Algae-microplastics interactions and their significance in combating aquatic plastic pollution

Wensi Zhao , Yuwei Sun , Chengyu Suo , Jingru Zhang , Huanliang Lu , Xuesong Liu , Hailei Su , Fanfan Wang , Ningning Ji , Min Zhou , Fengchang Wu , Yuan Wei

ENG. Environ. ›› 2026, Vol. 20 ›› Issue (1) : 11

PDF (3368KB)
ENG. Environ. ›› 2026, Vol. 20 ›› Issue (1) : 11 DOI: 10.1007/s11783-026-2111-2
REVIEW ARTICLE

Algae-microplastics interactions and their significance in combating aquatic plastic pollution

Author information +
History +
PDF (3368KB)

Abstract

Microplastics (MPs) represent a new class of pollutants that are widely distributed and significantly affect aquatic ecosystems. Until now, an expanding circle of studies has focused on the environmental behavior and effects of MPs. However, the strategies and technologies for effectively addressing and mitigating MPs pollution remain unexplored. As primary producers, algae play a crucial role in aquatic ecosystems and inevitably interact with MPs, positioning them at the forefront of MPs pollution. This review provides a comprehensive analysis of algal-MP interactions, the effects of MPs on algae, the resulting environmental behaviors, and the underlying mechanisms. Importantly, by analyzing the ability and mechanisms of algal-MP interactions, we highlight promising applications of using the environmental adaptability and biological properties of algae for mitigating aquatic plastic pollution, including mitigation of MPs toxicity, removal of MPs, and repurposing of aquatic plastic particles. Additionally, by discussing these applications leveraging the algal-MP interaction, this review enables future research and technology development of eco-friendly and cost-effective approaches that are crucial for global efforts to mitigate plastic pollution.

Graphical abstract

Keywords

Microplastic pollution / Algae / Aquatic environment / Pollution mitigation

Highlight

● Algae and MPs interactions in aquatic environment are comprehensive reviewed.

● The factors influenced algae-MPs interactions are analyzed.

● The effect of MPs on algae and resulting behavior are discussed.

● Algae-MPs interaction-based strategies for reducing aquatic MPs pollution are proposed.

Cite this article

Download citation ▾
Wensi Zhao, Yuwei Sun, Chengyu Suo, Jingru Zhang, Huanliang Lu, Xuesong Liu, Hailei Su, Fanfan Wang, Ningning Ji, Min Zhou, Fengchang Wu, Yuan Wei. Algae-microplastics interactions and their significance in combating aquatic plastic pollution. ENG. Environ., 2026, 20(1): 11 DOI:10.1007/s11783-026-2111-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abomohra A E F , El-Sheekh M , Hanelt D . (2014). Pilot cultivation of the chlorophyte microalga Scenedesmus obliquus as a promising feedstock for biofuel. Biomass and Bioenergy, 64: 237–244

[2]

Ali S S , Elsamahy T , Al-Tohamy R , Sun J Z . (2024). A critical review of microplastics in aquatic ecosystems: degradation mechanisms and removing strategies. Environmental Science and Ecotechnology, 21: 100427

[3]

Ansari F A , Ratha S K , Renuka N , Ramanna L , Gupta S K , Rawat I , Bux F . (2021). Effect of microplastics on growth and biochemical composition of microalga Acutodesmus obliquus. Algal Research, 56: 102296

[4]

Bellasi A , Binda G , Pozzi A , Galafassi S , Volta P , Bettinetti R . (2020). Microplastic contamination in freshwater environments: a review, focusing on interactions with sediments and benthic organisms. Environments, 7(4): 30

[5]

Bergmann MGutow LKlages M (2015). Marine Anthropogenic Litter. Cham: Springer

[6]

Bhattacharya PChen RLard MLin S JKe P C (2010). Binding of nanoplastics onto a cellulose film. In: 2010 3rd International Nanoelectronics Conference (INEC). Hong Kong, China: IEEE, 803–804

[7]

Bule Možar K , Miloloža M , Martinjak V , Cvetnić M , Kušić H , Bolanča T , Kučić Grgić D , Ukić Š . (2023). Potential of advanced oxidation as pretreatment for microplastics biodegradation. Separations, 10(2): 132

[8]

Capolupo M , Sørensen L , Jayasena K D R , Booth A M , Fabbri E . (2020). Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. Water Research, 169: 115270

[9]

Chae Y , Kim D , An Y J . (2019). Effects of micro-sized polyethylene spheres on the marine microalga Dunaliella salina: focusing on the algal cell to plastic particle size ratio. Aquatic Toxicology, 216: 105296

[10]

Chen F Y , Chen Y G , Pan K , Liu H B . (2024). Species-specific deformation of microalgae in the presence of microplastics. Environmental Chemistry Letters, 22(3): 953–959

[11]

Chen P Y , Powell B A , Mortimer M , Ke P C . (2012). Adaptive interactions between zinc oxide nanoparticles and Chlorella sp. Environmental Science & Technology, 46(21): 12178–12185

[12]

Chen Y X , Ling Y , Li X Y , Hu J N , Cao C J , He D F . (2020). Size-dependent cellular internalization and effects of polystyrene microplastics in microalgae P. helgolandica var. tsingtaoensis and S. quadricauda. Journal of Hazardous Materials, 399: 123092

[13]

Cheng Y R , Wang H Y . (2022). Highly effective removal of microplastics by microalgae Scenedesmus abundans. Chemical Engineering Journal, 435: 135079

[14]

Chia W Y , Tang D Y Y , Khoo K S , Kay Lup A N , Chew K W . (2020). Nature’s fight against plastic pollution: algae for plastic biodegradation and bioplastics production. Environmental Science and Ecotechnology, 4: 100065

[15]

Cole M , Lindeque P , Fileman E , Halsband C , Goodhead R , Moger J , Galloway T S . (2013). Microplastic ingestion by zooplankton. Environmental Science & Technology, 47(12): 6646–6655

[16]

Coulombier N , Jauffrais T , Lebouvier N . (2021). Antioxidant compounds from microalgae: a review. Marine Drugs, 19(10): 549

[17]

Cunha C , Faria M , Nogueira N , Ferreira A , Cordeiro N . (2019). Marine vs freshwater microalgae exopolymers as biosolutions to microplastics pollution. Environmental Pollution, 249: 372–380

[18]

Dehghani S , Moore F , Akhbarizadeh R . (2017). Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environmental Science and Pollution Research, 24(25): 20360–20371

[19]

Demir-Yilmaz I , Yakovenko N , Roux C , Guiraud P , Collin F , Coudret C , Ter Halle A , Formosa-Dague C . (2022). The role of microplastics in microalgae cells aggregation: a study at the molecular scale using atomic force microscopy. Science of the Total Environment, 832: 155036

[20]

Dogra K , Kumar M , Ornelas-Soto N , Mora A , Sarkar D , Selvasembian R , Bahukhandi K D , Mahlknecht J . (2025). Insights into the biodegradation and bioremediation of microplastics: mechanisms and analytical methods. Current Opinion in Chemical Engineering, 48: 101133

[21]

Ebbesen L G , Strange M V , Gunaalan K , Paulsen M L , Herrera A , Nielsen T G , Shashoua Y , Lindegren M , Almeda R . (2024). Do weathered microplastics impact the planktonic community? A mesocosm approach in the Baltic Sea. Water Research, 255: 121500

[22]

Ebrahimi M , Azizian S , Eslamipanah M , Jaleh B . (2025). A straightforward approach for the removal of microplastics from water: utilization of SLIPS. ACS Applied Materials & Interfaces, 17(28): 41282–41291

[23]

Fan X , Wang C , Kong L Y , Wang J Y , Tan Y X , Yu Z D , Xu X Y , Zhu L . (2025). Spatial heterogeneity of EPS-mediated micro-plastic aggregation in phycosphere shapes polymer-specific Trojan horse effects. Water Research, 281: 123686

[24]

Fan Y F , Liu T , Qian X , Deng L G , Rao W X , Zhang Q J , Zheng J L , Gao X . (2022). Metabolic impacts of polystyrene microplastics on the freshwater microalga Microcystis aeruginosa. Science of the Total Environment, 836: 155655

[25]

Feng L J , Sun X D , Zhu F P , Feng Y , Duan J L , Xiao F , Li X Y , Shi Y , Wang Q , Sun J W . et al. (2020). Nanoplastics promote microcystin synthesis and release from cyanobacterial Micro-cystis aeruginosa. Environmental Science & Technology, 54(6): 3386–3394

[26]

Feng Y J , Liu X , Zhang Y S , Wang Z Y , Su J M , Li Z Y , Wang J C , Xu Q Q , Wang M , Wang H . et al. (2025). The dual role of alginate extracellular polymeric substances in cleaner flotation of marine microplastics: modulating microplastic hydrophilicity and microbubble stability. Chemical Engineering Journal, 512: 162374

[27]

Fu D D , Zhang Q J , Fan Z Q , Qi H Y , Wang Z Z , Peng L C . (2019). Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris. Aquatic Toxicology, 216: 105319

[28]

Gowthami A , Marjuk M S , Santhanam P , Thirumurugan R , Muralisankar T , Perumal P . (2025). Marine microalgae–mediated biodegradation of polystyrene microplastics: insights from enzymatic and molecular docking studies. Chemosphere, 370: 144024

[29]

Hadiyanto HJoelyna F AKhoironi ASudarno SSafaat J APratama W DNur M M A (2025). Harnessing Chlorella vulgarisAspergilus niger interactions for effective microplastic removal in aquatic ecosystems. Waste and Biomass Valorization, doi: 10.1007/s12649-025-03062-0

[30]

Hirooka T , Nagase H , Uchida K , Hiroshige Y , Ehara Y , Nishikawa J I , Nishihara T , Miyamoto K , Hirata Z . (2005). Biodegradation of bisphenol a and disappearance of its estrogenic activity by the green alga Chlorella fusca var. vacuolata. Environmental Toxicology and Chemistry, 24(8): 1896–1901

[31]

Hitchcock J N . (2022). Microplastics can alter phytoplankton community composition. Science of the Total Environment, 819: 153074

[32]

Hodkovicova N , Hollerova A , Svobodova Z , Faldyna M , Faggio C . (2022). Effects of plastic particles on aquatic invertebrates and fish-a review. Environmental Toxicology and Pharmacology, 96: 104013

[33]

Huang D L , Chen H J , Shen M C , Tao J X , Chen S , Yin L S , Zhou W , Wang X Y , Xiao R H , Li R J . (2022). Recent advances on the transport of microplastics/nanoplastics in abiotic and biotic compartments. Journal of Hazardous Materials, 438: 129515

[34]

Jain R , Gaur A , Suravajhala R , Chauhan U , Pant M , Tripathi V , Pant G . (2023). Microplastic pollution: understanding microbial degradation and strategies for pollutant reduction. Science of the Total Environment, 905: 167098

[35]

Jeong J , Choi J . (2020). Development of AOP relevant to microplastics based on toxicity mechanisms of chemical additives using ToxCast™ and deep learning models combined approach. Environment International, 137: 105557

[36]

Jiang T M , Wu X , Yuan S S , Lai C F , Bian S J , Yu W B , Liang S , Hu J P , Huang L , Duan H B . et al. (2024). A potential threat from biodegradable microplastics: mechanism of cadmium adsorption and desorption in the simulated gastrointestinal environment. Frontiers of Environmental Science & Engineering, 18(2): 19

[37]

Junaid M , Wang J . (2021). Interaction of nanoplastics with extracellular polymeric substances (EPS) in the aquatic environment: a special reference to eco-corona formation and associated impacts. Water Research, 201: 117319

[38]

Kapelewska J , Karpińska J , Klekotka U , Piotrowska-Niczyporuk A . (2025). Effect of polyethylene microplastic biodegradation by algae on their sorption properties and toxicity. Chemosphere, 370: 143993

[39]

Karalija E , Carbó M , Coppi A , Colzi I , Dainelli M , Gašparović M , Grebenc T , Gonnelli C , Papadakis V , Pilić S . et al. (2022). Interplay of plastic pollution with algae and plants: hidden danger or a blessing?. Journal of Hazardous Materials, 438: 129450

[40]

Khurana S , Ali S , Srivastava A K , Singh A , Agarwal H , Chauhan R , Joshi N C , Dufossé L , Chauhan A . (2025). Bioremediation of microplastic pollution: a systematic review on mechanism, analytical methods, innovations, and omics approaches. Journal of Hazardous Materials Advances, 19: 100777

[41]

Klein Breteler W C M , Schogt N , Baas M , Schouten S , Kraay G W . (1999). Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids. Marine Biology, 135(1): 191–198

[42]

Kumar R V , Kanna G R , Elumalai S . (2017). Biodegradation of polyethylene by green photosynthetic microalgae. Journal of Bioremediation & Biodegradation, 8(1): 1000381

[43]

Lagarde F , Olivier O , Zanella M , Daniel P , Hiard S , Caruso A . (2016). Microplastic interactions with freshwater microalgae: hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environmental Pollution, 215: 331–339

[44]

Lang X P , He Z , Yang G P , Dai G . (2023). Physiological responses and altered halocarbon production in Phaeodactylum tricornutum after exposure to polystyrene microplastics. Ecotoxicology and Environmental Safety, 268: 115702

[45]

Lehtiniemi M , Hartikainen S , Näkki P , Engström-Öst J , Koistinen A , Setälä O . (2018). Size matters more than shape: ingestion of primary and secondary microplastics by small predators. Food Webs, 17: e00097

[46]

Lei L LWu S YLu S BLiu M TSong YFu Z HShi H HRaley-Susman K MHe D F (2018). Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Science of the Total Environment, 619–620: 619–620

[47]

Li H Y , Yuan S , You J B , Zhao C F , Cheng X J , Luo L X , Yan X H , Shen S Y , Zhang J L . (2025). Revealing the oxygen transport challenges in catalyst layers in proton exchange membrane fuel cells and water electrolysis. Nano-Micro Letters, 17(1): 225

[48]

Li S X , Hu T Y , Xu Y Z , Wang J Y , Chu R Y , Yin Z H , Mo F , Zhu L D . (2020). A review on flocculation as an efficient method to harvest energy microalgae: mechanisms, performances, influencing factors and perspectives. Renewable and Sustainable Energy Reviews, 131: 110005

[49]

Li X , Luo J W , Zeng H , Zhu L , Lu X Q . (2022). Microplastics decrease the toxicity of sulfamethoxazole to marine algae (Skeletonema costatum) at the cellular and molecular levels. Science of the Total Environment, 824: 153855

[50]

Li X , Qiu H , Zhang P H , Song L , Romero-Freire A , He E K . (2023). Role of heteroaggregation and internalization in the toxicity of differently sized and charged plastic nanoparticles to freshwater microalgae. Environmental Pollution, 316: 120517

[51]

Liao Y C , Jiang X F , Xiao Y , Li M . (2020). Exposure of microalgae Euglena gracilis to polystyrene microbeads and cadmium: perspective from the physiological and transcriptional responses. Aquatic Toxicology, 228: 105650

[52]

Liu G , Jiang R F , You J , Muir D C G , Zeng E Y . (2019). Microplastic impacts on microalgae growth: effects of size and humic acid. Environmental Science & Technology, 54(3): 1782–1789

[53]

Liu L , Xu K X , Zhang B W , Ye Y Y , Zhang Q , Jiang W . (2021). Cellular internalization and release of polystyrene microplastics and nanoplastics. Science of the Total Environment, 779: 146523

[54]

Liu X S , Wang J M . (2020). Algae (Raphidocelis subcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia. Frontiers of Environmental Science & Engineering, 14(6): 97

[55]

Long M , Paul-Pont I , Hégaret H , Moriceau B , Lambert C , Huvet A , Soudant P . (2017). Interactions between polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation. Environmental Pollution, 228: 454–463

[56]

Lu Q W , Zhou Y , Sui Q , Zhou Y B . (2023). Mechanism and characterization of microplastic aging process: a review. Frontiers of Environmental Science & Engineering, 17(8): 100

[57]

Luo H W , Xiang Y H , He D Q , Li Y , Zhao Y Y , Wang S , Pan X L . (2019). Leaching behavior of fluorescent additives from microplastics and the toxicity of leachate to Chlorella vulgaris. Science of the Total Environment, 678: 1–9

[58]

Manzi H P , Abou-Shanab R A I , Jeon B H , Wang J L , Salama E S . (2022). Algae: a frontline photosynthetic organism in the microplastic catastrophe. Trends in Plant Science, 27(11): 1159–1172

[59]

Mao Y F , Ai H N , Chen Y , Zhang Z Y , Zeng P , Kang L , Li W , Gu W K , He Q , Li H . (2018). Phytoplankton response to polystyrene microplastics: perspective from an entire growth period. Chemosphere, 208: 59–68

[60]

Miloloža M , Cvetnić M , Kučić Grgić D , Ocelić Bulatović V , Ukić Š , Rogošić M , Dionysiou D D , Kušić H , Bolanča T . (2022). Biotreatment strategies for the removal of microplastics from freshwater systems: a review. Environmental Chemistry Letters, 20(2): 1377–1402

[61]

Möhlenkamp P , Purser A , Thomsen L . (2018). Plastic microbeads from cosmetic products: an experimental study of their hydrodynamic behaviour, vertical transport and resuspension in phytoplankton and sediment aggregates. Elementa: Science of the Anthropocene, 6(1): 61

[62]

Nam S H , Kim D , An Y J . (2022). Soil algae as a potential carrier for nanoplastics: adsorption and internalization of nanoplastics in algal cells. Science of the Total Environment, 837: 155678

[63]

Natarajan L , Omer S , Jetly N , Jenifer M A , Chandrasekaran N , Suraishkumar G K , Mukherjee A . (2020). Eco-corona formation lessens the toxic effects of polystyrene nanoplastics towards marine microalgae Chlorella sp. Environmental Research, 188: 109842

[64]

Nava V , Leoni B . (2021). A critical review of interactions between microplastics, microalgae and aquatic ecosystem function. Water Research, 188: 116476

[65]

Nolte T M , Hartmann N B , Kleijn J M , Garnæs J , van de Meent D , Hendriks A J , Baun A . (2017). The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. Aquatic Toxicology, 183: 11–20

[66]

Osman A I , Nasr M , Aniagor C O , Farghali M , Huang M M , Chin B L F , Sun Z Q , Lock S S M , López-Maldonado E A , Yiin C L . et al. (2025). Synergistic technologies for a circular economy: upcycling waste plastics and biomass. Frontiers of Chemical Science and Engineering, 19(1): 2

[67]

Parsai T , Figueiredo N , Dalvi V , Martins M , Malik A , Kumar A . (2022). Implication of microplastic toxicity on functioning of microalgae in aquatic system. Environmental Pollution, 308: 119626

[68]

Peller J , Nevers M B , Byappanahalli M , Nelson C , Babu B G , Evans M A , Kostelnik E , Keller M , Johnston J , Shidler S . (2021). Sequestration of microfibers and other microplastics by green algae, Cladophora, in the US Great Lakes. Environmental Pollution, 276: 116695

[69]

Pencik O , Molnarova K , Durdakova M , Kolackova M , Klofac D , Kucsera A , Capal P , Svec P , Bytesnikova Z , Richtera L . et al. (2023). Not so dangerous? PET microplastics toxicity on freshwater microalgae and cyanobacteria. Environmental Pollution, 329: 121628

[70]

Pérez-Albaladejo ESolé MPorte C (2020). Plastics and plastic additives as inducers of oxidative stress. Current Opinion in Toxicology, 20–21: 20–21

[71]

Plastics Europe (2023). Plastics – the Fast Facts 2023. Plastics – the Fast Facts Shows Preliminary Global and European Plastics Production Data. Brussels: Plastics Europe

[72]

Prata J C , Da Costa J P , Lopes I , Duarte A C , Rocha-Santos T . (2019). Effects of microplastics on microalgae populations: a critical review. Science of the Total Environment, 665: 400–405

[73]

Prata J C , Venâncio C , Girão A V , da Costa J P , Lopes I , Duarte A C , Rocha-Santos T . (2022). Effects of virgin and weathered polystyrene and polypropylene microplastics on Raphidocelis subcapitata and embryos of Danio rerio under environmental concentrations. Science of the Total Environment, 816: 151642

[74]

Quigg A , Chin W C , Chen C S , Zhang S J , Jiang Y L , Miao A J , Schwehr K A , Xu C , Santschi P H . (2013). Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter. ACS Sustainable Chemistry & Engineering, 1(7): 686–702

[75]

Radmehr S , Kallioinen-Mänttäri M , Mänttäri M . (2023). Interplay role of microalgae and bio-carriers in hybrid membrane bioreactors on wastewater treatment, membrane fouling, and microbial communities. Environmental Pollution, 339: 122764

[76]

Ramesha D K , Kumara G P , Lalsaheb A V T , Mohammed H A , Mohammad M A . (2016). An experimental study on usage of plastic oil and B20 algae biodiesel blend as substitute fuel to diesel engine. Environmental Science and Pollution Research, 23(10): 9432–9439

[77]

Rossi G , Barnoud J , Monticelli L . (2014). Polystyrene nanoparticles perturb lipid membranes. The Journal of Physical Chemistry Letters, 5(1): 241–246

[78]

Sarma H , Hazarika R P , Kumar V , Roy A , Pandit S , Prasad R . (2022). Microplastics in marine and aquatic habitats: sources, impact, and sustainable remediation approaches. Environmental Sustainability, 5(1): 39–49

[79]

Sarmah P , Rout J . (2018). Efficient biodegradation of low-density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water. Environmental Science and Pollution Research, 25(33): 33508–33520

[80]

Schefer R B , Armanious A , Mitrano D M . (2023). Eco-corona formation on plastics: adsorption of dissolved organic matter to pristine and photochemically weathered polymer surfaces. Environmental Science & Technology, 57(39): 14707–14716

[81]

Sedha S , Lee H , Singh S , Kumar S , Jain S , Ahmad A , Bin Jardan Y A , Sonwal S , Shukla S , Simal-Gandara J . et al. (2021). Reproductive toxic potential of phthalate compounds: state of art review. Pharmacological Research, 167: 105536

[82]

Shi Z Q , Xu H C , Wang Z Y , Du H Y , Fu X W . (2021). Effects of co-exposure to copper and humic acids on microalga Chlorella vulgaris: growth inhibition, oxidative stress, and extracellular secretion. Environmental Pollutants and Bioavailability, 33(1): 415–424

[83]

Silva P PRibeiro L A (2019). Assessing microalgae sustainability as a feedstock for biofuels. Advanced Biopro-cessing for Alternative Fuels, Biobased Chemicals, and Bioproducts, 373–392

[84]

Sjollema S B , Redondo-Hasselerharm P , Leslie H A , Kraak M H S , Vethaak A D . (2016). Do plastic particles affect microalgal photosynthesis and growth?. Aquatic Toxicology, 170: 259–261

[85]

Song C F , Liu Z Z , Wang C L , Li S H , Kitamura Y . (2020). Different interaction performance between microplastics and microalgae: the bio-elimination potential of Chlorella sp. L38 and Phaeodactylum tricornutum MASCC-0025. Science of the Total Environment, 723: 138146

[86]

Su Y Y , Cheng Z R , Hou Y P , Lin S Y , Gao L , Wang Z Z , Bao R Q , Peng L C . (2022). Biodegradable and conventional microplastics posed similar toxicity to marine algae Chlorella vulgaris. Aquatic Toxicology, 244: 106097

[87]

Tunali M , Uzoefuna E N , Tunali M M , Yenigun O . (2020). Effect of microplastics and microplastic-metal combinations on growth and chlorophyll a concentration of Chlorella vulgaris. Science of the Total Environment, 743: 140479

[88]

Tziveleka L AIoannou ERoussis V (2019). Ulvan, a bioactive marine sulphated polysaccharide as a key constituent of hybrid biomaterials: a review. Carbohydrate Polymers, 218: 355–370

[89]

Venâncio C , Ferreira I , Martins M A , Soares A M VM , Lopes I , Oliveira M . (2019). The effects of nanoplastics on marine plankton: a case study with polymethylmethacrylate. Ecoto-xicology and Environmental Safety, 184: 109632

[90]

Ventura E , Marín A , Gámez-Pérez J , Cabedo L . (2024). Recent advances in the relationships between biofilms and microplastics in natural environments. World Journal of Microbiology and Biotechnology, 40(7): 220

[91]

Moos N , Slaveykova V I . (2014). Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae–state of the art and knowledge gaps. Nanotoxicology, 8(6): 605–630

[92]

Wang Q J , Wangjin X , Zhang Y , Wang N X , Wang Y L , Meng G H , Chen Y H . (2020a). The toxicity of virgin and UV-aged PVC microplastics on the growth of freshwater algae Chlamydomonas reinhardtii. Science of the Total Environment, 749: 141603

[93]

Wang S , Wang Y , Liang Y , Cao W , Sun C J , Ju P , Zheng L . (2020b). The interactions between microplastic polyvinyl chloride and marine diatoms: physiological, morphological, and growth effects. Ecotoxicology and Environmental Safety, 203: 111000

[94]

Wang W F , Gao H , Jin S C , Li R J , Na G . (2019). The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: a review. Ecotoxicology and Environmental Safety, 173: 110–117

[95]

Wang W F , Yuan W K , Chen Y L , Wang J . (2018). Microplastics in surface waters of Dongting Lake and Hong Lake, China. Science of the Total Environment, 633: 539–545

[96]

Wang X , Qin Z H , Hao T B , Ye G B , Mou J H , Balamurugan S , Bin X Y , Buhagiar J , Wang H M , Lin C S K . et al. (2022). A combined light regime and carbon supply regulation strategy for microalgae-based sugar industry wastewater treatment and low-carbon biofuel production to realise a circular economy. Chemical Engineering Journal, 446: 137422

[97]

Weckesser J , Jügrens U J . (1988). Cell walls and external layers. Methods in Enzymology, 167: 173–188

[98]

Xiang L , Fang J , Cheng H . (2018). Toxicity of silver nanoparticles to green algae M. aeruginosa and alleviation by organic matter. Environmental Monitoring and Assessment, 190(11): 667

[99]

Xiao Y , Jiang X F , Liao Y C , Zhao W G , Zhao P , Li M . (2020). Adverse physiological and molecular level effects of polystyrene microplastics on freshwater microalgae. Chemosphere, 255: 126914

[100]

Yan N , Tang B Z , Wang W X . (2021a). Cell cycle control of nanoplastics internalization in phytoplankton. ACS Nano, 15(7): 12237–12248

[101]

Yan Z , Xu L M , Zhang W M , Yang G , Zhao Z L , Wang Y , Li X C . (2021b). Comparative toxic effects of microplastics and nanoplastics on Chlamydomonas reinhardtii: growth inhibition, oxidative stress, and cell morphology. Journal of Water Process Engineering, 43: 102291

[102]

Yang S S , Wu W M , Bertocchini F , Benbow M E , Devipriya S P , Cha H J , Peng B P , Ding M Q , He L , Li M X . et al. (2024). Radical innovation breakthroughs of biodegradation of plastics by insects: history, present and future perspectives. Frontiers of Environmental Science & Engineering, 18(6): 78

[103]

Yang W F , Gao P , Li H X , Huang J Y , Zhang Y , Ding H J , Zhang W H . (2021). Mechanism of the inhibition and detoxification effects of the interaction between nanoplastics and microalgae Chlorella pyrenoidosa. Science of the Total Environment, 783: 146919

[104]

Yang W F , Gao X X , Wu Y X , Wan L , Tan L C , Yuan S M , Ding H J , Zhang W H . (2020). The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa. Ecotoxicology and Environmental Safety, 195: 110484

[105]

Ye T R , Yang A , Wang Y L , Song N , Wang P , Xu H C . (2022). Changes of the physicochemical properties of extracellular polymeric substances (EPS) from Microcystis aeruginosa in response to microplastics. Environmental Pollution, 315: 120354

[106]

Yin L S , Jiang C B , Wen X F , Du C Y , Zhong W , Feng Z Q , Long Y N , Ma Y . (2019). Microplastic pollution in surface water of urban lakes in Changsha, China. International Journal of Environmental Research and Public Health, 16(9): 1650

[107]

Yoshida S , Hiraga K , Takehana T , Taniguchi I , Yamaji H , Maeda Y , Toyohara K , Miyamoto K , Kimura Y , Oda K . (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351(6278): 1196–1199

[108]

Yu Y , Kumar M , Bolan S , Padhye L P , Bolan N , Li S X , Wang L W , Hou D Y , Li Y . (2024). Various additive release from microplastics and their toxicity in aquatic environments. Environmental Pollution, 343: 123219

[109]

Yu Y , Liu X N , Liu Y , Liu J , Li Y . (2023). Photoaging mechanism of microplastics: a perspective on the effect of dissolved organic matter in natural water. Frontiers of Environmental Science & Engineering, 17(11): 143

[110]

Zhang C , Chen X H , Wang J T , Tan L J . (2017). Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae. Environmental Pollution, 220: 1282–1288

[111]

Zhang X L , Lv D J , Li B W , Liu Z M , Yang F , Tang Q , Gao Y J , Zhao H , Tan Z , Du P . et al. (2025). Polydopamine-functionalized magnetic algae composite for efficient removal of polystyrene microplastics: mechanistic insights and performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 725: 137594

[112]

Zhao T , Tan L J , Huang W Q , Wang J T . (2019). The interactions between micro polyvinyl chloride (mPVC) and marine dinoflagellate Karenia mikimotoi: the inhibition of growth, chlorophyll and photosynthetic efficiency. Environmental Pollution, 247: 883–889

[113]

Zheng X W , Zhang L L , Jiang C , Li J , Li Y Y , Liu X L , Li C W , Wang Z M , Zheng N , Fan Z Q . (2023). Acute effects of three surface-modified nanoplastics against Microcystis aeruginosa: growth, microcystin production, and mechanisms. Science of the Total Environment, 855: 158906

[114]

Zheng X W , Zhang W Z , Yuan Y , Li Y Y , Liu X L , Wang X R , Fan Z Q . (2021). Growth inhibition, toxin production and oxidative stress caused by three microplastics in Microcystis aeruginosa. Ecotoxicology and Environmental Safety, 208: 111575

RIGHTS & PERMISSIONS

Higher Education Press 2026

AI Summary AI Mindmap
PDF (3368KB)

Supplementary files

Supplementary materials

266

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/