Comprehensive review of in vitro approaches for environmental heavy metal exposure

Manas Warke , Madeline English , Camila Padilla , Lexie Gasco , Wendy Leisner , Rupali Datta , Smitha Rao

Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (12) : 165

PDF (2709KB)
Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (12) : 165 DOI: 10.1007/s11783-025-2085-5
REVIEW ARTICLE

Comprehensive review of in vitro approaches for environmental heavy metal exposure

Author information +
History +
PDF (2709KB)

Abstract

Heavy metals are ubiquitous environmental pollutants, contaminating air, soil, and water via the erosion of natural deposits, as well as originating from anthropogenic sources, such as agriculture, industries, transportation, and landfills. The increasing utilization of heavy metals over the years, combined with the persistent nature of metals in the environment poses a direct threat to human and environment health. Although regulatory limits have been established for toxic metals, assessing the associated health risks using real-life exposure scenarios remains challenging. In this review, we summarize the development and use of in vitro models based two- and three-dimensional cell culture systems, focusing on exposure to heavy metals via the dermal, inhalation, and ingestion routes using environmental samples. We also highlight recent developments in three-dimensional cell culture techniques and their potential for implementation in evaluating environmental samples for heavy metal toxicity. In addition, we assess the comparative strengths and specific applications of different modeling approaches, emphasizing the value of integrating advanced in vitro systems in environmental toxicology.

Graphical abstract

Keywords

In vitro models / Environmental exposure / Human health

Highlight

● Environmental exposure to toxic metals is a major human health concern.

● Inhalation, ingestion, and dermal contact are the major pathways of exposure.

● Limited studies are available using environmental samples in vitro approaches.

● 3D microfluidic organ-on-chip devices can improve evaluation of toxicity.

Cite this article

Download citation ▾
Manas Warke, Madeline English, Camila Padilla, Lexie Gasco, Wendy Leisner, Rupali Datta, Smitha Rao. Comprehensive review of in vitro approaches for environmental heavy metal exposure. Front. Environ. Sci. Eng., 2025, 19(12): 165 DOI:10.1007/s11783-025-2085-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Achilli T M , Meyer J , Morgan J R . (2012). Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opinion on Biological Therapy, 12(10): 1347–1360

[2]

Ahn H , Kim J , Kang S G , Yoon S I , Ko H J , Kim P H , Hong E J , An B S , Lee E , Lee G S . (2018). Mercury and arsenic attenuate canonical and non-canonical NLRP3 inflammasome activation. Scientific Reports, 8(1): 13659

[3]

Akhtar A , Kazi T G , Afridi H I , Khan M . (2022). Human exposure to toxic elements through facial cosmetic products: dermal risk assessment. Regulatory Toxicology and Pharmacology, 131: 105145

[4]

Akter M , Sikder T , Rahman M , Ullah A K M A , Hossain K F B , Banik S , Hosokawa T , Saito T , Kurasaki M . (2018). A systematic review on silver nanoparticles-induced cytotoxicity: physico-chemical properties and perspectives. Journal of Advanced Research, 9: 1–16

[5]

Alam M S , Kurohmaru M . (2014). Disruption of Sertoli cell vimentin filaments in prepubertal rats: an acute effect of butylparaben in vivo and in vitro. Acta histochemica, 116(5): 682–687

[6]

ATSDR (1999) . (). Toxicological profile for Silver. ,

[7]

ATSDR (2007a) . (). Toxicological Profile for Barium and Barium Compounds. ,

[8]

ATSDR (2007b) . (). Toxicological Profile for Arsenic. ,

[9]

ATSDR (2019) . (). Toxicological Profile for Lead. ,

[10]

Aziz R , Rafiq M T , Li T Q , Liu D , He Z L , Stoffella P , Sun K W , Yang X E . (2015). Uptake of cadmium by rice grown on contaminated soils and its bioavailability/toxicity in human cell lines (Caco-2/HL-7702). Journal of Agricultural and Food Chemistry, 63(13): 3599–3608

[11]

Balali-Mood M , Naseri K , Tahergorabi Z , Khazdair M R , Sadeghi M . (2021). Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Frontiers in Pharmacology, 12: 643972

[12]

Baldassi D , Gabold B , Merkel O M . (2021). Air− liquid Interface cultures of the healthy and diseased human respiratory tract: promises, challenges, and future directions. Advanced Nanobiomed Research, 1(6): 2000111

[13]

BarthesJÖzçelikHHindiéMNdreu-HaliliAHasanAVranaN E (2014). Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. BioMed Research International.

[14]

Bencko V , Foong F Y L . (2017). The history of arsenical pesticides and health risks related to the use of Agent Blue. Annals of Agricultural and Environmental Medicine, 24(2): 312–316

[15]

Bessa M J , Brandão F , Fokkens P H B , Leseman D L A C , Boere A J F , Cassee F R , Salmatonidis A , Viana M , Vulpoi A , Simon S . . (2021). In vitro toxicity of industrially relevant engineered nanoparticles in human alveolar epithelial cells: air–liquid interface versus submerged cultures. Nanomaterials, 11(12): 3225

[16]

Bhoelan B S , Stevering C H , van der Boog A T J , van der Heyden M A G . (2014). Barium toxicity and the role of the potassium inward rectifier current. Clinical Toxicology, 52(6): 584–593

[17]

Billmann M , Pelfrêne A , Papin A , Pauget B , Badreddine R , Hulot C . (2025). Human health risk assessment of lead exposure from soil ingestion in a French pilot study: insights from the application of a new bioaccessibility approach. Environmental Geochemistry and Health, 47(4): 109

[18]

Boim A G F , Wragg J , Canniatti-Brazaca S G , Alleoni L R F . (2020). Human intestinal Caco-2 cell line in vitro assay to evaluate the absorption of Cd, Cu, Mn and Zn from urban environmental matrices. Environmental Geochemistry and Health, 42(2): 601–615

[19]

Bray L J , Binner M , Holzheu A , Friedrichs J , Freudenberg U , Hutmacher D W , Werner C . (2015). Multi-parametric hydrogels support 3D in vitro bioengineered microenvironment models of tumour angiogenesis. Biomaterials, 53: 609–620

[20]

Breslin S , O’Driscoll L . (2013). Three-dimensional cell culture: the missing link in drug discovery. Drug Discovery Today, 18(5−6): 240–249

[21]

Bridges C C , Zalups R K . (2017). Mechanisms involved in the transport of mercuric ions in target tissues. Archives of Toxicology, 91(1): 63–81

[22]

Briffa J , Sinagra E , Blundell R . (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9): e04691

[23]

Calitz C , Hamman J H , Fey S J , Viljoen A M , Gouws C , Wrzesinski K . (2019). A sub-chronic Xysmalobium undulatum hepatotoxicity investigation in HepG2/C3A spheroid cultures compared to an in vivo model. Journal of Ethnopharmacology, 239: 111897

[24]

Catterall W A . (2011). Voltage-gated calcium channels. Cold Spring Harbor Perspectives in Biology, 3(8): a003947

[25]

Chen L , Wu M Y , Jiang S , Zhang Y Y , Li R Z , Lu Y , Wu G , Liu Y , Xie L M , Xu L M. . (2019). Skin toxicity assessment of silver nanoparticles in a 3D epidermal model compared to 2D keratinocytes. International Journal of Nanomedicine, 14: 9707–9719

[26]

Chen L , Zhou M X , Wang J Z , Zhang Z Q , Duan C J , Wang X X , Zhao S L , Bai X H , Li Z J , Li Z M . . (2022). A global meta-analysis of heavy metal(loid)s pollution in soils near copper mines: evaluation of pollution level and probabilistic health risks. Science of the Total Environment, 835: 155441

[27]

Chen X M , Singh A , Kitts D D . (2020). In-vitro bioaccessibility and bioavailability of heavy metals in mineral clay complex used in natural health products. Scientific Reports, 10(1): 8823

[28]

Chen Y , Luo X S , Zhao Z , Chen Q , Wu D , Sun X , Wu L C , Jin L . (2018). Summer–winter differences of PM2.5 toxicity to human alveolar epithelial cells (A549) and the roles of transition metals. Ecotoxicology and Environmental Safety, 165: 505–509

[29]

Cheng W , Yu Z , Feng L X , Wang Y . (2013). Perfluorooctane sulfonate (PFOS) induced embryotoxicity and disruption of cardiogenesis. Toxicology in Vitro, 27(5): 1503–1512

[30]

Cho S W , Malick H , Kim S J , Grattoni A . (2024). Advances in skin-on-a-chip technologies for dermatological disease modeling. Journal of Investigative Dermatology, 144(8): 1707–1715

[31]

Costa E C , Moreira A F , de Melo-Diogo D , Gaspar V M , Carvalho M P , Correia I J . (2016). 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnology Advances, 34(8): 1427–1441

[32]

da Silva P B , Oliveira R J A , Araújo M , Caires H R , Bidarra S J , Barrias C C . (2024). An integrative alginate-based 3D in vitro model to explore epithelial-stromal cell dynamics in the breast tumor microenvironment. Carbohydrate Polymers, 342: 122363

[33]

Dankers A C A , Kuper C F , Boumeester A J , Fabriek B O , Kooter I M , Gröllers-Mulderij M , Tromp P , Nelissen I , Zondervan-Van Den Beuken E K , Vandebriel R J . (2018). A practical approach to assess inhalation toxicity of metal oxide nanoparticles in vitro. Journal of Applied Toxicology, 38(2): 160–171

[34]

Davidsen N , Rosenmai A K , Lauschke K , Svingen T , Vinggaard A M . (2021). Developmental effects of PFOS, PFOA and GenX in a 3D human induced pluripotent stem cell differentiation model. Chemosphere, 279: 130624

[35]

de Bruijne K , Ebersviller S , Sexton K G , Lake S , Leith D , Goodman R , Jetters J , Walters G W , Doyle-Eisele M , Woodside R . . (2009). Design and testing of electrostatic aerosol in vitro exposure system (EAVES): an alternative exposure system for particles. Inhalation Toxicology, 21(2): 91–101

[36]

deCarvalho M THenriques-PereiraMMonteiroM VLamghariMManoJ FGasparV M (2025). Innervating 3D in vitro models: bioengineering and design blueprints. Trends in Biotechnology,

[37]

de Vries R J , Cronin S E J , Romfh P , Pendexter C A , Jain R , Wilks B T , Raigani S , van Gulik T M , Chen P L , Yeh H . . (2021). Non-invasive quantification of the mitochondrial redox state in livers during machine perfusion. PLoS One, 16(10): e0258833

[38]

Di Ianni E , Erdem J S , Narui S , Wallin H , Lynch I , Vogel U , Jacobsen N R , Møller P . (2024). Pro-inflammatory and genotoxic responses by metal oxide nanomaterials in alveolar epithelial cells and macrophages in submerged condition and air-liquid interface: an in vitro–in vivo correlation study. Toxicology in Vitro, 100: 105897

[39]

Duval K , Grover H , Han L H , Mou Y C , Pegoraro A F , Fredberg J , Chen Z . (2017). Modeling physiological events in 2D vs. 3D cell culture. Physiology, 32(4): 266–277

[40]

EatonDGallagherEHooperMSchlenkDSchmeiderPThompsonC (2007). Species differences in response to toxic substances: shared pathways of toxicity-value and limitations of omics technologies to elucidate mechanism or mode of action. In: Benson W H, Di Giulio R T, eds. Emerging Molecular and Computational Approaches for Cross-Species Extrapolations. Pensacola: SETAC Press, 77–101

[41]

Eichler T , Ma Q , Kelly C , Mishra J , Parikh S , Ransom R F , Devarajan P , Smoyer W E . (2006). Single and combination toxic metal exposures induce apoptosis in cultured murine podocytes exclusively via the extrinsic caspase 8 pathway. Toxicological Sciences, 90(2): 392–399

[42]

Essien J P , Inam E D , Ikpe D I , Udofia G E , Benson N U . (2019). Ecotoxicological status and risk assessment of heavy metals in municipal solid wastes dumpsite impacted soil in Nigeria. Environmental Nanotechnology, Monitoring & Management, 11: 100215

[43]

Fernandez-Carro E , Angenent M , Gracia-Cazaña T , Gilaberte Y , Alcaine C , Ciriza J . (2022). Modeling an optimal 3D skin-on-chip within microfluidic devices for pharmacological studies. Pharmaceutics, 14(7): 1417

[44]

Fernández-Landero S , Giráldez I , Fernández-Caliani J C . (2021). Predicting the relative oral bioavailability of naturally occurring As, Cd and Pb from in vitro bioaccessibility measurement: Implications for human soil ingestion exposure assessment. Environmental Geochemistry and Health, 43(20): 4251–4264

[45]

Firman J W , Ebbrell D J , Bauer F J , Sapounidou M , Hodges G , Campos B , Roberts J , Gutsell S , Thomas P C , Bonnell M . . (2022). Construction of an in silico structural profiling tool facilitating mechanistically grounded classification of aquatic toxicants. Environmental Science & Technology, 56(24): 17805–17814

[46]

Fontoura J C , Viezzer C , Dos Santos F G , Ligabue R A , Weinlich R , Puga R D , Antonow D , Severino P , Bonorino C . (2020). Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. Materials Science and Engineering: C, 107: 110264

[47]

Forsthuber M , Widhalm R , Granitzer S , Kaiser A M , Moshammer H , Hengstschläger M , Dolznig H , Gundacker C . (2022). Perfluorooctane sulfonic acid (PFOS) inhibits vessel formation in a human 3D co-culture angiogenesis model (NCFs/HUVECs). Environmental Pollution, 293: 118543

[48]

Fu J , Cui Y S . (2013). In vitro digestion/Caco-2 cell model to estimate cadmium and lead bioaccessibility/bioavailability in two vegetables: the influence of cooking and additives. Food and Chemical Toxicology, 59: 215–221

[49]

Gaberšek M , Gosar M . (2024). Oral bioaccessibility of potentially toxic elements in various urban environmental media. Environmental Geochemistry and Health, 46(7): 259

[50]

Getova V E , van Dongen J A , Brouwer L A , Harmsen M C . (2019). Adipose tissue-derived ECM hydrogels and their use as 3D culture scaffold. Artificial Cells, Nanomedicine, and Biotechnology, 47(1): 1693–1701

[51]

Ghobadi F , Saadatmand M , Simorgh S , Brouki Milan P . (2025). Microfluidic 3D cell culture: potential application of collagen hydrogels with an optimal dose of bioactive glasses. Scientific Reports, 15(1): 569

[52]

Gong Y , Chai M W , Ding H , Shi C , Wang Y , Li R L . (2020). Bioaccumulation and human health risk of shellfish contamination to heavy metals and As in most rapid urbanized Shenzhen, China. Environmental Science and Pollution Research, 27(2): 2096–2106

[53]

Habanjar O , Diab-Assaf M , Caldefie-Chezet F , Delort L . (2021). 3D cell culture systems: tumor application, advantages, and disadvantages. International Journal of Molecular Sciences, 22(22): 12200

[54]

Hafsi H , Hainaut P . (2011). Redox control and interplay between p53 isoforms: roles in the regulation of basal p53 levels, cell fate, and senescence. Antioxidants & Redox Signaling, 15(6): 1655–1667

[55]

Haisler W L , Timm D M , Gage J A , Tseng H , Killian T C , Souza G R . (2013). Three-dimensional cell culturing by magnetic levitation. Nature Protocols, 8(10): 1940–1949

[56]

Han J J . (2023). FDA Modernization Act 2.0 allows for alternatives to animal testing. Addiction Biology, 47(3): 449–450

[57]

Hartung T . (2018). Perspectives on in vitro to in vivo extrapolations. Applied in vitro Toxicology, 4(4): 305–316

[58]

Herzog F , Clift M J D , Piccapietra F , Behra R , Schmid O , Petri-Fink A , Rothen-Rutishauser B . (2013). Exposure of silver-nanoparticles and silver-ions to lung cells in vitro at the air-liquid interface. Particle and Fibre Toxicology, 10: 11

[59]

Hoang H G , Chiang C F , Lin C , Wu C Y , Lee C W , Cheruiyot N K , Tran H T , Bui X T . (2021). Human health risk simulation and assessment of heavy metal contamination in a river affected by industrial activities. Environmental Pollution, 285: 117414

[60]

Hoarau-Véchot J, Rafii A, Touboul C, Pasquier J (2018). Halfway between 2D and animal models: are 3D cultures the ideal tool to study cancer-microenvironment interactions? International Journal of Molecular Sciences, 19(1): 181

[61]

Huang M J , Kang Y , Wang W , Chan C Y , Wang X M , Wong M H . (2015). Potential cytotoxicity of water-soluble fraction of dust and particulate matters and relation to metal(loid)s based on three human cell lines. Chemosphere, 135: 61–66

[62]

Imamura Y , Mukohara T , Shimono Y , Funakoshi Y , Chayahara N , Toyoda M , Kiyota N , Takao S , Kono S , Nakatsura T . . (2015). Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncology Reports, 33(4): 1837–1843

[63]

Jan A T , Azam M , Siddiqui K , Ali A , Choi I , Haq Q M R . (2015). Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. International Journal of Molecular Sciences, 16(12): 29592–29630

[64]

Jensen C, Teng Y (2020). Is it time to start transitioning from 2D to 3D cell culture? Frontiers in Molecular Biosciences, 7: 33

[65]

Jing X F , Park J H , Peters T M , Thorne P S . (2015). Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air–liquid interface compared with in vivo assessment. Toxicology in Vitro, 29(3): 502–511

[66]

Jomova K , Raptova R , Alomar S Y , Alwasel S H , Nepovimova E , Kuca K , Valko M . (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Archives of Toxicology, 97(10): 2499–2574

[67]

Jones C F , Di Cio S , Connelly J T , Gautrot J E . (2022). Design of an integrated microvascularized human skin-on-a-chip tissue equivalent model. Frontiers in Bioengineering and Biotechnology, 10: 915702

[68]

Jun B H , Torrez J E , Ross D J , Patterson B M , Ishak M O , Rodriguez A M , Harris J F , Davis-Anderson K L . (2025). Fabrication of a novel 3D-printed perfusion bioreactor for complex cell culture models. Scientific Reports, 15(1): 10134

[69]

Kafaoglu B , Fisher A , Hill S , Kara D . (2016). Determination and evaluation of element bioaccessibility in some nuts and seeds by in-vitro gastro-intestinal method. Journal of Food Composition and Analysis, 45: 58–65

[70]

Kapałczyńska M , Kolenda T , Przybyła W , Zajączkowska M , Teresiak A , Filas V , Ibbs M , Bliźniak R , Łuczewski Ł , Lamperska K . (2018). 2D and 3D cell cultures–a comparison of different types of cancer cell cultures. Archives of Medical Science, 14(4): 910–919

[71]

Kastury F , Smith E , Juhasz A L . (2017). A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal(loid)s from ambient particulate matter or dust. Science of the Total Environment, 574: 1054–1074

[72]

Ko J , Park D , Lee J , Jung S , Baek K , Sung K E , Lee J , Jeon N L . (2024). Microfluidic high-throughput 3D cell culture. Nature Reviews Bioengineering, 2(6): 453–469

[73]

Koch M , Appoloni O , Haufroid V , Vincent J L , Lheureux P . (2003). Acute barium intoxication and hemodiafiltration. Journal of Toxicology: Clinical Toxicology, 41(4): 363–367

[74]

Koedrith P , Seo Y R . (2011). Advances in carcinogenic metal toxicity and potential molecular markers. International Journal of Molecular Sciences, 12(12): 9576–9595

[75]

Koning J J , Rodrigues Neves C T , Schimek K , Thon M , Spiekstra S W , Waaijman T , De Gruijl T D , Gibbs S . (2022). A multi-organ-on-chip approach to investigate how oral exposure to metals can cause systemic toxicity leading to langerhans cell activation in skin. Frontiers in Toxicology, 3: 824825

[76]

Korotkov S M . (2023). Mitochondrial oxidative stress is the general reason for apoptosis induced by different-valence heavy metals in cells and mitochondria. International Journal of Molecular Sciences, 24(19): 14459

[77]

Koyama H , Kamogashira T , Yamasoba T . (2024). Heavy metal exposure: molecular pathways, clinical implications, and protective strategies. Antioxidants (Basel), 13(1): 76

[78]

Kravchenko E , Minkina T , Mandzhieva S , Bauer T , Lacynnik E , Wong M H , Nazarenko O. . (2025). Ecological and health risk assessments of heavy metal contamination in soils surrounding a coal power plant. Journal of Hazardous Materials, 484: 136751

[79]

Langhans S A . (2018). Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Frontiers in Pharmacology, 9: 6

[80]

Lee S G , Kim J , Park H , Holzapfel W , Lee K W . (2018). Assessment of the effect of cooking on speciation and bioaccessibility/cellular uptake of arsenic in rice, using in vitro digestion and Caco-2 and PSI cells as model. Food and Chemical Toxicology, 111: 597–604

[81]

Lelièvre S A , Kwok T , Chittiboyina S . (2017). Architecture in 3D cell culture: an essential feature for in vitro toxicology. Toxicology in Vitro, 45: 287–295

[82]

Lenz A G , Karg E , Brendel E , Hinze-Heyn H , Maier K L , Eickelberg O , Stoeger T , Schmid O . (2013). Inflammatory and oxidative stress responses of an alveolar epithelial cell line to airborne zinc oxide nanoparticles at the air-liquid interface: a comparison with conventional, submerged cell-culture conditions. BioMed Research International, 2013: 652632

[83]

Leung C M , De Haan P , Ronaldson-Bouchard K , Kim G A , Ko J , Rho H S , Chen Z , Habibovic P , Jeon N L , Takayama S . . (2022). A guide to the organ-on-a-chip. Nature Reviews Methods Primers, 2: 33

[84]

Li H Y , Yin N Y , Yang R J , Faiola F . (2024). Advancing environmental toxicology in vitro: from immortalized cancer cell lines to 3D models derived from stem cells. Environment & Health, 2(6): 332–349

[85]

Li J P , Wang X D , Yang J X , Liu Y J , Naidu R . (2022a). Predicting the thresholds of metals with limited toxicity data with invertebrates in standard soils using quantitative ion character-activity relationships (QICAR). Journal of Hazardous Materials, 423: 126982

[86]

Li X G , Chen M X , Zhao S Q , Wang X Q . (2022b). Intestinal models for personalized medicine: from conventional models to microfluidic primary intestine-on-a-chip. Stem Cell Reviews and Reports, 18(6): 2137–2151

[87]

Lin J H , Li H , Yasumura D , Cohen H R , Zhang C , Panning B , Shokat K M , Lavail M M , Walter P . (2007). IRE1 signaling affects cell fate during the unfolded protein response. Science, 318(5852): 944–949

[88]

Lin Q , Hamid Y , Yang H J , Jiang J F , Shan A Q , Wang M , Hussain B , Feng Y , Li T Q , He Z L . . (2023). Cadmium mobility and health risk assessment in the soil-rice-human system using in vitro biaccessibility and in vivo bioavailability assay: two year field experiment. Science of the Total Environment, 867: 161564

[89]

Lobo V , Patil A , Phatak A , Chandra N . (2010). Free radicals, antioxidants and functional foods: impact on human health. Pharmacognosy Reviews, 4(8): 118–126

[90]

Loessner D , Kobel S , Clements J A , Lutolf M P , Hutmacher D W . (2013). Hydrogel microwell arrays allow the assessment of protease-associated enhancement of cancer cell aggregation and survival. Microarrays, 2(3): 208–227

[91]

Lombardo A , Manganaro A , Arning J , Benfenati E . (2022). Development of new QSAR models for water, sediment, and soil half-life. Science of the Total Environment, 838: 156004

[92]

Luo B , Lin Y , Jiang S , Huang L , Yao H , Zhuang Q , Zhao R , Liu H , He C , Lin Z . (2016). Endoplasmic reticulum stress eIF2α–ATF4 pathway-mediated cyclooxygenase-2 induction regulates cadmium-induced autophagy in kidney. Cell Death & Disease, 7(6): e2251

[93]

Luo Y S , Chen Z W , Hsieh N H , Lin T E . (2022). Chemical and biological assessments of environmental mixtures: a review of current trends, advances, and future perspectives. Journal of Hazardous Materials, 432: 128658

[94]

Lynch I , Ahluwalia A , Boraschi D , Byrne H J , Fadeel B , Gehr P , Gutleb A C , Kendall M , Papadopoulos M G . (2013). The bio-nano-interface in predicting nanoparticle fate and behaviour in living organisms: towards grouping and categorising nanomaterials and ensuring nanosafety by design. BioNanoMaterials, 14(3−4): 195–216

[95]

Ma J Y , Bao X C , Tian W , Cui D L , Zhang M Y , Yang J , Xiang P , Ma L Q . (2022). Effects of soil-extractable metals Cd and Ni from an e-waste dismantling site on human colonic epithelial cells Caco-2: mechanisms and implications. Chemosphere, 292: 133361

[96]

Madorran E , Stožer A , Bevc S , Maver U . (2020). In vitro toxicity model: upgrades to bridge the gap between preclinical and clinical research. Biomolecules and Biomedicine, 20(2): 157–168

[97]

Mallek N M , Martin E M , Dailey L A , McCullough S D . (2024). Liquid application dosing alters the physiology of air-liquid interface (ALI) primary human bronchial epithelial cell/lung fibroblast co-cultures and in vitro testing relevant endpoints. Frontiers in Toxicology, 5: 1264331

[98]

Mao B H , Tsai J C , Chen C W , Yan S J , Wang Y J . (2016). Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology, 10(8): 1021–1040

[99]

Marchetti C . (2013). Role of calcium channels in heavy metal toxicity. International Scholarly Research Notices, 2013: 184360

[100]

Marrero-RosadoBFoxSHannonHAtchisonW D (2013). Mercury and lead, effects on voltage-gated calcium channel function. In: Kretsinger R H, Uversky V N, Permyakov E A, eds. Encyclopedia of Metalloproteins. New York: Springer, 1336–1346

[101]

Mesquita V A , Machado M D , Silva C F , Soares E V . (2015). Impact of multi-metals (Cd, Pb and Zn) exposure on the physiology of the yeast Pichia kudriavzevii. Environmental Science and Pollution Research, 22(14): 11127–11136

[102]

Michielon E , Boninsegna M , Waaijman T , Fassini D , Spiekstra S W , Cramer J , Gaudriault P , Kodolányi J , de Gruijl T D , Homs-Corbera A . . (2024). Environmentally controlled microfluidic system enabling immune cell flow and activation in an endothelialised skin-on-chip. Advanced Healthcare Materials, 13(29): 2400750

[103]

Mir S A , Pinto S M , Paul S , Raja R , Nanjappa V , Syed N , Advani J , Renuse S , Sahasrabuddhe N A , Keshava Prasad T S . . (2017). SILAC-based quantitative proteomic analysis reveals widespread molecular alterations in human skin keratinocytes upon chronic arsenic exposure. Proteomics, 17(6): 1600257

[104]

Mistry A , Bowen L E , Dzierlenga M W , Hartman J K , Slattery S D . (2020). Development of an in vitro approach to point-of-contact inhalation toxicity testing of volatile compounds, using organotypic culture and air-liquid interface exposure. Toxicology in Vitro, 69: 104968

[105]

Mou Y , Liao W H , Liang Y , Li Y C , Zhao M , Guo Y Y , Sun Q , Tang J Y , Wang Z L . (2023). Environmental pollutants induce NLRP3 inflammasome activation and pyroptosis: roles and mechanisms in various diseases. Science of the Total Environment, 900: 165851

[106]

Mouw J K , Ou G Q , Weaver V M . (2014). Extracellular matrix assembly: a multiscale deconstruction. Nature Reviews Molecular Cell Biology, 15(12): 771–785

[107]

NailA NFerragutCardoso A PBanerjeeMStatesJ C (2022). Circulating miRNAs as biomarkers of toxic heavy metal exposure. In: Sahu S C, ed. Genomic and Epigenomic Biomarkers of Toxicology and Disease: Clinical and Therapeutic Actions. Hoboken: John Wiley & Sons Ltd., 63–87

[108]

Nain P , Kumar A . (2020). Ecological and human health risk assessment of metals leached from end-of-life solar photovoltaics. Environmental Pollution, 267: 115393

[109]

Nguyen T V , Trang P N , Kumar A . (2024). Understanding PFAS toxicity through cell culture metabolomics: current applications and future perspectives. Environment International, 186: 108620

[110]

Nikolova M P , Chavali M S . (2019). Recent advances in biomaterials for 3D scaffolds: a review. Bioactive Materials, 4: 271–292

[111]

Pang Y T , Huang W J , Luo X S , Chen Q , Zhao Z , Tang M W , Hong Y W , Chen J S , Li H B . (2020). In-vitro human lung cell injuries induced by urban PM2.5 during a severe air pollution episode: variations associated with particle components. Ecotoxicology and Environmental Safety, 206: 111406

[112]

Pham-Huy L A , He H , Pham-Huy C . (2008). Free radicals, antioxidants in disease and health. International Journal of Biomedical Science, 4(2): 89–96

[113]

Pradeep P , Friedman K P , Judson R . (2020). Structure-based QSAR models to predict repeat dose toxicity points of departure. Computational Toxicology, 16: 100139

[114]

Pu X , Shi W Y , Wang X D , Oorts K , Ma Y B . (2024). Predicting the ecological risk thresholds of soil metals in Europe using the quantitative ion character-activity relationships (QICAR) model. Journal of Cleaner Production, 474: 143631

[115]

Qu C S, Shi W, Guo J, Fang B B, Wang S, Giesy J P, Holm P E (2016) China’s soil pollution control: choices and challenges. Environmental Science & Technology, 50(24): 13181–13183

[116]

Rach J , Budde J , Möhle N , Aufderheide M . (2014). Direct exposure at the air–liquid interface: evaluation of an in vitro approach for simulating inhalation of airborne substances. Journal of Applied Toxicology, 34(5): 506–515

[117]

Rahaman M , Araújo A C J , Alves D S , De L. Silva J M F , Islam M T . (2023). Free radicals and their different effect: a literature based review. Kariri Science, 1(2): 8

[118]

Ravi M , Paramesh V , Kaviya S R , Anuradha E , Solomon F P P . (2015). 3D cell culture systems: advantages and applications. Journal of Cellular Physiology, 230(1): 16–26

[119]

Rebelo S P , Pinto C , Martins T R , Harrer N , Estrada M F , Loza-Alvarez P , Cabeçadas J , Alves P M , Gualda E J , Sommergruber W . . (2018). 3D-3-culture: a tool to unveil macrophage plasticity in the tumour microenvironment. Biomaterials, 163: 185–197

[120]

Ren X O , Getschman A E , Hwang S , Volkman B F , Klonisch T , Levin D , Zhao M , Santos S , Liu S , Cheng J . . (2021). Investigations on T cell transmigration in a human skin-on-chip (SoC) model. Lab on a Chip, 21(8): 1527–1539

[121]

Sano R , Reed J C . (2013). ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta (BBA)–Molecular Cell Research, 1833(12): 3460–3470

[122]

Schmeisser S , Miccoli A , von Bergen M , Berggren E , Braeuning A , Busch W , Desaintes C , Gourmelon A , Grafström R , Harrill J . . (2023). New approach methodologies in human regulatory toxicology–Not if, but how and when. Environment International, 178: 108082

[123]

Sharifi A M , Mousavi S H , Jorjani M . (2010). Effect of chronic lead exposure on pro-apoptotic bax and anti-apoptotic Bcl-2 protein expression in rat hippocampus in vivo. Cellular and Molecular Neurobiology, 30(5): 769–774

[124]

Shim K Y , Lee D , Han J , Nguyen N T , Park S , Sung J H . (2017). Microfluidic gut-on-a-chip with three-dimensional villi structure. Biomedical Microdevices, 19(2): 37

[125]

Shin W , Kim H J . (2022). 3D in vitro morphogenesis of human intestinal epithelium in a gut-on-a-chip or a hybrid chip with a cell culture insert. Nature Protocols, 17(3): 910–939

[126]

Sieg H , Braeuning C , Kunz B M , Daher H , Kastner C , Krause B C , Meyer T . . (2018). Uptake and molecular impact of aluminum-containing nanomaterials on human intestinal Caco-2 Cells. Nanotoxicology, 12(9): 992–1013

[127]

Silva M , Capps S , London J K . (2024). Community-engaged research and the use of open access ToxVal/ToxRef in vivo databases and new approach methodologies (NAM) to address human health risks from environmental contaminants. Birth Defects Research, 116(9): e2395

[128]

Singh A P , Goel R K , Kaur T . (2011). Mechanisms pertaining to arsenic toxicity. Toxicology International, 18(2): 87–93

[129]

Snezhkina A V , Kudryavtseva A V , Kardymon O L , Savvateeva M V , Melnikova N V , Krasnov G S , Dmitriev A A . (2019). ROS generation and antioxidant defense systems in normal and malignant cells. Oxidative Medicine and Cellular Longevity, 2019: 6175804

[130]

Stanek 3rd E J , Calabrese E J . (1995). Daily estimates of soil ingestion in children. Environmental Health Perspectives, 103(3): 276–285

[131]

Sun Q Y , Li Y , Shi L J , Hussain R , Mehmood K , Tang Z X , Zhang H . (2022a). Heavy metals induced mitochondrial dysfunction in animals: molecular mechanism of toxicity. Toxicology, 469: 153136

[132]

Sun S J , Guo H , Wang J S , Dai J Y . (2019). Hepatotoxicity of perfluorooctanoic acid and two emerging alternatives based on a 3D spheroid model. Environmental Pollution, 246: 955–962

[133]

Sun S J , Wang J S , Yao J Z , Guo H , Dai J Y . (2022b). Transcriptome analysis of 3D primary mouse liver spheroids shows that long-term exposure to hexafluoropropylene oxide trimer acid disrupts hepatic bile acid metabolism. Science of the Total Environment, 812: 151509

[134]

Sun T , Jackson S , Haycock J W , MacNeil S . (2006). Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. Journal of Biotechnology, 122(3): 372–381

[135]

Swati P , Ghosh I S . (2017). An integrated approach to study the risk from landfill soil of Delhi: chemical analyses, in vitro assays and human risk assessment. Ecotoxicology and Environmental Safety, 143: 120–128

[136]

Tasneem S , Farrell K , Lee M Y , Kothapalli C R . (2016). Sensitivity of neural stem cell survival, differentiation and neurite outgrowth within 3D hydrogels to environmental heavy metals. Toxicology Letters, 242: 9–22

[137]

TchounwouP BYedjouC GPatlollaA KSuttonD J (2012). Heavy metal toxicity and the environment. In: Luch A, ed. Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology. Basel: Springer, 133–164

[138]

Teschke R , Xuan T D . (2022). Heavy metals, halogenated hydrocarbons, phthalates, glyphosate, cordycepin, alcohol, drugs, and herbs, assessed for liver injury and mechanistic steps. Frontiers in Bioscience, 27(11): 314

[139]

Tomczyk P , Wdowczyk A , Wiatkowska B , Szymańska-Pulikowska A . (2023). Assessment of heavy metal contamination of agricultural soils in Poland using contamination indicators. Ecological Indicators, 156: 111161

[140]

ToutainP LFerranABousquet-MélouA (2010). Species differences in pharmacokinetics and pharmacodynamics. In: Cunningham F, Elliott J, Lees P, eds. Comparative and Veterinary Pharmacology. Berlin: Springer, 19–48

[141]

Urzì O , Gasparro R , Costanzo E , De Luca A , Giavaresi G , Fontana S , Alessandro R . (2023). Three-dimensional cell cultures: the bridge between in vitro and in vivo models. International Journal of Molecular Sciences, 24(15): 12046

[142]

USEPA(1976a). Resource conservation and recovery act [Online]. New York: U.S. Environmental Protection Agency

[143]

USEPA(1976b). About the TSCA chemical substance inventory [Online]. New York: U.S. Environmental Protection Agency

[144]

USEPA(1993). Reference dose (RfD): description and use in health risk assessments [Online]. New York: U.S. Environmental Protection Agency

[145]

USEPA(2021). Pesticides, disease vectors and public health [Online]. New York: U.S. Environmental Protection Agency

[146]

USEPA(2023). Checklist of source and biological impacts [Online]. New York: U.S. Environmental Protection Agency

[147]

Verdin A , Cazier F , Fitoussi R , Blanchet N , Vié K , Courcot D , Momas I , Seta N , Achard S . (2019). An in vitro model to evaluate the impact of environmental fine particles (PM0.3–2.5) on skin damage. Toxicology Letters, 305: 94–102

[148]

Vielee S T , Wise Jr J P . (2023). Among gerontogens, heavy metals are a class of their own: a review of the evidence for cellular senescence. Brain Sciences, 13(3): 500

[149]

Villegas C A M , Guney M , Zagury G J . (2019). Comparison of five artificial skin surface film liquids for assessing dermal bioaccessibility of metals in certified reference soils. Science of the Total Environment, 692: 595–601

[150]

Wallace D R , Taalab Y M , Heinze S , Tariba Lovaković B , Pizent A , Renieri E , Tsatsakis A , Farooqi A A , Javorac D , Andjelkovic M . . (2020). Toxic-metal-induced alteration in mirna expression profile as a proposed mechanism for disease development. Cells, 9(4): 901

[151]

Wang B , Tian L Y , Tian L L , Wang X S , He Y J , Ji R . (2023a). Insights into health risks of face paint application to opera performers: the release of heavy metals and stage-light-induced production of reactive oxygen species. Environmental Science & Technology, 57(9): 3703–3712

[152]

Wang H , Xu T , Yin D Q . (2023b). Emerging trends in the methodology of environmental toxicology: 3D cell culture and its applications. Science of the Total Environment, 857: 159501

[153]

Wang J , Gao P , Li M Y , Ma J Y , Li J Y , Yang D L , Cui D L , Xiang P . (2022). Dermal bioaccessibility and cytotoxicity of heavy metals in urban soils from a typical plateau city: implication for human health. Science of the Total Environment, 835: 155544

[154]

Wang S W , Shi X L . (2001). Molecular mechanisms of metal toxicity and carcinogenesis. Molecular and Cellular Biochemistry, 222(1−2): 3–9

[155]

Warke M , English M , De Marchi L , Sarkar R D , Kannan S , Datta R , Rao S . (2022). In-vitro cell culture model to determine toxic effects of soil Arsenic due to direct dermal exposure. Environmental Technology & Innovation, 28: 102949

[156]

Witkowska D , Słowik J , Chilicka K . (2021). Heavy metals and human health: Possible exposure pathways and the competition for protein binding sites. Molecules, 26(19): 6060

[157]

Wu X Y , Cobbina S J , Mao G H , Xu H , Zhang Z , Yang L Q . (2016). A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environmental Science and Pollution Research, 23(9): 8244–8259

[158]

Wu Y S , Osman A I , Hosny M , Elgarahy A M , Eltaweil A S , Rooney D W , Chen Z H , Rahim N S , Sekar M , Gopinath S C B . . (2024). The toxicity of mercury and its chemical compounds: molecular mechanisms and environmental and human health implications: a comprehensive review. ACS Omega, 9(5): 5100–5126

[159]

Xie K T , Ou J J , He M H , Peng W J , Yuan Y . (2024). Predicting the bioaccessibility of soil Cd, Pb, and As with advanced machine learning for continental-scale soil environmental criteria determination in China. Environment & Health, 2(9): 631–641

[160]

Xue S G , Shi L Z , Wu C , Wu H , Qin Y Y , Pan W S , Hartley W , Cui M Q . (2017). Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines. Environmental Research, 156: 23–30

[161]

Yan G W , Gao Y J , Xue K , Qi Y J , Fan Y , Tian X , Wang J J , Zhao R Y , Zhang P , Liu Y X . . (2023). Toxicity mechanisms and remediation strategies for chromium exposure in the environment. Frontiers in Environmental Science, 11: 1131204

[162]

Yang S , Chen Z Z , Cheng Y P , Liu T , Yin L H , Pu Y P , Liang G Y . (2021). Environmental toxicology wars: organ-on-a-chip for assessing the toxicity of environmental pollutants. Environmental Pollution, 268: 115861

[163]

Yao L Y , Wang Y X , Deng Z Y , Wu Q , Fang M , Wu Y N , Gong Z Y . (2021). Study on the bioaccessibility and bioavailability of Cd in contaminated rice in vitro and in vivo. Journal of Food Science, 86(8): 3730–3742

[164]

Yaseen Z M . (2021). An insight into machine learning models era in simulating soil, water bodies and adsorption heavy metals: review, challenges and solutions. Chemosphere, 277: 130126

[165]

YiLDemisieWZhangM K (2015). Digestion tests to measure heavy metal bioavailability in soils. In: Lichtfouse E, Schwarzbauer J, Robert D, eds. CO2 Sequestration, Biofuels and Depollution. Cham: Springer, 275–305

[166]

Yin N Y , Cai X L , Du H L , Zhang Z N , Li Z J , Chen X C , Sun G X , Cui Y S . (2017). In vitro study of soil arsenic release by human gut microbiota and its intestinal absorption by Caco-2 cells. Chemosphere, 168: 358–364

[167]

Yu J A , Chen Z , Gao W H , He S , Xiao D , Fan W , Huo M X , Nugroho W A . (2025). Global trends and prospects in research on heavy metal pollution at contaminated sites. Journal of Environmental Management, 383: 125402

[168]

Zavala J , Ledbetter A D , Morgan D S , Dailey L A , Puckett E , McCullough S D , Higuchi M . (2018). A new cell culture exposure system for studying the toxicity of volatile chemicals at the air-liquid interface. Inhalation Toxicology, 30(4−5): 169–177

[169]

Zhang D , Li H H , Luo X S , Huang W J , Pang Y T , Yang J S , Tang M W , Mehmood T , Zhao Z . (2022). Toxicity assessment and heavy metal components of inhalable particulate matters (PM2.5 & PM10) during a dust storm invading the city. Process Safety and Environmental Protection, 162: 859–866

[170]

Zhang J Q , Zheng S F , Wang S C , Liu Q Q , Xu S W . (2020). Cadmium-induced oxidative stress promotes apoptosis and necrosis through the regulation of the miR-216a-PI3K/AKT axis in common carp lymphocytes and antagonized by selenium. Chemosphere, 258: 127341

[171]

Zhang J X , Feng W J , Li M H , Chen P E , Ning X D , Ou C W , Chen M S . (2021). Receptor-interacting protein kinase 3 inhibition prevents cadmium-mediated macrophage polarization and subsequent atherosclerosis via maintaining mitochondrial homeostasis. Frontiers in Cardiovascular Medicine, 8: 737652

[172]

Zhou Z Y , Zhu J W , Jiang M H , Sang L , Hao K , He H . (2021). The combination of cell cultured technology and in silico model to inform the drug development. Pharmaceutics, 13(5): 704

[173]

Zoio P , Oliva A . (2022). Skin-on-a-chip technology: micro-engineering physiologically relevant in vitro skin models. Pharmaceutics, 14(3): 682

[174]

Zuo T T , Luo F Y , He H Z , Jin H Y , Sun L , Xing S X , Li B , Gao F , Ma S C , He L C . (2022). Novel bioavailability-based risk assessment of Cd in earthworms and leeches utilizing in vitro digestion/Caco-2 and MDCK cells. Environmental Science and Pollution Research, 29(18): 26513–26523

RIGHTS & PERMISSIONS

The Author(s) 2025.

AI Summary AI Mindmap
PDF (2709KB)

325

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/