Data-driven machine learning quantifies ozone transport in the Hangzhou Bay urban cluster

Yuanxin Zhang , Shuwei Zhang , Song Gao , Zhukai Ning , Zheng Jiao , Qing Hu

Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (12) : 169

PDF (4326KB)
Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (12) : 169 DOI: 10.1007/s11783-025-2089-1
RESEARCH ARTICLE

Data-driven machine learning quantifies ozone transport in the Hangzhou Bay urban cluster

Author information +
History +
PDF (4326KB)

Abstract

Severe ozone (O3) pollution has always been a serious problem faced by areas with rapid economic development, and the regional O3 transport between cities is a major cause of this problem. Therefore, we used a bidirectional long short-term memory (Bi-LSTM) model to quantitatively identify the regional O3 transport in Hangzhou Bay, China. Combined with the meteorological removal method, we were able to model O3 concentrations that were not affected by transport. The contribution of regional transport to Shanghai’s O3 was quantified and validated using two different simulation schemes, which yielded highly consistent results of 18.41 μg/m3 (24% contribution) and 20.52 μg/m3 (27% contribution). According to the model simulation results, we found that approximately 24% of the O3 pollution in Shanghai originates from other cities in the summer when the O3 pollution is high. In addition, the regional O3 transport was mainly concentrated during the high-value weather of O3 pollution in Shanghai, and transport on non-pollution days was not apparent. Therefore, the regional O3 transport from other cities is an important source of O3 pollution in Shanghai. Overall, our study demonstrates the potential of machine-learning models coupled with meteorological removal for quantifying the inter-city influence of atmospheric pollutants.

Graphical abstract

Keywords

Ozone transport / Ozone pollution / Machine learning / Meteorological removal / Bi-LSTM

Highlight

● The Bi-LSTM model can identify and quantify the regional ozone transport.

● The meteorological removal method can identify regional ozone transport drivers.

● Ozone pollution characteristics are related to economics and geography.

● One-quarter of Shanghai’s June ozone is transported from other cities.

● Regional ozone transport is evident on heavily polluted days.

Cite this article

Download citation ▾
Yuanxin Zhang, Shuwei Zhang, Song Gao, Zhukai Ning, Zheng Jiao, Qing Hu. Data-driven machine learning quantifies ozone transport in the Hangzhou Bay urban cluster. Front. Environ. Sci. Eng., 2025, 19(12): 169 DOI:10.1007/s11783-025-2089-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blanchard C L , Tanenbaum S , Hidy G M . (2014). Spatial and temporal variability of air pollution in Birmingham, Alabama. Atmospheric Environment, 89: 382–391

[2]

Cheng L J , Wang S , Gong Z Y , Li H , Yang Q , Wang Y Y . (2018). Regionalization based on spatial and seasonal variation in ground-level ozone concentrations across China. Journal of Environmental Sciences, 67: 179–190

[3]

Cohen A J , Brauer M , Burnett R , Anderson H R , Frostad J , Estep K , Balakrishnan K , Brunekreef B , Dandona L , Dandona R . . (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082): 1907–1918

[4]

Fang X , Zou B , Liu X P , Sternberg T , Zhai L . (2016). Satellite-based ground PM2.5 estimation using timely structure adaptive modeling. Remote Sensing of Environment, 186: 152–163

[5]

Feng R , Zheng H J , Gao H , Zhang A R , Huang C , Zhang J X , Luo K , Fan J R . (2019). Recurrent Neural Network and random forest for analysis and accurate forecast of atmospheric pollutants: a case study in Hangzhou, China. Journal of Cleaner Production, 231: 1005–1015

[6]

Foret G , Eremenko M , Cuesta J , Sellitto P , Barré J , Gaubert B , Coman A , Dufour G , Liu X , Joly M . . (2014). Ozone pollution: what can we see from space? A case study. Journal of Geophysical Research: Atmospheres, 119(13): 8476–8499

[7]

Gao J H , Zhu B , Xiao H , Kang H Q , Hou X W , Shao P . (2016). A case study of surface ozone source apportionment during a high concentration episode, under frequent shifting wind conditions over the Yangtze River Delta, China. Science of the Total Environment, 544: 853–863

[8]

GaoWTieX XXuJ MHuangR JMaoX QZhouG QChangL Y (2017). Long-term trend of O3 in a Mega City (Shanghai), China: characteristics, causes, and interactions with precursors. Science of the Total Environment, 603–604: 603–604

[9]

Grange S K , Carslaw D C , Lewis A C , Boleti E , Hueglin C . (2018). Random forest meteorological normalisation models for Swiss PM10 trend analysis. Atmospheric Chemistry and Physics, 18(9): 6223–6239

[10]

Guan Y , Xiao Y , Wang Y M , Zhang N N , Chu C J . (2021). Assessing the health impacts attributable to PM2.5 and ozone pollution in 338 Chinese cities from 2015 to 2020. Environmental Pollution, 287: 117623

[11]

(2021). . , 115: 26–34

[12]

Hou L L , Dai Q L , Song C B , Liu B W , Guo F Z , Dai T J , Li L X , Liu B S , Bi X H , Zhang Y F , Feng Y C . (2022). Revealing drivers of haze pollution by explainable machine learning. Environmental Science & Technology Letters, 9(2): 112–119

[13]

Han Y, Lam J C K, Li V O K, Reiner D (2021). A Bayesian LSTM model to evaluate the effects of air pollution control regulations in Beijing, China. Environmental Science & Policy, 115: 26–34

[14]

Hu J , Li Y C , Zhao T L , Liu J , Hu X M , Liu D Y , Jiang Y C , Xu J M , Chang L Y . (2018). An important mechanism of regional O3 transport for summer smog over the Yangtze River Delta in eastern China. Atmospheric Chemistry and Physics, 18(22): 16239–16251

[15]

Jiang X Y , Wiedinmyer C , Carlton A G . (2012). Aerosols from fires: an examination of the effects on ozone photochemistry in the western United States. Environmental Science & Technology, 46(21): 11878–11886

[16]

Kang Q , Song X , Xin X Y , Chen B , Chen Y Z , Ye X D , Zhang B Y . (2021). Machine learning-aided causal inference framework for environmental data analysis: a COVID-19 case study. Environmental Science & Technology, 55(19): 13400–13410

[17]

Kim H S , Park I , Song C H , Lee K , Yun J W , Kim H K , Jeon M , Lee J , Han K M . (2019). Development of a daily PM10 and PM2.5 prediction system using a deep long short-term memory neural network model. Atmospheric Chemistry and Physics, 19(20): 12935–12951

[18]

Li K , Jacob D J , Liao H , Shen L , Zhang Q , Bates K H . (2018a). Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proceedings of the National Academy of Sciences of the United States of America, 116(2): 422–427

[19]

Li S , Wang T J , Huang X , Pu X , Li M M , Chen P L , Yang X Q , Wang M H . (2018b). Impact of East Asian summer monsoon on surface ozone pattern in China. Journal of Geophysical Research: Atmospheres, 123(2): 1401–1411

[20]

Liu C , Zhang H R , Cheng Z , Shen J Y , Zhao J H , Wang Y C , Wang S , Cheng Y . (2021a). Emulation of an atmospheric gas-phase chemistry solver through deep learning: case study of Chinese Mainland. Atmospheric Pollution Research, 12(6): 101079

[21]

Liu X , Lu D W , Zhang A Q , Liu Q , Jiang G B . (2022). Data-driven machine learning in environmental pollution: gains and problems. Environmental Science & Technology, 56(4): 2124–2133

[22]

Liu X F , Guo H , Zeng L W , Lyu X P , Wang Y , Zeren Y Z , Yang J , Zhang L Y , Zhao S Z , Li J , Zhang G . (2021b). Photochemical ozone pollution in five Chinese megacities in summer 2018. Science of the Total Environment, 801: 149603

[23]

Liu X L , Huang W M , Gill E W . (2017). Wind direction estimation from rain-contaminated marine radar data using the ensemble empirical mode decomposition method. IEEE Transactions on Geoscience and Remote Sensing, 55(3): 1833–1841

[24]

Lu X , Zhang L , Chen Y F , Zhou M , Zheng B , Li K , Liu Y M , Lin J T , Fu T M , Zhang Q . (2019). Exploring 2016–2017 surface ozone pollution over China: source contributions and meteorological influences. Atmospheric Chemistry and Physics, 19(12): 8339–8361

[25]

Pak U , Ma J , Ryu U , Ryom K , Juhyok U , Pak K , Pak C . (2020). Deep learning-based PM2.5 prediction considering the spatiotemporal correlations: a case study of Beijing, China. Science of the Total Environment, 699: 133561

[26]

Qi L , Tian Z G , Jiang N , Zheng F Y , Zhao Y C , Geng Y S , Duan X L . (2023). Collaborative control of fine particles and ozone required in China for health benefit. Frontiers of Environmental Science & Engineering, 17(8): 92

[27]

Qu Z W , Li H T , Li Z H , Zhong T . (2022). Short-term traffic flow forecasting method with M-B-LSTM hybrid network. IEEE Transactions on Intelligent Transportation Systems, 23(1): 225–235

[28]

Reichstein M , Camps-Valls G , Stevens B , Jung M , Denzler J , Carvalhais N . (2019). Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743): 195–204

[29]

Roberts D R , Bahn V , Ciuti S , Boyce M S , Elith J , Guillera-Arroita G , Hauenstein S , Lahoz-Monfort J J , Schröeder B , Thuiller W . . (2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 40(8): 913–929

[30]

Siami-NaminiSTavakoliNNaminA S (2019). The performance of LSTM and BiLSTM in forecasting time series. In: Proceedings of 2019 IEEE International Conference on Big Data (Big Data). Los Angeles: IEEE, 3285–3292

[31]

Sicard P , Agathokleous E , De Marco A , Paoletti E , Calatayud V . (2021). Urban population exposure to air pollution in Europe over the last decades. Environmental Sciences Europe, 33(1): 28

[32]

Song C B , Wu L , Xie Y C , He J J , Chen X , Wang T , Lin Y C , Jin T S , Wang A X , Liu Y . . (2017). Air pollution in China: status and spatiotemporal variations. Environmental Pollution, 227: 334–347

[33]

Suciu L G , Griffin R J , Masiello C A . (2017). Regional background O3 and NOx in the Houston-Galveston-Brazoria (TX) region: a decadal-scale perspective. Atmospheric Chemistry and Physics, 17(11): 6565–6581

[34]

Tao Q , Liu F , Li Y , Sidorov D . (2019). Air pollution forecasting using a deep learning model based on 1D convnets and bidirectional GRU. IEEE Access, 7: 76690–76698

[35]

Targino A C , Harrison R M , Krecl P , Glantz P , de Lima C H , Beddows D . (2019). Surface ozone climatology of South Eastern Brazil and the impact of biomass burning events. Journal of Environmental Management, 252: 109645

[36]

Tong X N , You L H , Zhang J J , He Y L , Gin K Y H . (2022). Advancing prediction of emerging contaminants in a tropical reservoir with general water quality indicators based on a hybrid process and data-driven approach. Journal of Hazardous Materials, 430: 128492

[37]

Vu T V , Shi Z B , Cheng J , Zhang Q , He K B , Wang S X , Harrison R M . (2019). Assessing the impact of clean air action on air quality trends in Beijing using a machine learning technique. Atmospheric Chemistry and Physics, 19(17): 11303–11314

[38]

Wang B , Yuan Q Q , Yang Q Q , Zhu L Y , Li T W , Zhang L P . (2021). Estimate hourly PM2.5 concentrations from Himawari-8 TOA reflectance directly using geo-intelligent long short-term memory network. Environmental Pollution, 271: 116327

[39]

Wang T , Xue L K , Brimblecombe P , Lam Y F , Li L , Zhang L . (2017). Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects. Science of the Total Environment, 575: 1582–1596

[40]

Wang T Y , Zhao B , Liou K N , Gu Y , Jiang Z , Song K , Su H , Jerrett M , Zhu Y F . (2019). Mortality burdens in California due to air pollution attributable to local and nonlocal emissions. Environment International, 133: 105232

[41]

Watson G L , Telesca D , Reid C E , Pfister G G , Jerrett M . (2019). Machine learning models accurately predict ozone exposure during wildfire events. Environmental Pollution, 254: 112792

[42]

Wei J , Liu S , Li Z Q , Liu C , Qin K , Liu X , Pinker R T , Dickerson R R , Lin J T , Boersma K F . . (2022). Ground-Level NO2 surveillance from space across China for high resolution using interpretable spatiotemporally weighted artificial intelligence. Environmental Science & Technology, 56(14): 9988–9998

[43]

Xue J , Wang F T , Zhang K , Zhai H H , Jin D , Duan Y S , Yaluk E , Wang Y J , Huang L , Li Y W . . (2023). Elucidate long-term changes of ozone in Shanghai based on an integrated machine learning method. Frontiers of Environmental Science & Engineering, 17(11): 138

[44]

Xue L K , Wang T , Gao J , Ding A J , Zhou X H , Blake D R , Wang X F , Saunders S M , Fan S J , Zuo H C . . (2014). Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes. Atmospheric Chemistry and Physics, 14(23): 13175–13188

[45]

Zhang K , Zhou L , Fu Q Y , Yan L , Bian Q G , Wang D F , Xiu G L . (2019). Vertical distribution of ozone over Shanghai during late spring: a balloon-borne observation. Atmospheric Environment, 208: 48–60

[46]

Zhang Y B , Yu S C , Chen X , Li Z , Li M Y , Song Z , Liu W P , Li P F , Zhang X Y , Lichtfouse E . . (2022). Local production, downward and regional transport aggravated surface ozone pollution during the historical orange-alert large-scale ozone episode in eastern China. Environmental Chemistry Letters, 20(3): 1577–1588

[47]

Zhao D D , Xin J Y , Wang W F , Jia D J , Wang Z F , Xiao H , Liu C , Zhou J , Tong L , Ma Y J . . (2022). Effects of the sea-land breeze on coastal ozone pollution in the Yangtze River Delta, China. Science of the Total Environment, 807: 150306

[48]

Zhao H , Chen K Y , Liu Z , Zhang Y X , Shao T , Zhang H L . (2021). Coordinated control of PM2.5 and O3 is urgently needed in China after implementation of the “Air pollution prevention and control action plan”. Chemosphere, 270: 129441

[49]

Zheng D Y , Huang X J , Guo Y H . (2022). Spatiotemporal variation of ozone pollution and health effects in China. Environmental Science and Pollution Research, 29(38): 57808–57822

[50]

Zhong S F , Zhang K , Bagheri M , Burken J G , Gu A , Li B K , Ma X M , Marrone B L , Ren Z J , Schrier J . . (2021). Machine learning: new ideas and tools in environmental science and engineering. Environmental Science & Technology, 55(19): 12741–12754

[51]

Zhu Q Y , Bi J Z , Liu X , Li S S , Wang W H , Zhao Y , Liu Y . (2022). Satellite-based long-term spatiotemporal patterns of surface ozone concentrations in China: 2005–2019. Environmental Health Perspectives, 130(2): 027004

[52]

Zhu Y , Liu J , Wang T J , Zhuang B L , Han H , Wang H M , Chang Y , Ding K . (2017). The impacts of meteorology on the seasonal and interannual variabilities of ozone transport from North America to East Asia. Journal of Geophysical Research: Atmospheres, 122(20): 10612–10636

RIGHTS & PERMISSIONS

The Author(s) 2025. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (4326KB)

Supplementary files

Supplementary materials

840

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/