Substrate competition over 320 days maintains extracellular electron transfer and parallel genomic evolution in Shewanella oneidensis MR-1

Biyi Zhao , Wei Chen , Geng Chen , Feng Zhao , Yong Xiao

Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (12) : 166

PDF (3440KB)
Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (12) : 166 DOI: 10.1007/s11783-025-2086-4
RESEARCH ARTICLE

Substrate competition over 320 days maintains extracellular electron transfer and parallel genomic evolution in Shewanella oneidensis MR-1

Author information +
History +
PDF (3440KB)

Abstract

Electroactive microorganisms are integral to biogeochemical cycles through extracellular electron transfer and have potential applications in environmental remediation. However, their long-term competitive interactions and evolutionary dynamics with non-electroactive microorganisms remain poorly understood. In this study, we conducted a 320-day cultivation experiment in which monocultures of the electroactive Shewanella oneidensis MR-1, the non-electroactive Citrobacter freundii An1, and their cocultures were compared under three single electron acceptor conditions: anaerobic (no exogenous electron acceptor), ferrihydrite, or oxygen. After 320 d, S. oneidensis MR-1 presented the highest relative abundance of 30.94% ± 0.74% in the ferrihydrite cocultures. S. oneidensis MR-1 maintained ferrihydrite reduction capacity after cultivation under all three conditions, indicating the long-term stability of its extracellular electron transfer. Moreover, no other phenotypic evolution was observed in S. oneidensis MR-1 after ferrihydrite or anaerobic cultivation. In contrast, both monocultured and cocultured S. oneidensis MR-1 exhibited enhanced adaptation to oxygen, characterized by increased growth rates, metabolic activity, and reduced cell aggregation. Notably, substrate consumption increased in monocultures but decreased in cocultures, suggesting an optimization of metabolic efficiency in the latter. Genome sequencing revealed mutations in genes associated with cell division, adenosine triphosphate synthesis, lactate metabolism, and flagellar/pilus expression in S. oneidensis MR-1. Interestingly, the ferrihydrite-adapted groups also exhibited enhanced adaptation to oxygen. 83.96% of mutations were shared across all culture systems and enriched in environmental signal-sensing pathways, indicating that parallel genomic evolution facilitated cross-environmental adaptation. Our findings reveal the ecological evolution of electroactive microorganisms in diverse redox environments and establish a foundation for engineering electroactive communities.

Graphical abstract

Keywords

Extracellular electron transfer / Electroactive microorganisms / Substrate competition / Evolution / Shewanella / Citrobacter

Highlight

Shewanella oneidensis MR-1 maintained extracellular electron transfer after 320 d.

● Ferrihydrite respiration aided S. oneidensis MR-1 survival under competition.

● Oxygen cultivation enhanced S. oneidensis MR-1’s adaptation to oxygen.

● Shared mutations (83.96%) revealed cross-environmental parallel evolution.

● Metabolic efficiency was a key strategy in coculture competition.

Cite this article

Download citation ▾
Biyi Zhao, Wei Chen, Geng Chen, Feng Zhao, Yong Xiao. Substrate competition over 320 days maintains extracellular electron transfer and parallel genomic evolution in Shewanella oneidensis MR-1. Front. Environ. Sci. Eng., 2025, 19(12): 166 DOI:10.1007/s11783-025-2086-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akanuma G , Nanamiya H , Natori Y , Yano K , Suzuki S , Omata S , Ishizuka M , Sekine Y , Kawamura F . (2012). Inactivation of ribosomal protein genes in Bacillus subtilis reveals importance of each ribosomal protein for cell proliferation and cell differentiation. Journal of Bacteriology, 194(22): 6282–6291

[2]

Alvarez A F , Georgellis D . (2023). Environmental adaptation and diversification of bacterial two-component systems. Current Opinion in Microbiology, 76: 102399

[3]

Aristide L , Morlon H . (2019). Understanding the effect of competition during evolutionary radiations: an integrated model of phenotypic and species diversification. Ecology Letters, 22(12): 2006–2017

[4]

Bailey S F , Dettman J R , Rainey P B , Kassen R . (2013). Competition both drives and impedes diversification in a model adaptive radiation. Proceedings of the Royal Society B: Biological Sciences, 280(1766): 20131253

[5]

Barrick J E , Yu D S , Yoon S H , Jeong H , Oh T K , Schneider D , Lenski R E , Kim J F . (2009). Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature, 461(7268): 1243–1247

[6]

Brutinel E D , Gralnick J A . (2012). Preferential utilization of D-lactate by Shewanella oneidensis. Applied and Environmental Microbiology, 78(23): 8474–8476

[7]

Chabert N , Ali O A , Achouak W . (2015). All ecosystems potentially host electrogenic bacteria. Bioelectrochemistry, 106: 88–96

[8]

Chen Y C , Dong K , Zhang Y M , Zheng J J , Jiang M M , Wang D Q , Zhang X H , Huang X W , Zhou L J , Li H X . (2024). Enhancing biofilm formation in the hydrogen-based membrane biofilm reactor through bacterial Acyl-homoserine lactones. Frontiers of Environmental Science & Engineering, 18(11): 142

[9]

Demirbas A . (2011). Waste management, waste resource facilities and waste conversion processes. Energy Conversion and Management, 52(2): 1280–1287

[10]

Dubuisson J F , Vianney A , Hugouvieux-Cotte-Pattat N , Lazzaroni J C . (2005). Tol-Pal proteins are critical cell envelope components of Erwinia chrysanthemi affecting cell morphology and virulence. Microbiology, 151(10): 3337–3347

[11]

Farshadzadeh Z , Taheri B , Rahimi S , Shoja S , Pourhajibagher M , Haghighi M A , Bahador A . (2018). Growth rate and biofilm formation ability of clinical and laboratory-evolved colistin-resistant strains of Acinetobacter baumannii. Frontiers in Microbiology, 9: 153

[12]

Finkel S E , Kolter R . (1999). Evolution of microbial diversity during prolonged starvation. Proceedings of the National Academy of Sciences of the United States of America, 96(7): 4023–4027

[13]

Foster K R , Bell T . (2012). Competition, not cooperation, dominates interactions among culturable microbial species. Current Biology, 22(19): 1845–1850

[14]

Ghoul M , Mitri S . (2016). The ecology and evolution of microbial competition. Trends in Microbiology, 24(10): 833–845

[15]

Groisman E A . (2016). Feedback control of two-component regulatory systems. Annual Review of Microbiology, 70: 103–124

[16]

Gude S , Pinçe E , Taute K M , Seinen A B , Shimizu T S , Tans S J . (2020). Bacterial coexistence driven by motility and spatial competition. Nature, 578(7796): 588–592

[17]

Hale C A , de Boer P A J . (1997). Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli. Cell, 88(2): 175–185

[18]

Herlihey F A , Moynihan P J , Clarke A J . (2014). The essential protein for bacterial flagella formation Flgj functions as a β-N-acetylglucosaminidase. Journal of Biological Chemistry, 289(45): 31029–31042

[19]

Hoffmann A A , Hercus M J . (2000). Environmental stress as an evolutionary force. BioScience, 50(3): 217–226

[20]

Hu L , Fang X Y , Wen L L , Zhang H X , Peng B Y , Li C C . (2024). Molecular insights into the enhanced growth of cyanobacteria by adaptive laboratory evolution in wastewater environments. Algal Research, 83: 103724

[21]

Koch C, Harnisch F (2016). Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem, 3(9): 1282–1295

[22]

Koch C , Korth B , Harnisch F . (2018). Microbial ecology-based engineering of Microbial Electrochemical Technologies. Microbial Biotechnology, 11(1): 22–38

[23]

Kundu B B , Krishnan J , Szubin R , Patel A , Palsson B O , Zielinski D C , Ajo-Franklin C M . (2025). Extracellular respiration is a latent energy metabolism in Escherichia coli. Cell, 188(11): 2907–2924

[24]

Lawrence D , Fiegna F , Behrends V , Bundy J G , Phillimore A B , Bell T , Barraclough T G . (2012). Species interactions alter evolutionary responses to a novel environment. PLoS Biology, 10(5): e1001330

[25]

Lee S H , van der Werf J H J , Hayes B J , Goddard M E , Visscher P M . (2008). Predicting unobserved phenotypes for complex traits from whole-genome SNP data. PLoS Genetics, 4(10): e1000231

[26]

Lenski R E , Travisano M . (1994). Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proceedings of the National Academy of Sciences of the United States of America, 91(15): 6808–6814

[27]

Li F H , Tang Q , Fan Y Y , Li Y , Li J , Wu J H , Luo C F , Sun H , Li W W , Yu H Q . (2020). Developing a population-state decision system for intelligently reprogramming extracellular electron transfer in Shewanella oneidensis. Proceedings of the National Academy of Sciences of the United States of America, 117(37): 23001–23010

[28]

Li M , Ho P Y , Yao S J , Shimizu K . (2006). Effect of sucA or sucC gene knockout on the metabolism in Escherichia coli based on gene expressions, enzyme activities, intracellular metabolite concentrations and metabolic fluxes by 13C-labeling experiments. Biochemical Engineering Journal, 30(3): 286–296

[29]

Lin X H , Yang F , You L X , Wang H , Zhao F . (2021). Liposoluble quinone promotes the reduction of hydrophobic mineral and extracellular electron transfer of Shewanella oneidensis MR-1. The Innovation, 2(2): 100104

[30]

Locey K J , Lennon J T . (2016). Scaling laws predict global microbial diversity. Proceedings of the National Academy of Sciences of the United States of America, 113(21): 5970–5975

[31]

Logan B E , Hamelers B , Rozendal R , Schröder U , Keller J , Freguia S , Aelterman P , Verstraete W , Rabaey K . (2006). Microbial fuel cells: methodology and technology. Environmental Science & Technology, 40(17): 5181–5192

[32]

Logan B E , Rossi R , Ragab A A , Saikaly P E . (2019). Electroactive microorganisms in bioelectrochemical systems. Nature Reviews Microbiology, 17(5): 307–319

[33]

Lovley D R . (1991). Dissimilatory Fe(III) and Mn(IV) reduction. Microbiological Reviews, 55(2): 259–287

[34]

MacLean R C . (2008). The tragedy of the commons in microbial populations: insights from theoretical, comparative and experimental studies. Heredity, 100(5): 471–477

[35]

Martín-Rodríguez A J , Higdon S M , Thorell K , Tellgren-Roth C , Sjöling Å , Galperin M Y , Krell T , Römling U . (2022). Comparative genomics of cyclic di-GMP metabolism and chemosensory pathways in Shewanella algae strains: novel bacterial sensory domains and functional insights into lifestyle regulation. mSystems, 7(2): e01518–21

[36]

McLean J S , Pinchuk G E , Geydebrekht O V , Bilskis C L , Zakrajsek B A , Hill E A , Saffarini D A , Romine M F , Gorby Y A , Fredrickson J K . . (2008). Oxygen-dependent auto-aggregation in Shewanella oneidensis MR-1. Environmental Microbiology, 10(7): 1861–1876

[37]

Melton E D , Swanner E D , Behrens S , Schmidt C , Kappler A . (2014). The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nature Reviews Microbiology, 12(12): 797–808

[38]

Mitri S , Foster K R . (2013). The genotypic view of social interactions in microbial communities. Annual Review of Genetics, 47: 247–273

[39]

Moczek A P , Hunt J , Emlen D J , Simmons L W . (2002). Threshold evolution in exotic populations of a polyphenic beetle. Evolutionary Ecology Research, 4(4): 587–601

[40]

Moens S , Vanderleyden J . (1996). Functions of bacterial flagella. Critical Reviews in Microbiology, 22(2): 67–100

[41]

Nakamura S , Minamino T . (2019). Flagella-driven motility of bacteria. Biomolecules, 9(7): 279

[42]

Palmer J D , Foster K R . (2022). Bacterial species rarely work together. Science, 376(6593): 581–582

[43]

Pettersen A K , Hall M D , White C R , Marshall D J . (2020). Metabolic rate, context-dependent selection, and the competition-colonization trade-off. Evolution Letters, 4(4): 333–344

[44]

Pfeiffer T , Schuster S , Bonhoeffer S . (2001). Cooperation and competition in the evolution of ATP-producing pathways. Science, 292(5516): 504–507

[45]

Pinchuk G E , Hill E A , Geydebrekht O V , De Ingeniis J , Zhang X L , Osterman A , Scott J H , Reed S B , Romine M F , Konopka A E . . (2010). Constraint-based model of Shewanella oneidensis MR-1 metabolism: a tool for data analysis and hypothesis generation. PLoS Computational Biology, 6(6): e1000822

[46]

Pinchuk G E , Rodionov D A , Yang C , Li X Q , Osterman A L , Dervyn E , Geydebrekht O V , Reed S B , Romine M F , Collart F R . . (2009). Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharac-terized machinery for lactate utilization. Proceedings of the National Academy of Sciences of the United States of America, 106(8): 2874–2879

[47]

Pohlschroder M , Ghosh A , Tripepi M , Albers S V . (2011). Archaeal type IV pilus-like structures-evolutionarily conserved prokaryotic surface organelles. Current Opinion in Microbiology, 14(3): 357–363

[48]

Qi X Y , Cai H W , Wang X L , Liu R J , Cai T , Wang S , Liu X Y , Wang X . (2024). Electricity generation by Pseudomonas putida B6-2 in microbial fuel cells using carboxylates and carbohydrate as substrates. Engineering Microbiology, 4(2): 100148

[49]

Rabaey K , Rodríguez J , Blackall L L , Keller J , Gross P , Batstone D , Verstraete W , Nealson K H . (2007). Microbial ecology meets electrochemistry: electricity-driven and driving communities. The ISME Journal, 1(1): 9–18

[50]

Rigato E , Fusco G . (2020). Effects of phenotypic robustness on adaptive evolutionary dynamics. Evolutionary Biology, 47(3): 233–239

[51]

Semmler A B T , Whitchurch C B , Leech A J , Mattick J S . (2000). Identification of a novel gene, fimV, involved in twitching motility in Pseudomonas aeruginosa. Microbiology, 146(6): 1321–1332

[52]

Shen A L , Liu H Y , Zhu Y L , Zeng J N . (2024). Long-term response of interspecific competition among three typical bloom-forming species to changes in phosphorus and temperature. Marine Environmental Research, 196: 106421

[53]

Shi L , Dong H L , Reguera G , Beyenal H , Lu A H , Liu J , Yu H Q , Fredrickson J K . (2016). Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology, 14(10): 651–662

[54]

Shimizu T , Ichimura K , Noda M . (2016). The surface sensor NlpE of enterohemorrhagic Escherichia coli contributes to regulation of the type III secretion system and flagella by the Cpx response to adhesion. Infection and Immunity, 84(2): 537–549

[55]

Sun J F , Li X , Qiu Y , Xue X F , Zhang M M , Yang W H , Zhou D S , Hu L F , Lu R F , Zhang Y Q . (2022). Quorum sensing regulates transcription of the pilin gene mshA1 of MSHA pilus in Vibrio parahaemolyticus. Gene, 807: 145961

[56]

Tasteyre A , Barc M C , Collignon A , Boureau H , Karjalainen T . (2001). Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. Infection and Immunity, 69(12): 7937–7940

[57]

Teleha M A , Miller A C , Larsen R A . (2013). Overexpression of the Escherichia coli TolQ protein leads to a null-FtsN-like division phenotype. MicrobiologyOpen, 2(4): 618–632

[58]

Venkataram S , Monasky R , Sikaroodi S H , Kryazhimskiy S , Kacar B . (2020). Evolutionary stalling and a limit on the power of natural selection to improve a cellular module. Proceedings of the National Academy of Sciences of the United States of America, 117(31): 18582–18590

[59]

Xiao C Y , Xiao Y , Zhao F . (2019). Mechanism of long-term chromium stress on Shewanella oneidensis MR-1 using whole genome resequencing technique. China Environmental Science, 39(3): 1261–1267

[60]

Xiao Y , Chen G , Chen Z , Bai R , Zhao B Y , Tian X C , Wu Y C , Zhou X , Zhao F . (2021). Interspecific competition by non-exoelectrogenic Citrobacter freundii An1 boosts bioelectricity generation of exoelectrogenic Shewanella oneidensis MR-1. Biosensors and Bioelectronics, 194: 113614

[61]

Yan X J , Du Q , Mu Q H , Tian L L , Wan Y X , Liao C M , Zhou L A , Yan Y Q , Li N , Logan B E . . (2021). Long-term succession shows interspecies competition of Geobacter in exoelectrogenic biofilms. Environmental Science & Technology, 55(21): 14928–14937

[62]

Yang C H , Aslan H , Zhang P , Zhu S J , Xiao Y , Chen L X , Khan N , Boesen T , Wang Y L , Liu Y . . (2020). Carbon dots-fed Shewanella oneidensis MR-1 for bioelectricity enhancement. Nature Communications, 11(1): 1379

[63]

Yang F , Li J P , Wang H , Xiao X F , Bai R , Zhao F . (2023). Visible light induces bacteria to produce superoxide for manganese oxidation. Frontiers of Environmental Science & Engineering, 17(2): 19

[64]

Yin J H , Meng Q , Fu H H , Gao H C . (2016). Reduced expression of cytochrome oxidases largely explains cAMP inhibition of aerobic growth in Shewanella oneidensis. Scientific Reports, 6: 24449

[65]

Yu Y , Ndayisenga F , Yu Z S , Zhao M Y , Lay C H , Zhou D D . (2019). Co-substrate strategy for improved power production and chlorophenol degradation in a microbial fuel cell. International Journal of Hydrogen Energy, 44(36): 20312–20322

[66]

Zaidi S , Hassan M I , Islam A , Ahmad F . (2014). The role of key residues in structure, function, and stability of cytochrome-c. Cellular and Molecular Life Sciences, 71(2): 229–255

[67]

Zhang Z J , van Kleunen M , Becks L , Thakur M P . (2020). Towards a general understanding of bacterial interactions. Trends in Microbiology, 28(10): 783–785

[68]

Zheng Y , Wang H , Liu Y , Zhu B L , Li J H , Yang Y Y , Qin W , Chen L F , Wu X E , Chistoserdova L . . (2020). Methane-dependent mineral reduction by aerobic methanotrophs under hypoxia. Environmental Science & Technology Letters, 7(8): 606–612

[69]

Zöllner R , Oldewurtel E R , Kouzel N , Maier B . (2017). Phase and antigenic variation govern competition dynamics through positioning in bacterial colonies. Scientific Reports, 7(1): 12151

RIGHTS & PERMISSIONS

Higher Education Press 2025

AI Summary AI Mindmap
PDF (3440KB)

Supplementary files

Supplementary materials

290

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/