Biochar-enhanced chloramphenicol degradation via electron transfer in electroactive microorganisms

Kaimin Yang , Peng Li , Ping Chen , Yen Wah Tong , Dong Zhang , Yiliang He

Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (11) : 155

PDF (5583KB)
Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (11) : 155 DOI: 10.1007/s11783-025-2075-7
RESEARCH ARTICLE

Biochar-enhanced chloramphenicol degradation via electron transfer in electroactive microorganisms

Author information +
History +
PDF (5583KB)

Abstract

Conventional wastewater treatment facilities lack the appropriate design to abate the presence of antibiotics, which are potential hazards in natural water sources. The use of electroactive bacteria and biochar to eliminate antibiotics has been reported; however, the impact and underlying mechanisms by which biochar enhances the biodegradation of antibiotics by electroactive microorganisms remain unclear. As chloramphenicol exhibits a high degree of toxicity to aquatic organisms, this study investigated the synergistic effect of biochar on the biodegradation of chloramphenicol by electroactive Shewanella oneidensis MR-1. Biochar significantly improved chloramphenicol degradation rates from 36.05% to 70.79% within 24 h by promoting electron transfer processes in S. oneidensis MR-1, a typical electroactive microorganism. This study offers unique insights into the electrochemical properties of biochar, particularly those influenced by pyrolysis temperature, in enhancing the microbial electron transfer processes. Furthermore, the findings demonstrated that biochar not only promotes the growth and activity of electroactive bacteria but also facilitates direct and indirect electron transfer mechanisms, leading to significantly improved antibiotic degradation rates. In summary, biochar is a novel perspective in environmental biotechnology that offers an innovative approach to address the challenge of persistent antibiotics in wastewater treatment.

Graphical abstract

Keywords

Antibiotics degradation / Biochar / Electroactive microorganisms / Electron transfer / Chloramphenicol / Shewanella oneidensis MR-1

Highlight

● The addition of biochar promotes the biodegradation of chloramphenicol.

● The electrical conductivity and functional groups of biochar play an important role.

● This effect is attributed to the stimulation of electron transfer in S. oneidensis MR-1.

● Biochar enhances the expression of genes and proteins associated with electron transfer.

Cite this article

Download citation ▾
Kaimin Yang, Peng Li, Ping Chen, Yen Wah Tong, Dong Zhang, Yiliang He. Biochar-enhanced chloramphenicol degradation via electron transfer in electroactive microorganisms. Front. Environ. Sci. Eng., 2025, 19(11): 155 DOI:10.1007/s11783-025-2075-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmad M, Rajapaksha A U, Lim J E, Zhang M, Bolan N, Mohan D, Vithanage M, Lee S S, Ok Y S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99: 19–33

[2]

Aulenta F, Rossetti S, Amalfitano S, Majone M, Tandoi V. (2013). Conductive magnetite nanoparticles accelerate the microbial reductive dechlorination of trichloroethene by promoting interspecies electron transfer processes. Chemsuschem, 6(3): 433–436

[3]

Bao D D, Li Z W, Liu X, Wan C L, Zhang R, Lee D J. (2020). Biochar derived from pyrolysis of oily sludge waste: structural characteristics and electrochemical properties. Journal of Environmental Management, 268: 110734

[4]

Brutinel E D, Gralnick J A. (2012). Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Applied Microbiology and Biotechnology, 93(1): 41–48

[5]

Chacón F J, Cayuela M L, Roig A, Sánchez-Monedero M A. (2017). Understanding, measuring and tuning the electrochemical properties of biochar for environmental applications. Reviews in Environmental Science and Bio/Technology, 16(4): 695–715

[6]

Chen S S, Rotaru A E, Shrestha P M, Malvankar N S, Liu F H, Fan W, Nevin K P, Lovley D R. (2014). Promoting interspecies electron transfer with biochar. Scientific Reports, 4: 5019

[7]

Choi D, Lee S B, Kim S, Min B, Choi I G, Chang I S. (2014). Metabolically engineered glucose-utilizing Shewanella strains under anaerobic conditions. Bioresource Technology, 154: 59–66

[8]

Coursolle D, Baron D B, Bond D R, Gralnick J A. (2010). The mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. Journal of Bacteriology, 192(2): 467–474

[9]

Nicolas A P, Berenguer R, Esteve-Núñez A. (2022). Evaluating bioelectrochemically-assisted constructed wetland (METland®) for treating wastewater: analysis of materials, performance and electroactive communities. Chemical Engineering Journal, 440: 135748

[10]

El-Naggar M Y, Wanger G, Leung K M, Yuzvinsky T D, Southam G, Yang J, Lau W M, Nealson K H, Gorby Y A. (2010). Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proceedings of the National Academy of Sciences of the United States of America, 107(42): 18127–18131

[11]

Elcey C D, Kunhi A A M. (2010). Substantially enhanced degradation of hexachlorocyclohexane isomers by a microbial consortium on acclimation. Journal of Agricultural and Food Chemistry, 58(2): 1046–1054

[12]

Fan W L, Shen X L, Zhu Z L, Liu X C, Zhang H, Qiu Y L, Yin D Q. (2025). Rsearch progress on biochar materials for new pollutants removal in the aquatic environment: a mini-review. Frontiers of Environmental Science & Engineering, 19(3): 33

[13]

Gahlot P, Ahmed B, Tiwari S B, Aryal N, Khursheed A, Kazmi A A, Tyagi V K. (2020). Conductive material engineered direct interspecies electron transfer (DIET) in anaerobic digestion: mechanism and application. Environmental Technology & Innovation, 20: 101056

[14]

Guo H X, Chen Z, Lu C C, Guo J B, Li H B, Song Y Y, Han Y, Hou Y A. (2020). Effect and ameliorative mechanisms of polyoxo-metalates on the denitrification under sulfonamide antibiotics stress. Bioresource Technology, 305: 123073

[15]

He Y, Guo J B, Song Y Y, Chen Z, Lu C C, Han Y, Li H B, Hou Y A, Zhao R. (2021). Acceleration mechanism of bioavailable Fe(III) on Te(IV) bioreduction of Shewanella oneidensis MR-1: promotion of electron generation, electron transfer and energy level. Journal of Hazardous Materials, 403: 123728

[16]

Hu Y M, Xie K H, Wang H W, Yuan C A, Cao B, Qian L L, Wang S, Zafar F F, Ding K, Wang Q. (2021). Preparation and property of N-doped porous carbon material by one-step pyrolysis of protein-rich algal biomass. Journal of Analytical and Applied Pyrolysis, 157: 105221

[17]

Jia Y T, Qian D S, Chen Y C, Hu Y Y. (2021). Intra/extracellular electron transfer for aerobic denitrification mediated by in-situ biosynthesis palladium nanoparticles. Water Research, 189: 116612

[18]

Kappler A, Wuestner M L, Ruecker A, Harter J, Halama M, Behrens S. (2014). Biochar as an electron shuttle between bacteria and Fe(III) minerals. Environmental Science & Technology Letters, 1(8): 339–344

[19]

Kato S, Hashimoto K, Watanabe K. (2012). Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environmental Microbiology, 14(7): 1646–1654

[20]

Keiluweit M, Nico P S, Johnson M G, Kleber M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science & Technology, 44(4): 1247–1253

[21]

Klüpfel L, Keiluweit M, Kleber M, Sander M. (2014). Redox properties of plant biomass-derived black carbon (biochar). Environmental Science & Technology, 48(10): 5601–5611

[22]

Kümmerer K. (2009). Antibiotics in the aquatic environment-a review-Part I. Chemosphere, 75(4): 417–434

[23]

Li F, Li Y X, Cao Y X, Wang L, Liu C G, Shi L, Song H. (2018). Modular engineering to increase intracellular NAD (H/+) promotes rate of extracellular electron transfer of Shewanella oneidensis. Nature Communications, 9(1): 3637

[24]

Li X, Zheng S L, Li Y H, Ding J W, Qin W. (2023). Effectively facilitating the degradation of chloramphenicol by the synergism of Shewanella oneidensis MR-1 and the metal-organic framework. Journal of Hazardous Materials, 454: 131545

[25]

Lovley D R. (2017). Syntrophy goes electric: direct interspecies electron transfer. Annual Review of Microbiology, 71: 643–664

[26]

Lovley D R, Holmes D E. (2022). Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive micro-organisms. Nature Reviews Microbiology, 20(1): 5–19

[27]

Lu J, Wu J, Zhang C, Wang J H, He X. (2024). Occurrence and possible sources of antibiotic resistance genes in seawater of the South China Sea. Frontiers of Environmental Science & Engineering, 18(9): 108

[28]

Manyà J J. (2012). Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environmental Science & Technology, 46(15): 7939–7954

[29]

Mao G N, Wang D L, Bai Y H, Qu J H. (2023). Mitigating microbiological risks of potential pathogens carrying antibiotic resistance genes and virulence factors in receiving rivers: benefits of wastewater treatment plant upgrade. Frontiers of Environmental Science & Engineering, 17(7): 82

[30]

Pirbadian S, Barchinger S E, Leung K M, Byun H S, Jangir Y, Bouhenni R A, Reed S B, Romine M F, Saffarini D A, Shi L. . (2014). Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proceedings of the National Academy of Sciences of the United States of America, 111(35): 12883–12888

[31]

Prado A, Berenguer R, Esteve-Núñez A. (2019). Electroactive biochar outperforms highly conductive carbon materials for biodegrading pollutants by enhancing microbial extracellular electron transfer. Carbon, 146: 597–609

[32]

Pulingam T, Parumasivam T, Gazzali A M, Sulaiman A M, Chee J Y, Lakshmanan M, Chin C F, Sudesh K. (2022). Antimicrobial resistance: prevalence, economic burden, mechanisms of resistance and strategies to overcome. European Journal of Pharmaceutical Sciences, 170: 106103

[33]

Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy M C, Michael I, Fatta-Kassinos D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Science of the Total Environment, 447: 345–360

[34]

Saquing J M, Yu Y H, Chiu P C. (2016). Wood-derived black carbon (biochar) as a microbial electron donor and acceptor. Environmental Science & Technology Letters, 3(2): 62–66

[35]

Schievano A, Berenguer R, Goglio A, Bocchi S, Marzorati S, Rago L, Louro R O, Paquete C M, Esteve-Núñez A. (2019a). Electroactive biochar for large-scale environmental applications of microbial electrochemistry. ACS Sustainable Chemistry & Engineering, 7(22): 18198–18212

[36]

Schievano A, Berenguer R, Goglio A, Bocchi S, Marzorati S, Rago L, Louro R O, Paquete C M, Esteve-Núñez A. (2019b). Electroactive biochar for large-scale environmental applications of microbial electrochemistry. ACS Sustainable Chemistry & Engineering, 7(22): 18198–18212

[37]

Shi L, Dong H L, Reguera G, Beyenal H, Lu A H, Liu J, Yu H Q, Fredrickson J K. (2016). Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology, 14(10): 651–662

[38]

Shi L, Squier T C, Zachara J M, Fredrickson J K. (2007). Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Molecular Microbiology, 65(1): 12–20

[39]

Singh R, Singh A P, Kumar S, Giri B S, Kim K H. (2019). Antibiotic resistance in major rivers in the world: a systematic review on occurrence, emergence, and management strategies. Journal of Cleaner Production, 234: 1484–1505

[40]

Sun T R, Levin B D A, Guzman J J L, Enders A, Muller D A, Angenent L T, Lehmann J. (2017). Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. Nature Communications, 8: 14873

[41]

Sun T R, Levin B D A, Schmidt M P, Guzman J J L, Enders A, Martínez C E, Muller D A, Angenent L T, Lehmann J. (2018). Simultaneous quantification of electron transfer by carbon matrices and functional groups in pyrogenic carbon. Environmental Science & Technology, 52(15): 8538–8547

[42]

Tan Z W, Yang X Y, Chen L, Liu Y L, Xu H J, Li Y T, Gong B N. (2022). Biodegradation mechanism of chloramphenicol by Aeromonas media SZW3 and genome analysis. Bioresource Technology, 344: 126280

[43]

Tefft N M, Ford K, Teravest M A. (2023). NADH dehydrogenases drive inward electron transfer in Shewanella oneidensis MR-1. Microbial Biotechnology, 16(3): 560–568

[44]

Vellingiri A, Song Y E, Munussami G, Kim C, Park C, Jeon B H, Lee S G, Kim J R. (2019). Overexpression of c-type cytochrome, CymA in Shewanella oneidensis MR-1 for enhanced bioelectricity generation and cell growth in a microbial fuel cell. Journal of Chemical Technology & Biotechnology, 94(7): 2115–2122

[45]

Wang H F, Zhao H P, Zhu L Z. (2020a). Role of pyrogenic carbon in parallel microbial reduction of nitrobenzene in the liquid and sorbed phases. Environmental Science & Technology, 54(14): 8760–8769

[46]

Wang H F, Zhao H P, Zhu L Z. (2020b). Structures of nitroaromatic compounds induce Shewanella oneidensis MR-1 to adopt different electron transport pathways to reduce the contaminants. Journal of Hazardous Materials, 384: 121495

[47]

Wu Y D, Luo X B, Qin B L, Li F B, Häggblom M M, Liu T X. (2020). Enhanced current production by exogenous electron mediators via synergy of promoting biofilm formation and the electron shuttling process. Environmental Science & Technology, 54(12): 7217–7225

[48]

Wu Y M, Xiao X, Xu C C, Cao D M, Du D L. (2013). Decolorization and detoxification of a sulfonated triphenylmethane dye aniline blue by Shewanella oneidensis MR-1 under anaerobic conditions. Applied Microbiology and Biotechnology, 97(16): 7439–7446

[49]

Xiao L L, Li J J, Lichtfouse E, Li Z K, Wang Q, Liu F H. (2021). Augmentation of chloramphenicol degradation by Geobacter-based biocatalysis and electric field. Journal of Hazardous Materials, 410: 124977

[50]

Xiao X, Chen Z M, Chen B L. (2016). H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials. Scientific Reports, 6: 22644

[51]

Xu H D, Xiao L L, Zheng S L, Zhang Y C, Li J J, Liu F H. (2019). Reductive degradation of chloramphenicol by Geobacter metallireducens. Science China Technological Sciences, 62(10): 1688–1694

[52]

Xu Y S, Zheng T, Yong X Y, Zhai D D, Si R W, Li B, Yu Y Y, Yong Y C. (2016). Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells. Bioresource Technology, 211: 542–547

[53]

Yang Z, Sun T R, Kappler A, Jiang J. (2022). Biochar facilitates ferrihydrite reduction by Shewanella oneidensis MR-1 through stimulating the secretion of extracellular polymeric substances. Science of the Total Environment, 848: 157560

[54]

Yu L P, Yuan Y, Tang J, Wang Y Q, Zhou S G. (2015). Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens. Scientific Reports, 5: 16221

[55]

Zhang Y, Xu X Y, Cao L Z, Ok Y S, Cao X D. (2018). Characterization and quantification of electron donating capacity and its structure dependence in biochar derived from three waste biomasses. Chemosphere, 211: 1073–1081

[56]

Zhang Y R, Wang R Q, Chen W P, Song K, Tian Y, Li J X, Shi G F. (2023). Microstructure and electrochemical properties of porous carbon derived from biomass. International Journal of Electrochemical Science, 18(7): 100190

[57]

Zhao C X, Li Y, Li X L, Huang H N, Zheng G H, Chen Y G. (2022). Biological removal of sulfamethoxazole enhanced by S. oneidensis MR-1 via promoting NADH generation and electron transfer and consumption. Journal of Hazardous Materials, 426: 127839

[58]

Zhao J K, Rao M L, Zhang H Y, Wang Q L, Shen Y, Ye J X, Feng K, Zhang S H. (2025). Evolution of interspecific interactions underlying the nonlinear relationship between active biomass and pollutant degradation capacity in bioelectrochemical systems. Water Research, 274: 123071

[59]

Zhao J T, Li F, Cao Y X, Zhang X B, Chen T, Song H, Wang Z W. (2021). Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms. Biotechnology Advances, 53: 107682

[60]

Zhou C, Wang H Q, Si Y B, Wu K, Yousaf A. (2018). Electron shuttles enhance the degradation of sulfamethoxazole coupled with Fe(III) reduction by Shewanella oneidensis MR-1. Environmental Toxicology and Pharmacology, 62: 156–163

[61]

Zhu X M, Wang X, Li N, Wang Q, Liao C M. (2022). Bioelectrochemical system for dehalogenation: a review. Environmental Pollution, 293: 118519

RIGHTS & PERMISSIONS

Higher Education Press 2025

AI Summary AI Mindmap
PDF (5583KB)

Supplementary files

FSE-25106-OF-YKM_suppl_1

435

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/