PDF
(2076KB)
Abstract
Climate change presents a critical global challenge, threatening human well-being, ecosystems, economies, and societies. While mitigation efforts remain essential and critically important, the growing urgency of climate impacts necessitates immediate and effective adaptation measures. Effective adaptation strategies require advanced modeling tools with higher resolution, integration of ecosystem and social dynamics, and the ability to assess diverse adaptation scenarios. Local-scale models, which are performed at the scale of an administrative region, a country, or a specified region, are particularly valuable as they can incorporate specific adaptation measures and generate precise, context-specific insights. These models play a key role in formulating tailored climate adaptation strategies and action plans. This paper explores the significance and challenges in developing such models, emphasizing the pressing need to accelerate their advancement. We call on the scientific community and policymakers to prioritize the development of tailored local-scale modeling tools and services to enhance resilience and better support adaptive responses to the complex and evolving challenges posed by climate change and rapid urbanization at the local level.
Graphical abstract
Keywords
Climate adaptation
/
Local-scale model
/
Model development
/
Policy-making
Highlight
| ● The significance of local-scale models to support climate adaptation is highlighted. |
| ● The challenges of developing local-scale models are explored. |
| ● Recommendations for developing local-scale models are discussed. |
Cite this article
Download citation ▾
Huiling Ouyang, Alexander Baklanov, Xu Tang, Peng Wang, Renhe Zhang.
Urgency and importance of local-scale modeling tools to support climate adaptation and sustainable development.
Front. Environ. Sci. Eng., 2025, 19(12): 171 DOI:10.1007/s11783-025-2091-7
| [1] |
Alapaty K , Mathur R , Pleim J , Hogrefe C , Rao S , Ramaswamy V , Galmarini S , Schaap M , Makar P , Vautard R . . (2012). New Directions: Understanding interactions of air quality and climate change at regional scales. Atmospheric Environment, 49: 419–421
|
| [2] |
Baklanov A , Brunner D , Carmichael G , Flemming J , Freitas S , Gauss M , Hov Ø , Mathur R , Schlünzen K H , Seigneur C . . (2017a). Key issues for seamless integrated chemistry–meteorology modeling. Bulletin of the American Meteorological Society, 98(11): 2285–2292
|
| [3] |
Baklanov A , Cárdenas B , Lee T C , Leroyer S , Masson V , Molina L T , Müller T , Ren C , Vogel F R , Voogt J A . (2020). Integrated urban services: experience from four cities on different continents. Urban Climate, 32: 100610
|
| [4] |
Baklanov A , Grimmond C S B , Carlson D , Terblanche D , Tang X , Bouchet V , Lee B , Langendijk G , Kolli R K , Hovsepyan A . (2018). From urban meteorology, climate and environment research to integrated city services. Urban Climate, 23: 330–341
|
| [5] |
Baklanov A , Korsholm U S , Nuterman R , Mahura A , Nielsen K P , Sass B H , Rasmussen A , Zakey A , Kaas E , Kurganskiy A . . (2017b). Enviro-HIRLAM online integrated meteorology–chemistry modelling system: strategy, methodology, developments and applications (v7.2). Geoscientific Model Development, 10(8): 2971–2999
|
| [6] |
Baklanov A , Zhang Y . (2020). Advances in air quality modeling and forecasting. Global Transitions, 2: 261–270
|
| [7] |
Bi K F , Xie L X , Zhang H H , Chen X , Gu X T , Tian Q . (2023). Accurate medium-range global weather forecasting with 3D neural networks. Nature, 619(7970): 533–538
|
| [8] |
BiesbroekRLesnikowskiA (2018). Adaptation: The neglected dimension of polycentric climate governance? In: Jordan A, Huitema D, van Asselt H, Forster J, eds. Governing climate change: polycentricity in action? Cambridge: Cambridge University Press, 303–319
|
| [9] |
Ching J , Aliaga D , Mills G , Masson V , See L , Neophytou M , Middel A , Baklanov A , Ren C , Ng E . . (2019). Pathway using WUDAPT's digital synthetic city tool towards generating urban canopy parameters for multi-scale urban atmospheric modeling. Urban Climate, 28: 100459
|
| [10] |
Ching J , Mills G , Bechtel B , See L , Feddema J , Wang X , Ren C , Brousse O , Martilli A , Neophytou M . . (2018). WUDAPT: an urban weather, climate, and environmental modeling infrastructure for the Anthropocene. Bulletin of the American Meteorological Society, 99(9): 1907–1924
|
| [11] |
Creutzig F , Lohrey S , Bai X M , Baklanov A , Dawson R , Dhakal S , Lamb W F , McPhearson T , Minx J , Munoz E . . (2019). Upscaling urban data science for global climate solutions. Global Sustainability, 2: e2
|
| [12] |
Dafouf S , Lahrach A , Tabyaoui H , Benaabidate L . (2025). Future evolutions of precipitation and temperature using the statistical downscaling model (SDSM), case of the Guir and the Ziz watershed, morocco. Earth, 6(1): 4
|
| [13] |
Danabasoglu G , Lamarque J F , Bacmeister J , Bailey D A , DuVivier A K , Edwards J , Emmons L K , Fasullo J , Garcia R , Gettelman A . . (2020). The community earth system model version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12(2): e2019MS001916
|
| [14] |
Dee D, Obregon A, Buontempo C (2024). Are our climate data fit for your purpose? Bulletin of the American Meteorological Society, 105(9): E1723–E1733
|
| [15] |
Delgado J M , Merz B , Apel H . (2014). Projecting flood hazard under climate change: an alternative approach to model chains. Natural Hazards and Earth System Sciences, 14(6): 1579–1589
|
| [16] |
DemuzereMKittnerJBechtelB (2021). LCZ generator: a web application to create local climate zone maps. Frontiers in Environmental Science 9: 637455
|
| [17] |
Demuzere M , Kittner J , Martilli A , Mills G , Moede C , Stewart I D , van Vliet J , Bechtel B . (2022). A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth System Science Data, 14(8): 3835–3873
|
| [18] |
Estrada F , Calderón-Bustamante O , Botzen W , Velasco J A , Tol R S J . (2022). AIRCC-Clim: a user-friendly tool for generating regional probabilistic climate change scenarios and risk measures. Environmental Modelling & Software, 157: 105528
|
| [19] |
Fowler H J , Blenkinsop S , Tebaldi C . (2007). Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology, 27(12): 1547–1578
|
| [20] |
Ganguly A R , Kodra E A , Agrawal A , Banerjee A , Boriah S , Chatterjee S , Chatterjee S , Choudhary A , Das D , Faghmous J . . (2014). Toward enhanced understanding and projections of climate extremes using physics-guided data mining techniques. Nonlinear Processes in Geophysics, 21(4): 777–795
|
| [21] |
Gentine P, Pritchard M, Rasp S, Reinaudi G, Yacalis G (2018). Could machine learning break the convection parameterization deadlock? Geophysical Research Letters, 45(11): 5742–5751
|
| [22] |
Giorgi F , Jones C , Asrar G R . (2009). Addressing climate information needs at the regional level: the CORDEX framework. WMO Bulletin, 58(3): 175–183
|
| [23] |
Giorgi F , Mearns L O . (1999). Introduction to special section: regional climate modeling revisited. Journal of Geophysical Research: Atmospheres, 104(D6): 6335–6352
|
| [24] |
Grimmond S , Bouchet V , Molina L T , Baklanov A , Tan J G , Schlünzen K H , Mills G , Golding B , Masson V , Ren C . . (2020). Integrated urban hydrometeorological, climate and environmental services: concept, methodology and key messages. Urban Climate, 33: 100623
|
| [25] |
Gutowski Jr W J , Ullrich P A , Hall A , Leung L R , O’Brien T A , Patricola C M , Arritt R W , Bukovsky M S , Calvin K V , Feng Z . . (2020). The ongoing need for high-resolution regional climate models: process understanding and stakeholder information. Bulletin of the American Meteorological Society, 101(5): E664–E683
|
| [26] |
Hay L E , Wilby R L , Leavesley G H . (2000). A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. JAWRA Journal of the American Water Resources Association, 36(2): 387–397
|
| [27] |
Hobeichi S , Nishant N , Shao Y W , Abramowitz G , Pitman A , Sherwood S , Bishop C , Green S . (2023). Using machine learning to cut the cost of dynamical downscaling. Earth’s Future, 11(3): e2022EF003291
|
| [28] |
Huang G , Wang Y , Ham Y G , Mu B , Tao W C , Xie C Y . (2024). Toward a learnable climate model in the artificial intelligence era. Advances in Atmospheric Sciences, 41(7): 1281–1288
|
| [29] |
IPCC(Intergovernmental Panel on Climate Change) (2021). Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pirani A, Connors S L, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis M I, eds. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2391
|
| [30] |
Jungclaus J H , Lorenz S J , Schmidt H , Brovkin V , Brüggemann N , Chegini F , Crüger T , De-Vrese P , Gayler V , Giorgetta M A . . (2022). The ICON earth system model version 1.0. Journal of Advances in Modeling Earth Systems, 14(4): e2021MS002813
|
| [31] |
Karniadakis G E , Kevrekidis I G , Lu L , Perdikaris P , Wang S F , Yang L . (2021). Physics-informed machine learning. Nature Reviews Physics, 3(6): 422–440
|
| [32] |
Koldunov N , Jung T . (2024). Local climate services for all, courtesy of large language models. Communications Earth & Environment, 5(1): 13
|
| [33] |
Kulmala M , Lappalainen H K , Petäjä T , Kurten T , Kerminen V M , Viisanen Y , Hari P , Sorvari S , Bäck J , Bondur V . . (2015). Introduction: the Pan-Eurasian Experiment (PEEX) – multi-disciplinary, multiscale and multicomponent research and capacity-building initiative. Atmospheric Chemistry and Physics, 15(22): 13085–13096
|
| [34] |
Lam R , Sanchez-Gonzalez A , Willson M , Wirnsberger P , Fortunato M , Alet F , Ravuri S , Ewalds T , Eaton-Rosen Z , Hu W H . . (2023). Learning skillful medium-range global weather forecasting. Science, 382(6677): 1416–1421
|
| [35] |
Langendijk G S , Halenka T , Hoffmann P , Adinolfi M , Campino A A , Asselin O , Bastin S , Bechtel B , Belda M , Bushenkova A . . (2024). Towards better understanding the urban environment and its interactions with regional climate change: the WCRP CORDEX flagship pilot study URB-RCC. Urban Climate, 58: 102165
|
| [36] |
Liu Z , Gao S , Cai W J , Li Z Y , Wang C , Chen X , Ma Z Y , Zhao Z J . (2023). Projections of heat-related excess mortality in China due to climate change, population and aging. Frontiers of Environmental Science & Engineering, 17(11): 132
|
| [37] |
Lopez-Gomez I , Wan Z Y , Zepeda-Núñez L , Schneider T , Anderson J , Sha F . (2025). Dynamical-generative downscaling of climate model ensembles. Proceedings of the National Academy of Sciences of the United States of America, 122(17): e2420288122
|
| [38] |
Mahura A , Baklanov A , Makkonen R , Boy M , Petäjä T , Lappalainen H K , Nuterman R , Kerminen V M , Arnold S R , Jochum M . . (2024). Towards seamless environmental prediction – development of Pan-Eurasian EXperiment (PEEX) modelling platform. Big Earth Data, 8(2): 189–230
|
| [39] |
MEGAPOLI(2010). Hierarchy of urban canopy parameterisations for different scale models. MEGAPOLI Scientific Report 10-04. Copenhagen: Danish Meteorological Institute
|
| [40] |
Michalek A T , Villarini G , Kim T . (2024). Understanding the impact of precipitation bias-correction and statistical downscaling methods on projected changes in flood extremes. Earth's Future, 12(3): e2023EF004179
|
| [41] |
Mills G , Arunachalam S , Shi Y , Baklanov A . (2024). Jason Ching and the development of an urban climate science: an introduction to the special issue on the world urban database access portal tools (WUDAPT). Urban Climate, 58: 102179
|
| [42] |
MurphyJ MHarrisG RSextonD M HKendonE JBettP EClarkR TEagleKFosserGFungFLoweJ A, . (2018) UKCP18 Land Projections: Science Report. Exeter: Met Office of UK
|
| [43] |
Ouyang H L , Tang X , Kumar R , Zhang R H , Brasseur G , Churchill B , Alam M , Kan H D , Liao H , Zhu T . . (2022a). Toward better and healthier air quality: implementation of WHO 2021 global air quality guidelines in Asia. Bulletin of the American Meteorological Society, 103(7): E1696–E1703
|
| [44] |
Ouyang H L , Tang X , Zhang R H . (2022b). Research themes, trends and future priorities in the field of climate change and health: a review. Atmosphere, 13(12): 2076
|
| [45] |
Ouyang H L , Tang X , Zhang R H , Baklanov A , Brasseur G , Kumar R , Han Q L , Luo Y . (2023). Resilience building and collaborative governance for climate change adaptation in response to a new state of more frequent and intense extreme weather events. International Journal of Disaster Risk Science, 14(1): 162–169
|
| [46] |
Pfister G G , Eastham S D , Arellano A F , Aumont B , Barsanti K C , Barth M C , Conley A , Davis N A , Emmons L K , Fast J D . . (2020). The multi-scale infrastructure for chemistry and aerosols (MUSICA). Bulletin of the American Meteorological Society, 101(10): E1743–E1760
|
| [47] |
Pierce D W , Cayan D R , Das T , Maurer E P , Miller N L , Bao Y , Kanamitsu M , Yoshimura K , Snyder M A , Sloan L C . . (2013). The key role of heavy precipitation events in climate model disagreements of future annual precipitation changes in California. Journal of Climate, 26(16): 5879–5896
|
| [48] |
Potter S H , Kox T , Mills B , Taylor A , Robbins J , Cerrudo C , Wyatt F , Harrison S , Golding B , Lang W . . (2025). Research gaps and challenges for impact-based forecasts and warnings: Results of international workshops for High Impact Weather in 2022. International Journal of Disaster Risk Reduction, 118: 105234
|
| [49] |
Reichstein M , Camps-Valls G , Stevens B , Jung M , Denzler J , Carvalhais N . (2019). Deep learning and process understanding for data-driven earth system science. Nature, 566(7743): 195–204
|
| [50] |
SC(The State Council of the People’s Republic of China) (2023). The State Council Information Office Held a Press Conference on the First National Comprehensive Risk Survey of Natural Disasters . Beijing: The State Council of the People’s Republic of China
|
| [51] |
Semenov M A , Barrow E M . (1997). Use of a stochastic weather generator in the development of climate change scenarios. Climatic Change, 35(4): 397–414
|
| [52] |
SkamarockW CKlempJ BDudhiaJGillD OBarkerD MDudaM GHuangXWangWPowersJ G (2008). A Description of the Advanced Research WRF Version 3. Tech. Note, NCAR/TN-475+STR. Boulder: National Center for Atmospheric Research
|
| [53] |
Song X K , Zhang S H , Huang H , Ding Q , Guo F , Zhang Y X , Li J , Li M Y , Cai W J , Wang C . (2024). A systematic review of the inequality of health burdens related to climate change. Frontiers of Environmental Science & Engineering, 18(5): 63
|
| [54] |
Stewart I D , Oke T R . (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12): 1879–1900
|
| [55] |
Tamayo J , Rodriguez-Camino E , Hernanz A , Covaleda S . (2022). Downscaled climate change scenarios for central America. Advances in Science and Research, 19: 105–115
|
| [56] |
Tan J G , Yang L M , Grimmond C S B , Shi J P , Gu W , Chang Y Y , Hu P , Sun J , Ao X Y , Han Z H . (2015). Urban integrated meteorological observations: practice and experience in Shanghai, China. Bulletin of the American Meteorological Society, 96(1): 85–102
|
| [57] |
Tang X . (2006). Managing disaster risk in a mega-city. WMO Bulletin, 55(4): 268–273
|
| [58] |
TangXSassaKBrasseurG PCullmannJFangZ Q (2021). Collaboration in MHEWS through an integrated way. In: Sassa K, Mikoš M, Sassa S, Bobrowsky P T, Takara K, Dang K, eds. Understanding and Reducing Landslide Disaster Risk. Cham: Springer, 479–497.
|
| [59] |
Wang X , Tolksdorf V , Otto M , Scherer D . (2021). WRF-based dynamical downscaling of ERA5 reanalysis data for high mountain Asia: towards a new version of the High Asia Refined analysis. International Journal of Climatology, 41(1): 743–762
|
| [60] |
WEF(2024). Global Risks Report 2024. 19th Edition. Geneva: World Economic Forum
|
| [61] |
Werner A T , Cannon A J . (2016). Hydrologic extremes: an intercomparison of multiple gridded statistical downscaling methods. Hydrology and Earth System Sciences, 20(4): 1483–1508
|
| [62] |
Wilby R L , Dawson C W , Barrow E M . (2002). SDSM: a decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 17(2): 145–157
|
| [63] |
WMO(World Meteorological Organization) (2015). Seamless Prediction of the Earth System: from Minutes to Months. WMO-No.1156. Geneva: World Meteorological Organization
|
| [64] |
WMO(World Meteorological Organization) (2018). Step-by-Step Guidelines for Establishing a National Framework for Climate Services. WMO-No.1206. Geneva: World Meteorological Organization
|
| [65] |
WMO(World Meteorological Organization) (2019). Guidance on Integrated Urban Hydrometeorological, Climate and Environmental Services, Volume I: Concept and Methodology. WMO-No.1234. Geneva: World Meteorological Organization
|
| [66] |
WMO(2023a). Guidance on Measuring, Modelling and Monitoring the Canopy Layer Urban Heat Island (CL-UHI). WMO-No.1292. Geneva: World Meteorological Organization
|
| [67] |
WMO(World Meteorological Organization) (2023b). Good Practices in High-Resolution Modelling for Integrated Urban Services. WMO-No.1313. Geneva: World Meteorological Organization
|
| [68] |
WMO(World Meteorological Organization) (2025). WMO Confirms 2024 as Warmest Year on Record at About 1.55 °C Above Pre-Industrial Level. Geneva: World Meteorological Organization
|
| [69] |
Wood A W , Leung L R , Sridhar V , Lettenmaier D P . (2004). Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62(1−3): 189–216
|
| [70] |
Xie S P , Deser C , Vecchi G A , Collins M , Delworth T L , Hall A , Hawkins E , Johnson N C , Cassou C , Giannini A . . (2015). Towards predictive understanding of regional climate change. Nature Climate Change, 5(10): 921–930
|
| [71] |
Yang J , Yu W B , Baklanov A , He B J , Ge Q S . (2025). Mainstreaming the local climate zone framework for climate-resilient cities. Nature Communications, 16(1): 5705
|
| [72] |
Yoshikane T , Yoshimura K . (2023). A downscaling and bias correction method for climate model ensemble simulations of local-scale hourly precipitation. Scientific Reports, 13(1): 9412
|
| [73] |
Yuval J , O’Gorman P A . (2020). Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions. Nature Communications, 11(1): 3295
|
| [74] |
Zhang R H , Tang X , Liu J , Visbeck M , Guo H D , Murray V , Mcgillycuddy C , Ke B , Kalonji G , Zhai P M . . (2022). From concept to action: a united, holistic and One Health approach to respond to the climate change crisis. Infectious Diseases of Poverty, 11(1): 17
|
RIGHTS & PERMISSIONS
The Author(s) 2025. This article is published with open access at link.springer.com and journal.hep.com.cn