Parameter optimization and mechanism of magnetic biochar-enhanced microbial electrolysis cell coupling with anaerobic digestion (MEC-AD) for treatment of landfill leachate

Wenqi Li , Jiachen Zhu , Xin Yin , Hanbo Chen , He Liu , Minhua Cui , Chongjun Chen

ENG. Environ. ›› 2026, Vol. 20 ›› Issue (1) : 5

PDF (10638KB)
ENG. Environ. ›› 2026, Vol. 20 ›› Issue (1) :5 DOI: 10.1007/s11783-026-2105-0
RESEARCH ARTICLE

Parameter optimization and mechanism of magnetic biochar-enhanced microbial electrolysis cell coupling with anaerobic digestion (MEC-AD) for treatment of landfill leachate

Author information +
History +
PDF (10638KB)

Abstract

Landfill leachate has a highly complex composition containing hazardous substances and refractory organic compounds, which makes its treatment challenging. In this study, a microbial electrolysis cell coupled anaerobic digestion (MEC-AD) system was constructed and integrated with magnetic biochar (MBC). The critical parameters (i.e., applied voltage, anode-to-cathode area ratio, and cathode mesh size) were systematically optimized through orthogonal experiments to investigate their impacts on chemical oxygen demand (COD), organic transformation pathways, and microbial community succession in the system. The results demonstrated a maximum COD removal efficiency of 59.7%. The optimal combination of parameters included an applied voltage of 1.2 V, an anode-to-cathode area ratio of 1:0.5, and a cathode mesh size of 200 mesh. Furthermore, spectral analysis revealed significant degradation of aromatic compounds with conjugated double bonds and humic acid-like substances, which indicated that electrochemical stimulation effectively facilitated molecular chain cleavage and enhanced microbial metabolism. Long-chain amides (such as 13-Docosenamide, (Z)-) were hydrolyzed into fatty acids and further transformed into alkanes. On the other hand, aromatic pollutants like 2,4-Di-tert-butylphenol underwent progressive mineralization through hydroxylation and ring-opening reactions. Under applied voltage of 1 V, electroactive bacteria (i.e., Comamonas (22.3%) and Pseudomonas (8.1%)) in anode biofilms formed metabolic networks with fermentative bacteria (Soehngenia) and synergistically enhanced electron transfer and organic reduction with heterotrophic bacteria at the cathode. This research provides theoretical insights into optimized degradation mechanisms of MEC-AD systems and the practical feasibility of its application for landfill leachate treatment.

Graphical abstract

Keywords

Landfill leachate / MEC-AD / Microbial community / Parameter optimization

Highlight

● Optimal MEC-AD parameters: 1.2 V, 1:0.5 anode-cathode ratio, 200-mesh cathode.

● Typical landfill leachate DOM (aromatic proteins, humic acids) effectively removed.

● Aromatic compounds degraded through hydroxylation and ring-opening pathways.

● Synergistic electroactive, heterotrophic, fermentative bacterial network established.

Cite this article

Download citation ▾
Wenqi Li, Jiachen Zhu, Xin Yin, Hanbo Chen, He Liu, Minhua Cui, Chongjun Chen. Parameter optimization and mechanism of magnetic biochar-enhanced microbial electrolysis cell coupling with anaerobic digestion (MEC-AD) for treatment of landfill leachate. ENG. Environ., 2026, 20(1): 5 DOI:10.1007/s11783-026-2105-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Batlle-Vilanova P , Puig S , Gonzalez-Olmos R , Vilajeliu-Pons A , Bañeras L , Balaguer M D , Colprim J . (2014). Assessment of biotic and abiotic graphite cathodes for hydrogen production in microbial electrolysis cells. International Journal of Hydrogen Energy, 39(3): 1297–1305

[2]

Chen H B , Gao Y R , Fang Z , Li J Y , Pillai S C , Song H , Sun C H , Bolan N , Yang X , Vithanage M . et al. (2024). Investigating the electron-scale adsorption mechanisms using DFT calculations and experimental studies in self-assembly magnetic biochar gel incorporated with graphene nanosheets for enhanced Sb (III) removal. Chemical Engineering Journal, 487: 150740

[3]

Chen J B , Zhang F , Li Y H , Tan W B , Yuan Y , Jiang Y . (2025). Influence of landfill leachate microenvironment on the occurrence of microplastics: TOC changes are the main driving factor. Journal of Hazardous Materials, 492: 138080

[4]

Chen W M , Zhang A P , Jiang G B , Li Q B . (2019). Transformation and degradation mechanism of landfill leachates in a combined process of SAARB and ozonation. Waste Management, 85: 283–294

[5]

Chen X F , Cui D , Wang X J , Wang X S , Li W S . (2015). Porous carbon with defined pore size as anode of microbial fuel cell. Biosensors and Bioelectronics, 69: 135–141

[6]

Chung T H , Rahman A , Chakrabarty A A , Zakaria B S , Khondoker M A H , Dhar B R . (2024). 3D printed cathodes for microbial electrolysis cell-assisted anaerobic digester: evaluation of performance, resilience, and fluid dynamics. Journal of Power Sources, 623: 235461

[7]

Damtie M M , Shin J , Jang H M , Cho H U , Wang J H , Kim Y M . (2021). Effects of biological pretreatments of microalgae on hydrolysis, biomethane potential and microbial community. Bioresource Technology, 329: 124905

[8]

Feng K , Lu Y , Shen Y , Zhang S H , Ye J X , Chen J M , Zhao J K . (2023). Multilayered structure and activity of electroactive biofilms in response to the switch from microbial fuel cell to microbial electrolysis cell. Journal of Power Sources, 587: 233704

[9]

Guo M X , Guo M , Wang Y , Li M X , Qi X J , Wei S J , Jia X . (2024). The influencing mechanism of AD-MEC domesticated sludge to alleviates propionate accumulation and enhances methano-genesis. Bioresource Technology, 393: 129996

[10]

Hao Y X , Yu D S , Zhu S Q , Kuo C H , Chang Y M , Wang L Q , Chen H Y , Shao M H , Peng S J . (2023). Methanol upgrading coupled with hydrogen product at large current density promoted by strong interfacial interactions. Energy & Environmental Science, 16(3): 1100–1110

[11]

Huang Q , Liu Y , Dhar B R . (2023). Boosting resilience of microbial electrolysis cell-assisted anaerobic digestion of blackwater with granular activated carbon amendment. Bioresource Technology, 381: 129136

[12]

Huang Q , Liu Y , Dhar B R . (2024). Deciphering the microbial interactions and metabolic shifts at different COD/sulfate ratios in electro-assisted anaerobic digestion. Journal of Hazardous Materials, 480: 135801

[13]

Jung S , Kim M , Lee J , Shin J , Shin S G , Lee J . (2022). Effect of magnetite supplementation on mesophilic anaerobic digestion of phenol and benzoate: methane production rate and microbial communities. Bioresource Technology, 350: 126943

[14]

Li M M , Zhang Q , Liu Y , Zhu J C , Sun F Q , Cui M H , Liu H , Zhang T C , Chen C J . (2023a). Enhancing degradation of organic matter in microbial electrolytic cells coupled with anaerobic digestion (MEC-AD) systems by carbon-based materials. Science of the Total Environment, 900: 165805

[15]

Li X , Ren Y N , Chen X Z , Li Y , Chertow M R . (2023b). Exploring the development of municipal solid waste disposal facilities in Chinese cities: patterns and drivers. Frontiers of Environmental Science & Engineering, 17(11): 139

[16]

Liu C Q , Cao Q , Luo X G , Yan S H , Sun Q Y , Zheng Y Y , Zhen G Y . (2025). In-depth exploration of microbial electrolysis cell coupled with anaerobic digestion (MEC-AD) for methanogenesis in treating protein wastewater at high organic loading rates. Energy Conversion and Management, 323: 119152

[17]

Liu D D , Zheng T Y , Buisman C , ter Heijne A . (2017). Heat-treated stainless steel felt as a new cathode material in a methane-producing bioelectrochemical system. ACS Sustainable Chemistry & Engineering, 5(12): 11346–11353

[18]

Liu H Y , Xu Y , Chen X , Wang X K , Wang H , Dai X H . (2024). MOF-based materials facilitate efficient anaerobic digestion of organic wastes: integrating substrate bioavailability and microbial syntrophism. Frontiers of Environmental Science & Engineering, 18(8): 105

[19]

Long X Z , Cao X , Song H L , Nishimura O , Li X N . (2019). Characterization of electricity generation and microbial community structure over long-term operation of a microbial fuel cell. Bioresource Technology, 285: 121395

[20]

Ma W W , Han Y X , Xu C Y , Han H J , Zhong D , Zhu H , Li K . (2019). The mechanism of synergistic effect between iron-carbon microelectrolysis and biodegradation for strengthening phenols removal in coal gasification wastewater treatment. Bioresource Technology, 271: 84–90

[21]

Pan Y W , Xie J W , Yan W X , Zhang T C , Chen C J . (2022). Response of microbial community to different land-use types, nutrients and heavy metals in urban river sediment. Journal of Environmental Management, 321: 115855

[22]

Park S G , Rhee C , Jadhav D A , Jang J H , Hwang M H , Chae K J . (2025). Enhanced hydrogen production in microbial electrolysis cells through a magnetically induced electroactive anode biofilm. Chemical Engineering Journal, 505: 159071

[23]

Patwardhan S B , Pandit S , Kumar Gupta P , Kumar Jha N , Rawat J , Joshi H C , Priya K , Gupta M , Lahiri D , Nag M . et al. (2022). Recent advances in the application of biochar in microbial electrochemical cells. Fuel, 311: 122501

[24]

Pinhedo L , Pelegrini R , Bertazzoli R , Motheo A J . (2005). Photoelectrochemical degradation of humic acid on a (TiO2)0.7(RuO2)0.3 dimensionally stable anode. Applied Catalysis B: Environmental, 57(2): 75–81

[25]

Qi X Y , Gao X Y , Wang X , Xu P . (2024). Harnessing Pseudomonas putida in bioelectrochemical systems. Trends in Biotechnology, 42(7): 877–894

[26]

Rivera I , Bakonyi P , Buitrón G . (2017). H2 production in membraneless bioelectrochemical cells with optimized architecture: the effect of cathode surface area and electrode distance. Chemosphere, 171: 379–385

[27]

Rivière D , Desvignes V , Pelletier E , Chaussonnerie S , Guermazi S , Weissenbach J , Li T L , Camacho P , Sghir A . (2009). Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. The ISME Journal, 3(6): 700–714

[28]

Song Y J , Ma M Y , Su Q M K , Du Y , Du D Y . (2024). The new strategy of using pine-cone biochar to enhance anaerobic digestion of liquor wastewater for methane production. Journal of Cleaner Production, 438: 140748

[29]

Song Z HWu XGao T YYao F BTang XMahmood QTang C J (2025). Performance enhancement strategies for electro-oxidation degradation of landfill leachate: a review. Chinese Chemical Letters, 36 (12): 111008

[30]

Stedmon C A , Bro R . (2008). Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods, 6(11): 572–579

[31]

Tang Y F , Dai X H , Dong B , Guo Y Q , Dai L L . (2020). Humification in extracellular polymeric substances (EPS) dominates methane release and EPS reconstruction during the sludge stabilization of high-solid anaerobic digestion. Water Research, 175: 115686

[32]

Tian L L , Liao C M , Yan X J , Zhao Q , Wang Z Y , Li T , Li N , Wang X . (2023). Endogenous electric field accelerates phenol degradation in bioelectrochemical systems with reduced electrode spacing. Journal of Hazardous Materials, 442: 130043

[33]

Wang D B , Hao Z X , Tao S Y , Shi Z Y , Liu Z W , Liu E X , Long S . (2024a). Enhanced methane production from waste activated sludge by microbial electrolysis cell assisted anaerobic digestion: fate and effect of humic substances. Bioresource Technology, 403: 130872

[34]

Wang L , Zhu C X , Ma Y R , Ma Y , Bi X J , Pang H L . (2025a). A novel 2d-on/3d-off power stimulation enhances sludge methane production in an MEC-AD system. Biomass and Bioenergy, 201: 108077

[35]

Wang W , Lee D J , Lei Z F . (2022). Integrating anaerobic digestion with microbial electrolysis cell for performance enhancement: a review. Bioresource Technology, 344: 126321

[36]

Wang X T , Zhao L , Zhang Q , Wang B , Xing D F , Nan J , Ren N Q , Lee D J , Chen C . (2024b). Linking performance to dynamic migration of biofilm ecosystem reveals the role of voltage in the start-up of hybrid microbial electrolysis cell-anaerobic digestion. Bioresource Technology, 411: 131242

[37]

Wang X Y , Han M D , Li W G , Liu X Y , Lv L Y , Gao W F , Liu X Y , Sun L , Liang J S , Zhang G M . et al. (2024c). Enhanced anaerobic digestion of landfill leachate based on a novel redox mediator: synergistic mechanism of enhancing extracellular electron transfer. Chemical Engineering Journal, 490: 151649

[38]

Wang X Y , Liu X Y , Zhang D Y , Lv L Y , Liang J S , Sun L , Liu X Y , Gao W F , Zhang G M , Ren Z J . et al. (2025b). Enhancing anaerobic digestion for treating landfill leachate based on S, N-modified biochar: synergistic enhancement of microbes-to-pollutants and inter-microbes extracellular electron transfer. Journal of Cleaner Production, 493: 144970

[39]

Wilk B K , Szopińska M , Sobaszek M , Pierpaoli M , Błaszczyk A , Luczkiewicz A , Fudala-Ksiazek S . (2022). Electrochemical oxidation of landfill leachate using boron-doped diamond anodes: pollution degradation rate, energy efficiency and toxicity assessment. Environmental Science and Pollution Research, 29(43): 65625–65641

[40]

Wu Z M , Liu C F , Zhang Z Y , Zheng R C , Zheng Y C . (2020). Amidase as a versatile tool in amide-bond cleavage: from molecular features to biotechnological applications. Biotech-nology Advances, 43: 107574

[41]

Xie J W , Zou X Y , Chang Y F , Liu H , Cui M H , Zhang T C , Xi J J , Chen C J . (2023a). A feasibility investigation of a pilot-scale bioelectrochemical coupled anaerobic digestion system with centric electrode module for real membrane manufacturing wastewater treatment. Bioresource Technology, 368: 128371

[42]

Xie J W , Zou X Y , Chang Y F , Xie J X , Liu H , Cui M H , Zhang T C , Chen C J . (2023b). The microbial synergy and response mechanisms of hydrolysis-acidification combined microbial electrolysis cell system with stainless-steel cathode for textile-dyeing wastewater treatment. Science of the Total Environment, 855: 158912

[43]

Xu S Y , Zhang Y C , Luo L W , Liu H B . (2019). Startup performance of microbial electrolysis cell assisted anaerobic digester (MEC-AD) with pre-acclimated activated carbon. Bioresource Technology Reports, 5: 91–98

[44]

Xu X J , Wang W Q , Chen C , Xie P , Liu W Z , Zhou X , Wang X T , Yuan Y , Wang A J , Lee D J . et al. (2020). The effect of PBS on methane production in combined MEC-AD system fed with alkaline pretreated sewage sludge. Renewable Energy, 152: 229–236

[45]

Yang Y J , Liu H X , Dai Y C , Tian H X , Zhou W , Lv J L . (2021). Soil organic carbon transformation and dynamics of microorganisms under different organic amendments. Science of the Total Environment, 750: 141719

[46]

Yu H , Zhu J C , Peng Y S , Chen H B , Chen C J . (2025). Addition-specific magnetic biochar optimization enhances COD removal and microbial community dynamics in microbial electrolytic cell-anaerobic digestion (MEC-AD) system for landfill leachate treatment. Chemical Engineering Journal, 519: 165174

[47]

Yun S N , Xing T , Han F , Shi J , Wang Z Q , Fan Q Y , Xu H F . (2021). Enhanced direct interspecies electron transfer with transition metal oxide accelerants in anaerobic digestion. Bioresource Technology, 320: 124294

[48]

Zhang Y F , Gao Y M , Xi B D , Yuan Y , Tan W B . (2023). Influence of leachate microenvironment on the occurrence of phthalate esters in landfills. Chemosphere, 343: 140278

[49]

Zhao B P , Hua X D , Wang F , Dong W L , Li Z K , Yang Y , Cui Z L , Wang M H . (2015). Biodegradation of propyzamide by Comamonas testosteroni W1 and cloning of the propyzamide hydrolase gene camH. Bioresource Technology, 179: 144–149

[50]

Zhao J K , Rao M L , Zhang H Y , Wang Q L , Shen Y , Ye J X , Feng K , Zhang S H . (2025). Evolution of interspecific interactions underlying the nonlinear relationship between active biomass and pollutant degradation capacity in bioelectrochemical systems. Water Research, 274: 123071

[51]

Zhao L , Wang X T , Chen K Y , Wang Z H , Xu X J , Zhou X , Xing D F , Ren N Q , Lee D J , Chen C . (2021). The underlying mechanism of enhanced methane production using microbial electrolysis cell assisted anaerobic digestion (MEC-AD) of proteins. Water Research, 201: 117325

[52]

Zheng Y , Zou X Y , Dong S H , Xin F , Jin W , Sun F Q , Sabir Ahmed M , Chen C J . (2024). Adaptation of the anammox process for high ammonium photovoltaic wastewater treatment. Bioresource Technology, 410: 131298

[53]

Zhou X , Hou Z L , Song J J , Lv L . (2020). Spectrum evolution of dissolved aromatic organic matters (DAOMs) during electro-peroxi-coagulation pretreatment of coking wastewater. Separation and Purification Technology, 235: 116125

[54]

Zhu J C , Li M M , Yu H , Zheng Y , Yuan L Q , Cao Y X , Liu X , Sun F Q , Chen C J . (2024). Magnetic biochar enhanced microbial electrolysis cell with anaerobic digestion for complex organic matter degradation in landfill leachate. Science of the Total Environment, 949: 175013

RIGHTS & PERMISSIONS

Higher Education Press 2026

AI Summary AI Mindmap
PDF (10638KB)

Supplementary files

Supplementary materials

977

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/