): 599

[40]

Diaz E , Sanchis I , Coronella C J , Mohedano A F . (2022). Activated carbons from hydrothermal carbonization and chemical activation of olive stones: application in sulfamethoxazole adsorption. Resources, 11(5): 43

[41]

Dilekoğlu M F . (2022). Malachite green adsorption from aqueous solutions onto biochar derived from sheep manure: adsorption kinetics, isotherm, thermodynamic, and mechanism. International Journal of Phytoremediation, 24(4): 436–446

[42]

Dong Y Q , Liang J J , E Z Y , Song J Y , Liu C J , Ding Z , Wang W , Zhang W T . (2024). Preparation of biochar/iron mineral com-posites and their adsorption of methyl orange. RSC Advances, 14(46): 33977–33986

[43]

Dönmez F , Aker V , Ayas N . (2022). The evaluation of Ni–Co/Al2O3 via olive pomace pyrolysis to generate hydrogen-rich gas: experimental and kinetic study. International Journal of Hydrogen Energy, 47(45): 19538–19554

[44]

El Jery A , Alawamleh H S K , Sami M H , Abbas H A , Sammen S S , Ahsan A , Imteaz M A , Shanableh A , Shafiquzzaman M , Osman H . et al. (2024). Isotherms, kinetics and thermodynamic mechanism of methylene blue dye adsorption on synthesized activated carbon. Scientific Reports, 14(1): 970

[45]

Elkacmi R , Bennajah M . (2019). Advanced oxidation technologies for the treatment and detoxification of olive mill wastewater: a general review. Journal of Water Reuse and Desalination, 9(4): 463–505

[46]

Elkacmi R , Zahnoune R , El Amri R , Boudouch O . (2023). Application of electrocoagulation process for the removal of chloroquine from an aqueous solution. H2Open Journal, 6(1): 75–87

[47]

Elmouwahidi A , Zapata-Benabithe Z , Carrasco-Marín F , Moreno-Castilla C . (2012). Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresource Technology, 111: 185–190

[48]

El-Shafie S. , A. El-Azazy . (2023). TiO2-biochar for methyl orange removal. Applied Water Science, 13: 20

[49]

Enaime G , Baçaoui A , Yaacoubi A , Lübken M . (2020). Biochar for wastewater treatment 10, 3492. Applied Sciences, 10: 3492

[50]

Faheem J K , Du J G , Bao M A , Hassan S , Irshad M A . (2019). Multi-functional biochar novel surface chemistry for efficient capture of anionic Congo red dye: behavior and mechanism. Arabian Journal for Science and Engineering, 44(12): 10127–10139

[51]

Fakhar A , Canatoy R C , Galgo S J C , Rafique M , Sarfraz R . (2025). Advancements in modified biochar production techniques and soil application: a critical review. Fuel, 400: 135745

[52]

Fawzy S , Osman A I , Mehta N , Moran D , Al-Muhtaseb A H , Rooney D W . (2022). Atmospheric carbon removal via industrial biochar systems: a techno-economic-environmental study. Journal of Cleaner Production, 371: 133660

[53]

Fdez-Sanromán A , Pazos M , Rosales E , Sanromán M A . (2020). Unravelling the environmental application of biochar as low-cost biosorbent: a review. Applied Sciences, 10(21): 7810

[54]

Fernández I , Pérez S F , Fernández-Ferreras J , Llano T . (2024). Microwave-assisted pyrolysis of forest biomass. Energies, 17(19): 4852

[55]

Foroutan R , Peighambardoust S J , Ghojavand S , Farjadfard S , Ramavandi B . (2023). Cadmium elimination from wastewater using potato peel biochar modified by ZIF-8 and magnetic nanoparticle. Colloid and Interface Science Communications, 55: 100723

[56]

Gallego-Ramírez C , Chica E , Rubio-Clemente A . (2024a). A study of the feasibility of Pinus patula biochar: the regeneration of the indigo carmine-loaded biochar and its efficiency for real textile wastewater treatment. Processes, 12(5): 939

[57]

Gallego-Ramírez C , Chica E , Rubio-Clemente A . (2024). Combi-nation of biochar and advanced oxidation processes for the sustainable elimination of pharmaceuticals in water. Sus-tainability, 16(23): 10761

[58]

Gamaralalage D , Rodgers S , Gill A , Meredith W , Bott T , West H , Alce J , Snape C , Mckechnie J . (2025). Biowaste to biochar: a techno-economic and life cycle assessment of biochar production from food-waste digestate and its agricultural field application. Biochar, 7(1): 50

[59]

Gao Y , Gao W , Zhu H , Chen H. , Yan S , Zhao M , Sun H , Zhang J , Zhang S . (2022). N-doped biochar for oxidative degradation via persulfate. IJERPH, 19(22): 1

[60]

Ghazoui MBoudouch OMiyah YBenjelloun MSylla A SMoulakhnif KFikri-Benbrahim KTouzani IElkacmi R (2025a). Assessment of Rhus Pentaphylla-sulfuric acid activated carbon performance for cadmium ions adsorption: mechanism, response surface methodology optimisation, and cost estimation. Indian Chemical Engineer, 1–22

[61]

Ghazoui M , Boudouch O , Zahnoune R , Sylla A S , Talfana A , Elkacmi R . (2025b). Nanostructured activated carbon from Juniperus Communis seeds for Congo red removal: process optimization and reusability. International Journal of Environ-mental Science and Technology, 23(1): 70

[62]

Ghazoui M , Elkacmi R , Sylla A S , Anter N , Dabali S , Boudouch O . (2025c). Innovative adsorbents and mechanisms for radionuclide removal from aqueous nuclear waste: a comprehensive review of materials, performance, and future perspectives. Total Environ-ment Engineering, 5: 100042

[63]

Ghazoui M , Elkacmi R , Sylla A S , Moulakhnif K , Touzani I , Boudouch O . (2024). Efficient removal of methylene blue and methyl red dyes using a novel adsorbent derived from Saponaria officinalis Root via H3PO4, H2SO4, and KOH-activation: optimization, kinetics, and isotherm study. Desalination and Water Treatment, 318: 100378

[64]

Grisolia A , Dell’Olio G , Spadafora A , De Santo M , Morelli C , Leggio A , Pasqua L . (2023). Hybrid polymer-silica nano-structured materials for environmental remediation. Molecules, 28(13): 5105

[65]

Guaya D , Campoverde J , Piedra C , Debut A . (2025). Trimetallic Fe-Zn-Mn biochar for phosphate and ammonium recovery. Nanomaterials, 15(11): 15110849

[66]

Häder D P , Banaszak A T , Villafañe V E , Narvarte M A , González R A , Helbling E W . (2020). Anthropogenic pollution of aquatic ecosystems: emerging problems with global implications. Science of the Total Environment, 713: 136586

[67]

Hani F F B , Hailat M M . (2016). Production of bio-oil from pyrolysis of olive biomass with/without catalyst. Advances in Chemical Engineering and Science, 6(4): 488–499

[68]

Hao L , Liu M , Wang N , Li G . (2018). Arsenic removal using iron-based adsorbents. RSC Advances, 8(1): 39545–39560

[69]

Hasan M , Chakma S , Liang X J , Sutradhar S , Kozinski J , Kang K . (2024). Engineered biochar for metal recycling and repurposed applications. Energies, 17(18): 4674

[70]

Hassaan M A , Yılmaz M , Helal M , El-Nemr M A , Ragab S , El Nemr A . (2023). Improved methylene blue adsorption from an aqueous medium by ozone-triethylenetetramine modification of sawdust-based biochar. Scientific Reports, 13(1): 12431

[71]

He, Y., Cheng, X., Gunjal, S. J., & Zhang, C. (2024). Advancing PFAS Sorbent Design. ACS Materials Au, 4(2), 108–114.

[72]

Herrmann I TMoltesen A (2015). Does it matter which Life Cycle Assessment (LCA) tool you choose? A comparative assessment of SimaPro and GaBi. Journal of Cleaner Production, 86(4): 163–169

[73]

Holgersson S , Kumar P . (2023). A literature review on thermo-dynamic sorption models of radionuclides with some selected granitic minerals. Frontiers in Nuclear Engineering, 2: 1227170

[74]

Hu H Q , Guo X S , Yang L M , Wu Y B , Yang G , Luo X B . (2025). Adsorption materials toward highly-efficient lithium extraction from non-conventional lithium sources. Advanced Materials, 37(38): 2506055

[75]

Huang F Y , Dong F Q , Chen L , Zeng Y , Zhou L , Sun S Y , Wang Z , Lai J L , Fang L C . (2024). Biochar-mediated remediation of uranium-contaminated soils: evidence, mechanisms, and per-spectives. Biochar, 6(1): 16

[76]

Huang Q , Song S , Chen Z , Hu B W , Chen J R , Wang X K . (2019). Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review. Biochar, 1(1): 45–73

[77]

Jacas-Rodríguez A , Rodríguez-Pascual P , Franco-Manzano D , Contreras L , Polop C , Rodriguez M A . (2020). Mixed Matrix Membranes prepared from polysulfone and Linde Type A zeolite. Science and Engineering of Composite Materials, 27(1): 236–244

[78]

Jagadeesh N , Sundaram B . (2023). Adsorption of pollutants from wastewater by biochar: a review. Journal of Hazardous Materials Advances, 9: 100226

[79]

Jawad A H , Rashid R A , Ishak M A M , Wilson L D . (2016). Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: kinetic, equilibrium and thermodynamic studies. Desalination and Water Treatment, 57(52): 25194–25206

[80]

Jiang L, Huang Z, Xu J, Zhang L, Du Z (2024). Selective adsorption of OBS as an emerging PFAS contaminant by fluorinated MOFs. Chemical Engineering Journal, 484, 149355

[81]

Karić N , Maia A S , Teodorović A , Atanasova N , Langergraber G , Crini G , Ribeiro A R L , Đolić M . (2022). Bio-waste valorisation: agricultural wastes as biosorbents for removal of (in)organic pollutants in wastewater treatment. Chemical Engineering Journal Advances, 9: 100239

[82]

Köves M , Madár V , Ringer M , Kocsis T . (2024). Overview of traditional and contemporary industrial production technologies for biochar along with quality standardization methods. Land, 13(9): 1388

[83]

Kumar A , Bhattacharya T , Shaikh W A , Roy A , Chakraborty S , Vithanage M , Biswas J K . (2023). Multifaceted applications of biochar in environmental management: a bibliometric profile. Biochar, 5(1): 11

[84]

Kumkum P , Kumar S . (2024). A review on biochar as an adsorbent for Pb(II) removal from water. Biomass, 4(2): 243–272

[85]

Lee H , Fiore S , Berruti F . (2024). Adsorption of methyl orange and methylene blue on activated biocarbon derived from birchwood pellets. Biomass and Bioenergy, 191: 107446

[86]

Lee Y G , Shin J , Kwak J , Kim S , Son C , Kim G Y , Lee C H , Chon K . (2021). Enhanced adsorption capacities of fungicides using peanut shell biochar via successive chemical modification with KMnO4 and KOH. Separations, 8(4): 52

[87]

Lei X , Lian Q , Zhang X , Karsili T K , Holmes W , Chen Y , Zappi M E , Gang D D . (2023). Review of PFAS adsorption: approaches and challenges. Environmental Pollution, 321: 121138

[88]

Li J , Lv F X , Yang R , Zhang L P , Tao W , Liu G T , Gao H , Guan Y . (2022). N-doped biochar from lignocellulosic biomass for preparation of adsorbent: characterization, kinetics and application. Polymers, 14(18): 3889

[89]

Li K Q , Jiang Q , Gao L , Chen J , Peng J H , Koppala S , Omran M , Chen G . (2020). Investigations on the microwave absorption properties and thermal behavior of vanadium slag: improvement in microwave oxidation roasting for recycling vanadium and chromium. Journal of Hazardous Materials, 395: 122698

[90]

Liu B , Sun H J , Tang X , Su X T . (2025). Functional group influence on uranyl ion adsorption by L-cysteine-grafted graphene oxide: a theoretical study. Ecotoxicology and Environmental Safety, 294: 118091

[91]

Liu C W , Ye J , Lin Y , Wu X M , Price G W , Wang Y X . (2024). Effect of natural aging on biochar physicochemical property and mobility of Cd(II). Scientific Reports, 14(1): 22214

[92]

Lu J , Zhou Y , Zhou Y B . (2023). Recent advance in enhanced adsorption of ionic dyes from aqueous solution: a review. Critical Reviews in Environmental Science and Technology, 53(19): 1709–1730

[93]

Luo Q , Dong M , Nie G , Liu Z , Wu Z , Li J . (2021). Extraction of lithium from salt lake brines by granulated adsorbents. Colloids and Surfaces. A, 628(5): 127256

[94]

Ma M J , Ying H J , Cao F F , Wang Q N , Ai N . (2020). Adsorption of congo red on mesoporous activated carbon prepared by CO2 physical activation. Chinese Journal of Chemical Engineering, 28(4): 1069–1076

[95]

Ma W S , Wu L , Yang F , Wang S F . (2014). Non-covalently modified reduced graphene oxide/polyurethane nanocomposites with good mechanical and thermal properties. Journal of Materials Science, 49(2): 562–571

[96]

Masud M A ASamaraweera HMondol M M HSeptian AKumar RTerry L G (2025). Iron biochar synergy in aquatic systems through surface functionalities electron transfer and reactive species dynamics. npj Clean Water, 8(1): 46

[97]

Matharage H , Jayaweera M , Bandara N , Manatunge J , Jayawardana D , Dissanayake J . (2025). Fixed-bed column studies on the adsorption of bisphenol A from aqueous solutions using chemically activated king coconut biochar. Discover Chemical Engineering, 5(1): 9

[98]

Mehmood A , Khan F S A , Mubarak N M , Tan Y H , Karri R R , Khalid M , Walvekar R , Abdullah E C , Nizamuddin S , Mazari S A . (2021). Magnetic nanocomposites for sustainable water purification: A comprehensive review. Environmental Science and Pollution Research, 28(16): 19563–19588

[99]

Mészároš L , Šuránek M , Melichová Z , Frišták V , Ďuriška L , Kaňuchová M , Soja G , Pipíška M . (2023). Green biochar-based adsorbent for radiocesium and Cu, Ni, and Pb removal. Journal of Radioanalytical and Nuclear Chemistry, 332(10): 4141–4155

[100]

Mian M M , Ao W Y , Deng S B . (2023). Sludge-based biochar adsorbent: pore tuning mechanisms, challenges, and role in carbon sequestration. Biochar, 5(1): 83

[101]

Mihajlović I , Hgeig A , Novaković M , Gvoić V , Ubavin D , Petrović M , Kurniawan T A . (2025). Valorizing date seeds into biochar for pesticide removal: a sustainable approach to agro-waste-based wastewater treatment. Sustainability, 17(11): 5129

[102]

Mohammed N A S , Abu-Zurayk R A , Hamadneh I , Al-Dujaili A H . (2018). Phenol adsorption on biochar prepared from the pine fruit shells: equilibrium, kinetic and thermodynamics studies. Journal of Environmental Management, 226: 377–385

[103]

Moulakhnif K , El Majd A , Ghazoui M , Ait Ousaleh H , Faik A , Sair S , El Bouari A . (2025). Eco-friendly porous carbon from Capparis waste: a green biomass-derived material for high performance thermal energy storage. Environmental Research, 285, 122599:

[104]

Murtaza G , Ahmed Z , Valipour M , Ali I , Usman M , Iqbal R , Zulfiqar U , Rizwan M , Mahmood S , Ullah A . et al. (2024). Recent trends and economic significance of modified/functionalized biochars for remediation of environmental pollutants. Scientific Reports, 14(1): 217

[105]

Nayak LRahaman MGiri R (2019). Surface modification/functionalization of carbon materials by different techniques: an overview. In: Rahaman M, Khastgir D, Aldalbahi A K, eds. Carbon-Containing Polymer Composites. Singapore: Springer, 65–98

[106]

Ndekei A , Gitita M , Njomo N , Mbui D . (2021). Synthesis and characterization of rice husk biochar and its application in the adsorption studies of lead and copper. International Research Journal of Pure and Applied Chemistry, 22(4): 36–50

[107]

Nematian M , Keske C , Ng’ombe J N . (2021). A techno-economic analysis of biochar production and the bioeconomy for orchard biomass. Waste Management, 135: 467–477

[108]

Neme I , Gonfa G , Masi C . (2022). Activated carbon from biomass precursors using phosphoric acid: a review. Heliyon, 8(12): e11940

[109]

Nguyen D L T , Binh Q A , Nguyen X C , Huyen Nguyen T T , Vo Q N , Nguyen T D , Phuong Tran T C , Hang Nguyen T A , Kim S Y , Nguyen T P . et al. (2021). Metal salt-modified biochars derived from agro-waste for effective Congo red dye removal. Environmental Research, 200: 111492

[110]

Oyekanmi A A , Katibi K K , Omar R C , Ahmad A , Elbidi M , Alshammari M B , Shitu I G . (2024). A novel oil palm frond magnetic biochar for the efficient adsorption of crystal violet and sunset yellow dyes from aqueous solution: synthesis, kinetics, isotherm, mechanism and reusability studies. Applied Water Science, 14(2): 13

[111]

Pan X , Kuang S , Wang H , X Z , Ullah E F , Rao Q , Ali S S , Abbas S M . (2025). Functionalized sawdust biochar for Cd and Pb immobilization. Biochar, 7(1): 1

[112]

Papaoikonomou L , Labanaris K , Kaderides K , Goula A M . (2021). Adsorption–desorption of phenolic compounds from olive mill wastewater using a novel low-cost biosorbent. Environmental Science and Pollution Research, 28(19): 24230–24244

[113]

Petrovic B , Gorbounov M , Masoudi Soltani S . (2021). Influence of surface modification on selective CO2 adsorption: a technical review on mechanisms and methods. Microporous and Mesoporous Materials, 312: 110751

[114]

Politano A , Al-Juboori R A , Alnajdi S , Alsaati A , Athanassiou A , Bar-Sadan M , Beni A N , Campi D , Cupolillo A , D’Olimpio G . et al. (2024). 2024 roadmap on membrane desalination technology at the water-energy nexus. Journal of Physics: Energy, 6(2): 021502

[115]

Pomponi F , Hart J . (2021). The greenhouse gas emissions of nuclear energy–life cycle assessment of a European pressurised reactor. Applied Energy, 290: 116743

[116]

Prochnow F D , Cavali M , Dresch A P , Belli I M , Libardi N Jr , de Castilhos A B Jr. . (2024). Biochar: from laboratory to industry scale- an overview Brazilian context, and contributions to sustainable development. Processes, 12(5): 1006

[117]

Ren X Y , Feng X B , Cao J P , Tang W , Wang Z H , Yang Z , Zhao J P , Zhang L Y , Wang Y J , Zhao X Y . (2020). Catalytic conversion of coal and biomass volatiles: a review. Energy & Fuels, 34(9): 10307–10363

[118]

Reza M T , Andert J , Wirth B , Busch D , Pielert J , Lynam J G , Mumme J . (2014). Hydrothermal carbonization of biomass for energy and crop production. Applied Bioenergy, 1(1): 11–29

[119]

Rezvani B . (2025). Innovative approaches in adsorbent production through pyrolysis of waste biomass: effective parameters, modifications, and techno-economic analysis. The Canadian Journal of Chemical Engineering, 103(11): 5296–5320

[120]

Rong L L , Wu L G , Zhang T , Hu C , Tang H H , Pan H C , Zou X M . (2024). Significant differences in the effects of nitrogen doping on pristine biochar and graphene-like biochar for the adsorption of tetracycline. Molecules, 29(1): 173

[121]

Sahoo K , Upadhyay A , Runge T , Bergman R , Puettmann M , Bilek E . (2021). Life-cycle assessment and techno-economic analysis of biochar produced from forest residues using portable systems. The International Journal of Life Cycle Assessment, 26(1): 189–213

[122]

Santos D C B D , Evaristo R B W , Dutra R C , Suarez P A Z , Silveira E A , Ghesti G F . (2025). Advancing biochar applications: a review of production processes, analytical methods, decision criteria, and pathways for scalability and certification. Sustainability, 17(6): 2685

[123]

Satyam S, Patra S (2024). Innovations in adsorption-based wastewater remediation. Heliyon, 10(9), e29573

[124]

Sayğılı H , Güzel F . (2016). High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: process optimization, characterization and dyes adsorption. Journal of Cleaner Production, 113: 995–1004

[125]

Sekirifa M L , Hadj-Mahammed M , Pallier S , Baameur L , Richard D , Al-Dujaili A H . (2013). Preparation and characterization of an activated carbon from a date stones variety by physical activation with carbon dioxide. Journal of Analytical and Applied Pyrolysis, 99: 155–160

[126]

Serafin J , Dziejarski B . (2023). Application of isotherms models and error functions in activated carbon CO2 sorption processes. Microporous and Mesoporous Materials, 354: 112513

[127]

Shah H H , Amin M , Pepe F , Mancusi E , Fareed A G . (2025). Overview of environmental and economic viability of activated carbons derived from waste biomass for adsorptive water treatment applications. Environmental Science and Pollution Research, 32(32): 19084–19109

[128]

Shim S , Reza A , Kim S , Seunggun Won , Changsix Ra . (2021). Nutrient recovery from swine wastewater. Chemosphere, 277: 130309

[129]

Simões S . (2024). High-Performance Advanced Composites in Multifunctional Material Design: State of the Art, Challenges, and Future Directions. Materials,

[130]

Singla M , Sit N . (2021). Application of ultrasound in combination with other technologies in food processing: a review. Ultrasonics Sonochemistry, 73: 105506

[131]

Song B S , Duan N N , Xia H G , Li Y , Xu H B , Geng Y , Wang X . (2025). Removal of PET microfibers from simulated wastewater using magnetic nano-ferric-loaded biochar: high adsorption and regeneration performance. Nanomaterials, 15(12): 905

[132]

Štrubelj L . (2022). Waste, fertilising product, or something else? EU regulation of biochar. Journal of Environmental Law, 34(3): 529–540

[133]

Su Y J , Shi Y Q , Jiang M Y , Chen S J . (2022). One-step synthesis of nitrogen-doped porous biochar based on N-doping co-activation method and its application in water pollutants control. International Journal of Molecular Sciences, 23(23): 14618

[134]

Sun P F , Hui C , Khan R A , Du J T , Zhang Q C , Zhao Y H . (2015). Efficient removal of crystal violet using Fe3O4-coated biochar: the role of the Fe3O4 nanoparticles and modeling study their adsorption behavior. Scientific Reports, 5(1): 12638

[135]

Sun Y L , Xie H B , Zhou C Z , Wu Y D , Pu M J , Niu J F . (2020). The role of carbonate in sulfamethoxazole degradation by peroxy-monosulfate without catalyst and the generation of carbonate racial. Journal of Hazardous Materials, 398: 122827

[136]

Tang W , Huang H , Gao Y , Liu X , Yang X , Ni H , Zhang J . (2015). Preparation of a novel porous adsorption material from coal slag and its adsorption properties of phenol from aqueous solution. Materials & Design, 88: 1191–1200

[137]

Teng B, Zhao Z, Wu J, Xia L, Wang Y, Wang H., Yemele O M, Adnan M (2025). Alginate-coated Ca-Fe composite biochar for PFAS removal. Environmental Research, 285, 122395

[138]

Taşar Ş , Özer A . (2020). A thermodynamic and kinetic evaluation of the adsorption of Pb(II) ions using peanut (Arachis hypogaea) shell-based biochar from aqueous media. Polish Journal of Environmental Studies, 29(1): 293–305

[139]

Thakur A , Kumar R , Sahoo P K . (2022). Uranium and fluoride removal from aqueous solution using biochar: a critical review for understanding the role of feedstock types, mechanisms, and modification methods. Water, 14(24): 4063

[140]

Tokarčíková M , Peikertová P , Čech Barabaszová K , Životský O , Gabor R , Seidlerová J . (2023). Regeneration possibilities and application of magnetically modified biochar for heavy metals elimination in real conditions. Water Resources and Industry, 30: 100219

[141]

Tripathi M , Sahu J N , Ganesan P . (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renewable and Sustainable Energy Reviews, 55: 467–481

[142]

Trivedi Y , Sharma M , Mishra R K , Sharma A , Joshi J , Gupta A B , Achintya B , Shah K , Vuppaladadiyamd A K . (2025). Biochar potential for pollutant removal during wastewater treatment: a comprehensive review of separation mechanisms, technological integration, and process analysis. Desalination, 600: 118509

[143]

Vereš J , Kolonicný J , Ochodek T . (2014). Biochar status under international law and regulatory issues for the practical application. Chemical Engineering Transactions, 37: 799–804

[144]

Verma L , Singh J . (2023). Removal of As(III) and As(V) from aqueous solution using engineered biochar: batch and fixed-bed column study. International Journal of Environmental Science and Technology, 20(2): 1961–1980

[145]

Wan C L , Zhang Q L , Lee D J , Wang Y Y , Li J N . (2014). Long-term storage of aerobic granules in liquid media: viable but non-culturable status. Bioresource Technology, 166: 464–470

[146]

Wang J , Tan Y , Yang H . et al. (2023). Adsorption of methylene blue by modified biochar. Scientific Reports, 1: 13–48373

[147]

Wang L W , O’Connor D , Rinklebe J , Ok Y S , Tsang D C W , Shen Z T , Hou D Y . (2020). Biochar aging: mechanisms, physico-chemical changes, assessment, and implications for field applications. Environmental Science & Technology, 54(23): 14797–14814

[148]

Wang S F , Liu Y , Yang A W , Zhu Q , Sun H , Sun P , Yao B , Zang Y X , Du X H , Dong L M . (2022a). Xanthate-modified magnetic Fe3O4@SiO2-based polyvinyl alcohol/chitosan composite material for efficient removal of heavy metal ions from water. Polymers, 14(6): 1107

[149]

Wang Y , Akbarzadeh A , Chong L , Du J Y , Tahir N , Awasthi M K . (2022b). Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: a review. Chemosphere, 297: 134181

[150]

Weidner E , Karbassiyazdi E , Altaee A , Jesionowski T , Ciesielczyk F . (2022). Hybrid metal oxide/biochar materials for wastewater treatment technology: a review. ACS Omega, 7(31): 27062–27078

[151]

Wu B , Meng H B , Morales D M , Zeng F , Zhu J J , Wang B , Risch M , Xu Z J , Petit T . (2022). Nitrogen-rich carbonaceous materials for advanced oxygen electrocatalysis: synthesis, characterization, and activity of nitrogen sites. Advanced Functional Materials, 32(31): 2204137

[152]

Wu Y , Zhuang Z W , Chen C , Li J Z , Xiao F X , Chen C . (2023). Atomic-level regulation strategies of single-atom catalysts: nonmetal heteroatom doping and polymetallic active site construction. Chem Catalysis, 3(7): 100586

[153]

Xu Y , Fan Z Q , Li X C , Yang S Q , Wang J , Zheng A Q , Shu R Y . (2024). Cooperative production of monophenolic chemicals and carbon adsorption materials from cascade pyrolysis of acid hydrolysis lignin. Bioresource Technology, 399: 130557

[154]

Yaashikaa P R , Kumar P S , Varjani S , Saravanan A . (2020). A critical review on the biochar production techniques, charac-terization, stability and applications for circular bioeconomy. Biotechnology Reports, 28: e00570

[155]

Zahnoune R , Boudouch O , El Amri R , El Ghozlani M , Kamil N , Elkacmi R . (2025). Optimized electrocoagulation and kinetic study for continuous treatment of fresh landfill leachate in an external-loop airlift reactor. Chemical Engineering Science, 317: 122115

[156]

Zhang J , Pan W , Zhou Y , Hai C , Xu Y , Zhao Y , Sun Y , Dong S , He X , Xu Q . et al. (2024). Biochar-enhanced electrodes for lithium extraction. Chemosphere, 360: 142325

[157]

Zhang M , Liu Y Q , Yin Z Z , Feng D , Lv H . (2023). Preparation and adsorption properties of magnetic chitosan/sludge biochar composites for removal of Cu2+ ions. Scientific Reports, 13(1): 20937

[158]

Zhang W , Cho Y , Vithanage M , Shaheen S M , Rinklebe J , Alessi S , D C H , Hou Y , Hashimoto P A , Withana Y S . (2022). Arsenic removal from water and soils using pristine and modified biochars. Biochar, 4(1): 1

[159]

Zhang YWu B LDong H RGuan X HLo I M C (2025a). Alginate-sludge derived biochar-calcium hydrogel for phosphate removal and slow-release fertilizer: a sustainable and multi-functional solution. Advanced Functional Materials, 35: e10234

[160]

Zhang Y Z , Xia Z L , Nafsun A I , Feng W Y . (2025b). Preparation of nitrogen-doped biochar and its adsorption performance for Cr6+ and Pb2+ in aqueous systems. Toxics, 13(5): 402

[161]

Zhao L , Sun Z F , Pan X W , Tan J Y , Yang S S , Wu J T , Chen C , Yuan Y , Ren N Q . (2023). Sewage sludge derived biochar for environmental improvement: advances, challenges, and solutions. Water Research X, 18: 100167

[162]

Zhao L , Zhang J , Duan R Q , Xu C . (2023). Development and challenges of China’s ecological non-commercial forest certification policy. Forests, 14(2): 214

[163]

Zhao Y , Gao J , Liang T , Chen T , Han X B , Hu G W , Li B . (2023). Efficient removal of Cr(VI) by protonated amino-bamboo char prepared via radiation grafting: behavior and mechanism. Sustainability, 15(18): 13560

[164]

Zhao Y X , Wang C J , Han Q , Fang Z , Gao Y R , Chen H B , Li J H , Yang X , Chen J F , Wang H L . (2025). Recent advances in biochar-based hydrogel composites: preparation, aquatic environ-mental applications, and adsorption mechanisms. Processes, 13(3): 664

[165]

Zhao Z P , Wang B , Theng B K G , Lee X , Zhang X Y , Chen M , Xu P . (2022). Removal performance, mechanisms, and influencing factors of biochar for air pollutants: a critical review. Biochar, 4(1): 30

[166]

Zhou L , Zhou H . (2019). Textile wastewater treatment in China. Desalination and Water Treatment, 144: 330–338

[167]

Zhu M , Wang Q , Wang S . (2025). Recent advances and future perspectives in catalyst development for biomass gasification: a comprehensive review. Sustainability,

[168]

Zubair M , Radkiany R , Akram Y , Ahmed E . (2024). Nuclear safeguards: technology, challenges, and future perspectives. Alexandria Engineering Journal, 108: 188–205

RIGHTS & PERMISSIONS

Higher Education Press 2026

AI Summary AI Mindmap
PDF (3361KB)

62

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/