Photocatalytic membrane treatment of antibiotics: combined chemical and toxicological evaluation of effectiveness

Martin Schmidt , Silke Aulhorn , Amira Abdul Latif , Martin Krauss , Mechthild Schmitt-Jansen , Daniel Breite , Eberhard Küster , Agnes Schulze

Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (12) : 163

PDF (4220KB)
Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (12) : 163 DOI: 10.1007/s11783-025-2083-7
RESEARCH ARTICLE

Photocatalytic membrane treatment of antibiotics: combined chemical and toxicological evaluation of effectiveness

Author information +
History +
PDF (4220KB)

Abstract

Antibiotic residues in wastewater promote the emergence of resistant bacteria, posing a serious potential threat to human health and ecosystems. Effective degradation strategies are crucial for removing antibiotics from wastewater. In this study, a photocatalytic polymer membrane was used to treat three antibiotics, i.e., sulfamethoxazole, chloramphenicol, and ofloxacin. In parallel with chemical analysis, the acute and chronic toxicity of the antibiotics and their degradation mixtures to the freshwater green alga Scenedesmus vacuolatus was assessed. Photocatalytic membrane treatment of 10 mg/L aqueous solutions (and 1100 mg/L for ofloxacin) achieved complete parent-compound removal, with half-lives ranging from 6.2–102.3 min. Toxicity measured at successive irradiation times revealed initial detoxification followed by increased toxicity due to transformation products and by-products caused by membrane photoaging, limiting the total detoxification effectiveness. The results underscore the promise of photocatalytic membranes for antibiotic removal while highlighting the critical importance of photostable polymer–photocatalyst materials to prevent secondary ecotoxicological effects in water treatment applications. These results further demonstrate the need to combine chemical and toxicological methods to validate new technologies for wastewater treatment.

Graphical abstract

Keywords

Micropollutant degradation / Polymer membrane / Photocatalysis / Ecotoxicology / Microalgae / WWTP

Highlight

● Photocatalytic polymer membrane effectively removed three antibiotics from water.

● Degradation process was monitored by combined chemical and toxicological approach.

● Initial detoxification is followed by resurgence of algal photosynthetic inhibition.

● Membrane photoaging products limiting the overall detoxification effectiveness.

Cite this article

Download citation ▾
Martin Schmidt, Silke Aulhorn, Amira Abdul Latif, Martin Krauss, Mechthild Schmitt-Jansen, Daniel Breite, Eberhard Küster, Agnes Schulze. Photocatalytic membrane treatment of antibiotics: combined chemical and toxicological evaluation of effectiveness. Front. Environ. Sci. Eng., 2025, 19(12): 163 DOI:10.1007/s11783-025-2083-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdallah M, Bethäuser J, Tettenborn F, Hein A, Hamann M. (2024). Pharmaceutical consumption in human and veterinary medicine in Germany: potential environmental challenges. Frontiers in Environmental Science, 12: 1443935

[2]

Ajibola A S, Amoniyan O A, Ekoja F O, Ajibola F O. (2021). QuEChERS approach for the analysis of three fluoroquinolone antibiotics in wastewater: concentration profiles and ecological risk in two Nigerian hospital wastewater treatment plants. Archives of Environmental Contamination and Toxicology, 80(2): 389–401

[3]

Balbi H J. (2004). Chloramphenicol: a review. Pediatrics in Review, 25(8): 284–288

[4]

Baran W, Sochacka J, Wardas W. (2006). Toxicity and bio-degradability of sulfonamides and products of their photo-catalytic degradation in aqueous solutions. Chemosphere, 65(8): 1295–1299

[5]

Bernhardt A, Lorenz P, Fischer K, Schmidt M, Kühnert M, Lotnyk A, Griebel J, Schönherr N, Zimmer K, Schulze A. (2024). Laser-crystallization of TiO2 nanotubes for photocatalysis: influence of laser power and laser scanning speed. Laser & Photonics Reviews, 18(8): 2300778

[6]

Chambers M C, Maclean B, Burke R, Amodei D, Ruderman D L, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J. . (2012). A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology, 30(10): 918–920

[7]

Chen J M, Sun R X, Pan C G, Sun Y, Mai B, Li Q X. (2020). Antibiotics and food safety in aquaculture. Journal of Agricultural and Food Chemistry, 68(43): 11908–11919

[8]

Chin J Y, Ahmad A L, Low S C. (2023). Evolution of photocatalytic membrane for antibiotics degradation: perspectives and insights for sustainable environmental remediation. Journal of Water Process Engineering, 51: 103342

[9]

Coulibaly B, Pastor-López E J, Diawara A, Savane F B, Escolà-Casas M, Matamoros V, Ba S. (2025). Occurrence of antibiotics in hospital wastewater effluents discharged into the Niger River in Bamako, Mali. Risk assessment and solutions. Environmental Pollution, 371: 125912

[10]

Deng C N, Pan X L, Zhang D Y. (2015). Influence of ofloxacin on photosystems I and II activities of Microcystis aeruginosa and the potential role of cyclic electron flow. Journal of Bioscience and Bioengineering, 119(2): 159–164

[11]

Dolar D, Ignjatić Zokić T, Košutić K, Ašperger D, Mutavdžić Pavlović D. (2012). RO/NF membrane treatment of veterinary pharmaceutical wastewater: comparison of results obtained on a laboratory and a pilot scale. Environmental Science and Pollution Research, 19(4): 1033–1042

[12]

Dührkop K, Fleischauer M, Ludwig M, Aksenov A A, Melnik A V, Meusel M, Dorrestein P C, Rousu J, Böcker S. (2019). SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nature Methods, 16(4): 299–302

[13]

Dührkop K, Shen H B, Meusel M, Rousu J, Böcker S. (2015). Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proceedings of the National Academy of Sciences of the United States of America, 112(41): 12580–12585

[14]

Felis E, Kalka J, Sochacki A, Kowalska K, Bajkacz S, Harnisz M, Korzeniewska E. (2020). Antimicrobial pharmaceuticals in the aquatic environment-occurrence and environmental implications. European Journal of Pharmacology, 866: 172813

[15]

Fischer K, Abdul Latif A, Griebel J, Prager A, Shayestehpour O, Zahn S, Schulze A. (2024). Immobilization of Bi2WO6 on polymer membranes for photocatalytic removal of micro-pollutants from water: a stable and visible light active alternative. Global Challenges, 8(3): 2300198

[16]

Fischer K, Schulz P, Atanasov I, Abdul Latif A, Thomas I, Kühnert M, Prager A, Griebel J, Schulze A. (2018). Synthesis of high crystalline TiO2 nanoparticles on a polymer membrane to degrade pollutants from water. Catalysts, 8(9): 376

[17]

Giri A S, Golder A K. (2018). Mechanism and identification of reaction byproducts for the degradation of chloramphenicol drug in heterogeneous photocatalytic process. Groundwater for Sustainable Development, 7: 343–347

[18]

González-Pleiter M, Gonzalo S, Rodea-Palomares I, Leganés F, Rosal R, Boltes K, Marco E, Fernández-Piñas F. (2013). Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assess-ment. Water Research, 47(6): 2050–2064

[19]

Guo J H, Zhang Y B, Mo J Z, Sun H T, Li Q. (2021). Sulfamethoxazole-altered transcriptomein green alga Raphidocelis subcapitata suggests inhibition of translation and DNA damage repair. Frontiers in Microbiology, 12: 541451

[20]

Gustafson R H, Bowen R E. (1997). Antibiotic use in animal agriculture. Journal of Applied Microbiology, 83(5): 531–541

[21]

Halling-Sorensen B. (2000). Environmental risk assessment of antibiotics: comparison of mecillinam, trimethoprim and ciprofloxacin. Journal of Antimicrobial Chemotherapy, 46(S1): 53–58

[22]

Hernández-Tenorio R. (2024). Degradation pathways of sulfamethoxazole under phototransformation processes: a data base of the major transformation products for their environmental monitoring. Environmental Research, 262: 119863

[23]

Homem V, Santos L. (2011). Degradation and removal methods of antibiotics from aqueous matrices: a review. Journal of Environmental Management, 92(10): 2304–2347

[24]

Hutchings M I, Truman A W, Wilkinson B. (2019). Antibiotics: past, present and future. Current Opinion in Microbiology, 51: 72–80

[25]

Kim H Y, Kim T H, Yu S. (2015). Photolytic degradation of sulfamethoxazole and trimethoprim using UV-A, UV-C and vacuum-UV (VUV). Journal of Environmental Science and Health, Part A, 50(3): 292–300

[26]

Kovalakova P, Cizmas L, McDonald T J, Marsalek B, Feng M B, Sharma V K. (2020). Occurrence and toxicity of antibiotics in the aquatic environment: a review. Chemosphere, 251: 126351

[27]

Krakowiak R, Musial J, Bakun P, Spychała M, Czarczynska-Goslinska B, Mlynarczyk D T, Koczorowski T, Sobotta L, Stanisz B, Goslinski T. (2021). Titanium dioxide-based photo-catalysts for degradation of emerging contaminants including pharmaceutical pollutants. Applied Sciences, 11(18): 8674

[28]

Kümmerer K. (2009). Antibiotics in the aquatic environment: a review. Part I. Chemosphere, 75(4): 417–434

[29]

Kusk K O, Christensen A M, Nyholm N. (2018). Algal growth inhibition test results of 425 organic chemical substances. Chemosphere, 204: 405–412

[30]

Kutuzova A, Dontsova T, Kwapinski W. (2021). Application of TiO2-based photocatalysts to antibiotics degradation: cases of sulfamethoxazole, trimethoprim and ciprofloxacin. Catalysts, 11(6): 728

[31]

Lee M J, Ong C S, Lau W J, Ng B C, Ismail A F, Lai S O. (2016). Degradation of PVDF-based composite membrane and its impacts on membrane intrinsic and separation properties. Journal of Polymer Engineering, 36(3): 261–268

[32]

León-Aguirre K, Hernández-Núñez E, González-Sánchez A, Méndez-Novelo R, Ponce-Caballero C, Giácoman-Vallejos G. (2019). A rapid and green method for the determination of veterinary pharmaceuticals in swine wastewater by fluorescence spectrophotometry. Bulletin of Environmental Contamination and Toxicology, 103(4): 610–616

[33]

Li S, Wu Y N, Zheng H S, Li H B, Zheng Y J, Nan J, Ma J, Nagarajan D, Chang J S. (2023a). Antibiotics degradation by advanced oxidation process (AOPs): recent advances in ecotoxicity and antibiotic-resistance genes induction of degradation products. Chemosphere, 311: 136977

[34]

Li X H, Liu C, Chen Y X, Huang H K, Ren T Z. (2018). Antibiotic residues in liquid manure from swine feedlot and their effects on nearby groundwater in regions of north China. Environmental Science and Pollution Research, 25(12): 11565–11575

[35]

Li Y L, Wang X H, Li Z Y, Chen M, Zheng J J, Wang X. (2023b). Recent advances in photocatalytic membranes for pharmaceuticals and personal care products removal from water and wastewater. Chemical Engineering Journal, 475: 146036

[36]

Liu B Y, Nie X P, Liu W Q, Snoeijs P, Guan C, Tsui M T K. (2011). Toxic effects of erythromycin, ciprofloxacin and sulfam-ethoxazole on photosynthetic apparatus in Selenastrum capricornutum. Ecotoxicology and Environmental Safety, 74(4): 1027–1035

[37]

Liu S Q, Véron E, Lotfi S, Fischer K, Schulze A, Schäfer A I. (2023). Poly(vinylidene fluoride) membrane with immobilized TiO2 for degradation of steroid hormone micropollutants in a photo-catalytic membrane reactor. Journal of Hazardous Materials, 447: 130832

[38]

Liu Y, Chen S, Zhang J, Li X W, Gao B Y. (2017). Stimulation effects of ciprofloxacin and sulphamethoxazole in Microcystis aeruginosa and isobaric tag for relative and absolute quantitation‐based screening of antibiotic targets. Molecular Ecology, 26(2): 689–701

[39]

Lofrano G, Libralato G, Adinolfi R, Siciliano A, Iannece P, Guida M, Giugni M, Volpi Ghirardini A, Carotenuto M. (2016). Photocatalytic degradation of the antibiotic chloramphenicol and effluent toxicity effects. Ecotoxicology and Environmental Safety, 123: 65–71

[40]

Lotfi S, Fischer K, Schulze A, Schäfer A I. (2022). Photocatalytic degradation of steroid hormone micropollutants by TiO2-coated polyethersulfone membranes in a continuous flow-through process. Nature Nanotechnology, 17(4): 417–423

[41]

MacdougallJ (2006). Analysis of dose–response studies–Emax model. In: Ting N, ed. Dose Finding in Drug Development. New York: Springer, 127–145

[42]

Maghsodian Z, Sanati A M, Mashifana T, Sillanpää M, Feng S Y, Nhat T, Ramavandi B. (2022). Occurrence and distribution of antibiotics in the water, sediment, and biota of freshwater and marine environments: a review. Antibiotics, 11(11): 1461

[43]

Marshall J E, Zhenova A, Roberts S, Petchey T, Zhu P C, Dancer C E J, Mcelroy C R, Kendrick E, Goodship V. (2021). On the solubility and stability of polyvinylidene fluoride. Polymers, 13(9): 1354

[44]

Monk J P, Campoli-Richards D M. (1987). Ofloxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs, 33(4): 346–391

[45]

Murray C J L, Ikuta K S, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, Han C, Bisignano C, Rao P, Wool E. . (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325): 629–655

[46]

Nasrollahi N, Vatanpour V, Khataee A. (2022). Removal of antibiotics from wastewaters by membrane technology: limita-tions, successes, and future improvements. Science of the Total Environment, 838: 156010

[47]

Navaratnam S, Claridge J. (2007). Primary photophysical properties of ofloxacin. Photochemistry and Photobiology, 72(3): 283–290

[48]

OECD(2006). Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test. Paris: Organization for Economic Co-operation and Development

[49]

Pauletto M, De Liguoro M. (2024). A review on fluoroquinolones’ toxicity to freshwater organisms and a risk assessment. Journal of Xenobiotics, 14(2): 717–752

[50]

Peres M S, Maniero M G, Guimarães J R. (2015). Photocatalytic degradation of ofloxacin and evaluation of the residual anti-microbial activity. Photochemical & Photobiological Sciences, 14(3): 556–562

[51]

Raota C S, Lotfi S, Lyubimenko R, Richards B S, Schäfer A I. (2023). Accelerated ageing method for the determination of photostability of polymer-based photocatalytic membranes. Journal of Membrane Science, 686: 121944

[52]

Rigano L, Schmitz M, Linnemann V, Krauss M, Hollert H, Pfenninger M. (2025). Exposure to complex mixtures of urban sediments containing tyre and road wear particles (TRWPs) increases the germ-line mutation rate in Chironomus riparius. Aquatic Toxicology, 281: 107292

[53]

Rodil R, Moeder M, Altenburger R, Schmitt-Jansen M. (2009). Photostability and phytotoxicity of selected sunscreen agents and their degradation mixtures in water. Analytical and Bioanalytical Chemistry, 395(5): 1513–1524

[54]

Rodríguez E M, Márquez G, Tena M, Álvarez P M, Beltrán F J. (2015). Determination of main species involved in the first steps of TiO2 photocatalytic degradation of organics with the use of scavengers: the case of ofloxacin. Applied Catalysis B: Environmental, 178: 44–53

[55]

Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, Sànchez-Melsió A, Borrego C M, Barceló D, Balcázar J L. (2015). Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research, 69: 234–242

[56]

Roubaud E, Maréchal W, Lorain O, Lamaa L, Peruchon L, Brochier C, Mendret J, Mericq J P, Brosillon S, Faur C. . (2022). Understanding aging mechanisms in the context of UV irradiation of a low fouling and self-cleaning PVDF-PVP-TiO2 hollow-fiber membrane. Membranes, 12(5): 538

[57]

Rummel C D, Schäfer H, Jahnke A, Arp H P H, Schmitt-Jansen M. (2022). Effects of leachates from UV-weathered microplastic on the microalgae Scenedesmus vacuolatus. Analytical and Bioanalytical Chemistry, 414(4): 1469–1479

[58]

Rytwo G, Zelkind A L. (2021). Evaluation of kinetic pseudo-order in the photocatalytic degradation of ofloxacin. Catalysts, 12(1): 24

[59]

Schmid R, Heuckeroth S, Korf A, Smirnov A, Myers O, Dyrlund T S, Bushuiev R, Murray K J, Hoffmann N, Lu M S. . (2023). Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nature Biotechnology, 41(4): 447–449

[60]

Schmitt-Jansen M, Bartels P, Adler N, Altenburger R. (2007). Phytotoxicity assessment of diclofenac and its photo-transformation products. Analytical and Bioanalytical Chemistry, 387(4): 1389–1396

[61]

Smilack J D. (1999). Trimethoprim-sulfamethoxazole. Mayo Clinic Proceedings, 74(7): 730–734

[62]

UBA(2021). Database-Pharmaceuticals in the Environment [Online]. Dessau-Roßlau: The Umweltbundesamt Office

[63]

Wang C L. (2018). Fractional kinetics of photocatalytic degradation. Journal of Advanced Dielectrics, 8(5): 1850034

[64]

WHO Scientific Working Group. (1983). Antimicrobial resistance. Bulletin of the World Health Organization, 61(3): 383–394

[65]

Xiong Q, Hu L X, Liu Y S, Wang T T, Ying G G. (2019). New insight into the toxic effects of chloramphenicol and roxithromycin to algae using FTIR spectroscopy. Aquatic Toxicology, 207: 197–207

[66]

Xu Q, Song Z J, Ji S T, Xu G, Shi W Y, Shen L X. (2019). The photocatalytic degradation of chloramphenicol with electrospun Bi2O2CO3-poly(ethylene oxide) nanofibers: the synthesis of crosslinked polymer, degradation kinetics, mechanism and cytotoxicity. RSC Advances, 9(51): 29917–29926

[67]

Yang C C, Huang C L, Cheng T C, Lai H T. (2015). Inhibitory effect of salinity on the photocatalytic degradation of three sulfonamide antibiotics. International Biodeterioration & Biodegradation, 102: 116–125

[68]

Zhang Z H, Liu X N, Li N, Cao B L, Huang T T, Li P, Liu S Q, Zhang Y Z, Xu K. (2023). Effect of ofloxacin levels on growth, photosynthesis and chlorophyll fluorescence kinetics in tomato. Plant Physiology and Biochemistry, 194: 374–382

[69]

Zheng X, Dai D Y, Hua H L, Yu D W, Cheng R, Zheng L B. (2023). Aging behavior and mechanism of polyvinylidene fluoride membrane by intensified UV irradiation and NaOCl: a com-parative study. Process Safety and Environmental Protection, 180: 923–934

RIGHTS & PERMISSIONS

The Author(s) 2025.

AI Summary AI Mindmap
PDF (4220KB)

223

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/