Enhancing the performance of hydrogen peroxide electrosynthesis via anode-cathode coupling and pulsed electrolysis

Xiaofeng Zhang , Huaijia Xin , Congyu Hou , Gong Zhang , Qinghua Ji , Huijuan Liu

Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (11) : 145

PDF (5418KB)
Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (11) : 145 DOI: 10.1007/s11783-025-2065-9
RESEARCH ARTICLE

Enhancing the performance of hydrogen peroxide electrosynthesis via anode-cathode coupling and pulsed electrolysis

Author information +
History +
PDF (5418KB)

Abstract

Enhancing the electrosynthesis of hydrogen peroxide (H2O2) (the two-electron oxygen reduction and 2eORR) is critical for decentralized and on-site H2O2 production. However, the high aeration energy consumption and serious side reactions in the 2eORR system have decreased its 2eORR performance, hindering its further application. Herein, we greatly reduced the aeration energy consumption using anode-produced O2 for the cathode 2eORR (anode-cathode coupling) and further decreased the hydrogen evolution reaction (HER) and H2O2 electroreduction by applying pulses. A flow-through reactor with narrow electrode gaps efficiently improves the utilization of anode-produced O2. It increased the effluent H2O2 concentration by 101.22% compared to non-coupled systems. In addition, pulsed electrolysis increased the effluent H2O2 concentration and current efficiency by 3.41 and 11.38 times, respectively. During the power-off period, the electrochemical reaction paused, whereas the O2 and H2O2 diffusion continued under the concentration gradient. These processes relieve the O2 shortage at the cathodes to decrease the HER and alleviate H2O2 accumulation at the cathodes, thus reducing its decomposition. Our results provide an easy and efficient way to improve H2O2 electrosynthesis performance.

Graphical abstract

Keywords

In situ hydrogen peroxide production / Anodic oxygen utilization / Pulsed electrolysis / Interfacial engineering / Mass transfer

Highlight

● Anodic O2 is used for cathode 2eORR in anode-cathode coupling.

● Flow-through reactor with narrow electrode gaps boosts O2 utilization.

● Pulsed electrolysis decreases HER and H2O2 electroreduction.

In Operando visualization shows how pulses reduce concentration polarization.

Cite this article

Download citation ▾
Xiaofeng Zhang, Huaijia Xin, Congyu Hou, Gong Zhang, Qinghua Ji, Huijuan Liu. Enhancing the performance of hydrogen peroxide electrosynthesis via anode-cathode coupling and pulsed electrolysis. Front. Environ. Sci. Eng., 2025, 19(11): 145 DOI:10.1007/s11783-025-2065-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adler Z, Zhang X, Feng G X, Shi Y P, Zhu P, Xia Y, Shan X N, Wang H T. (2024). Hydrogen peroxide electrosynthesis in a strong acidic environment using cationic surfactants. Precision Chemistry, 2(4): 129–137

[2]

Anantharaj S, Pitchaimuthu S, Noda S. (2021). A review on recent developments in electrochemical hydrogen peroxide synthesis with a critical assessment of perspectives and strategies. Advances in Colloid and Interface Science, 287: 102331

[3]

Campos-Martin J M, Blanco-Brieva G, Fierro J L G. (2006). Hydrogen peroxide synthesis: an outlook beyond the anthr-aquinone process. Angewandte Chemie International Edition, 45(42): 6962–6984

[4]

Casebolt R, Kimura K W, Levine K, Cimada Dasilva J A, Kim J, Dunbar T A, Suntivich J, Hanrath T. (2021a). Effect of electrolyte composition and concentration on pulsed potential electro-chemical CO2 reduction. ChemElectroChem, 8(4): 681–688

[5]

Casebolt R, Levine K, Suntivich J, Hanrath T. (2021b). Pulse check: potential opportunities in pulsed electrochemical CO2 reduction. Joule, 5(8): 1987–2026

[6]

Chandrasekar M S, Pushpavanam M. (2008). Pulse and pulse reverse plating—conceptual, advantages and applications. Electrochimica Acta, 53(8): 3313–3322

[7]

Cordeiro-Junior P J M, Martins A S, Pereira G B S, Rocha F V, Rodrigo M a R, Lanza M R D V. (2022). Bisphenol-S removal via photoelectro-fenton/H2O2 process using Co-porphyrin/Printex L6 gas diffusion electrode. Separation and Purification Technology, 285: 120299

[8]

Cornejo O M, Murrieta M F, Aguilar Z G, Rodríguez J F, Márquez A A, León M I, Nava J L. (2024). Recent advances in electrochemical flow reactors used in advanced oxidation pro-cesses: a critical review. Chemical Engineering Journal, 496: 153935

[9]

Danilovic N, Subbaraman R, Chang K C, Chang S H, Kang Y J, Snyder J, Paulikas A P, Strmcnik D, Kim Y T, Myers D. . (2014). Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments. Angewandte Chemie, 126(51): 14240–14245

[10]

Demir N, Kaya M F, Albawabiji M S. (2018). Effect of pulse potential on alkaline water electrolysis performance. International Journal of Hydrogen Energy, 43(36): 17013–17020

[11]

Deng F X, Li S X, Cao Y L, Fang M A, Qu J H, Chen Z L, Qiu S. (2020). A dual-cathode pulsed current electro-Fenton system: improvement for H2O2 accumulation and Fe3+ reduction. Journal of Power Sources, 466: 228342

[12]

Ding J, Huang J, Zhang Q, Wei Z M, He Q Y, Chen Z Y, Liu Y H, Su X Z, Zhai Y M. (2022a). A hierarchical monolithic cobalt-single-atom electrode for efficient hydrogen peroxide production in acid. Catalysis Science & Technology, 12(8): 2416–2419

[13]

Ding Y N, Xie L, Zhou W, Sun F, Gao J H, Yang C W, Zhao G B, Qin Y K, Ma J. (2022b). Pulsed electrocatalysis enables the stabilization and activation of carbon-based catalysts towards H2O2 production. Applied Catalysis B: Environmental, 316: 121688

[14]

Ding Y N, Zhou W, Li J F, Wang J G, Xie L, Meng X X, Gao J H, Sun F, Zhao G B, Qin Y K. (2023). Revealing the in situ dynamic regulation of the interfacial microenvironment induced by pulsed electrocatalysis in the oxygen reduction reaction. ACS Energy Letters, 8(7): 3122–3130

[15]

Ding Y N, Zhou W, Xie L, Chen S, Gao J H, Sun F, Zhao G B, Qin Y K. (2021). Pulsed electrocatalysis enables an efficient 2-electron oxygen reduction reaction for H2O2 production. Journal of Materials Chemistry A, 9(29): 15948–15954

[16]

Evazzade I, Zagalskaya A, Alexandrov V. (2022). On the role of interfacial water dynamics for electrochemical stability of RuO2 and IrO2. ChemCatChem, 14(21): e202200932

[17]

Gerke C S, Klenk M, Zapol P, Thoi V S. (2023). Pulsed-potential electrolysis enhances electrochemical C–N coupling by reorienting interfacial ions. ACS Catalysis, 13(22): 14540–14547

[18]

Guo S S, Chen M, Zeng Q T, Yang J C E, Xie J F, Wang Y X, Sun Q. (2022). Energy-efficient H2O2 electro-production based on an integrated natural air-diffusion cathode and its application. ACS ES&T Water, 2(10): 1647–1658

[19]

Gupta N, Gattrell M, Macdougall B. (2006). Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. Journal of Applied Electro-chemistry, 36(2): 161–172

[20]

Hu Q, Zhou W L, Qi S, Huo Q H, Li X, Lv M Y, Chen X B, Feng C, Yu J Y, Chai X Y. . (2024). Pulsed co-electrolysis of carbon dioxide and nitrate for sustainable urea synthesis. Nature Sustainability, 7(4): 442–451

[21]

Jeon H S, Timoshenko J, Rettenmaier C, Herzog A, Yoon A, Chee S W, Oener S, Hejral U, Haase F T, Roldan Cuenya B. (2021). Selectivity control of cu nanocrystals in a gas-fed flow cell through CO2 pulsed electroreduction. Journal of the American Chemical Society, 143(19): 7578–7587

[22]

Jiang Y Y, Ni P J, Chen C X, Lu Y Z, Yang P, Kong B, Fisher A, Wang X. (2018). Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Advanced Energy Materials, 8(31): 1801909

[23]

Khataee A, Sajjadi S, Pouran S R, Hasanzadeh A, Joo S W. (2017). A comparative study on electrogeneration of hydrogen peroxide through oxygen reduction over various plasma-treated graphite electrodes. Electrochimica Acta, 244: 38–46

[24]

Khataee A R, Safarpour M, Zarei M, Aber S. (2011). Electrochemical generation of H2O2 using immobilized carbon nanotubes on graphite electrode fed with air: investigation of operational parameters. Journal of Electroanalytical Chemistry, 659(1): 63–68

[25]

Kim C, Weng L C, Bell A T. (2020). Impact of pulsed electrochemical reduction of CO2 on the formation of C2+ products over Cu. ACS Catalysis, 10(21): 12403–12413

[26]

Lei H Y, Li H L, Li Z X, Li Z, Chen K, Zhang X H, Wang H Q. (2010). Electro-Fenton degradation of cationic red X-GRL using an activated carbon fiber cathode. Process Safety and Environmental Protection, 88(6): 431–438

[27]

Lei J N, Xu Z C, Xu H, Qiao D, Liao Z W, Yan W, Wang Y. (2020). Pulsed electrochemical oxidation of acid Red G and crystal violet by PbO2 anode. Journal of Environmental Chemical Engineering, 8(3): 103773

[28]

Leyva-Ruiz D, Treviño-Reséndez J, Godínez L A, Robles I, Acosta-Santoyo G, García-Espinoza J D. (2024). Electrochemical degradation of carbamazepine in water by a flow-through and pilot-scale reactor with carbon felt electrodes: Parametric study under realistic operational conditions. Journal of Environmental Chemical Engineering, 12(4): 113232

[29]

Li H, Wen P, Itanze D S, Hood Z D, Adhikari S, Lu C, Ma X, Dun C, Jiang L, Carroll D L. . (2020). Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways. Nature Communications, 11(1): 3928

[30]

Li LJ, Xu L P, Hu Z F, Yu J C. (2021a). Enhanced mass transfer of oxygen through a gas–liquid–solid interface for photocatalytic hydrogen peroxide production. Advanced Functional Materials, 31(52): 2106120

[31]

Li Y, Zhang Y X, Xia G S, Zhan J H, Yu G, Wang Y J. (2021b). Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment. Frontiers of Environmental Science & Engineering, 15(1): 1

[32]

Lima V B, Goulart L A, Rocha R S, Steter J R, Lanza M R V. (2020). Degradation of antibiotic ciprofloxacin by different AOP systems using electrochemically generated hydrogen peroxide. Chemosphere, 247: 125807

[33]

Liu Z W, Guo X Y, Tian Q H, Xu Z P. (2025). Numerical simulation of gallium pulse cyclone electrowinning: insights into the regulation of cathodic competitive reactions. Electrochimica Acta, 525: 146100

[34]

Masaud Z, Liu G H, Roseng L E, Wang K Y. (2023). Progress on pulsed electrocatalysis for sustainable energy and environmental applications. Chemical Engineering Journal, 475: 145882

[35]

Moreira J, Bocalon Lima V, Athie Goulart L, Lanza M R V. (2019). Electrosynthesis of hydrogen peroxide using modified gas diffusion electrodes (MGDE) for environmental applications: quinones and azo compounds employed as redox modifiers. Applied Catalysis B: Environmental, 248: 95–107

[36]

Panizza M, Cerisola G. (2008). Electrochemical generation of H2O2 in low ionic strength media on gas diffusion cathode fed with air. Electrochimica Acta, 54(2): 876–878

[37]

Pei S Z, You S J, Zhang J N. (2021). Application of pulsed electrochemistry to enhanced water decontamination. ACS ES&T Engineering, 1(11): 1502–1508

[38]

Pérez J F, Llanos J, Sáez C, López C, Cañizares P, Rodrigo M A. (2018). Development of an innovative approach for low-impact wastewater treatment: a microfluidic flow-through electro-chemical reactor. Chemical Engineering Journal, 351: 766–772

[39]

Perry S C, Mavrikis S, Wang L, Ponce De León C. (2021). Future perspectives for the advancement of electrochemical hydrogen peroxide production. Current Opinion in Electrochemistry, 30: 100792

[40]

Perry S C, Pangotra D, Vieira L, Csepei L I, Sieber V, Wang L, de León C P, Walsh F C. (2019). Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nature Reviews Chemistry, 3(7): 442–458

[41]

Qian A, Yuan S H, Zhang P, Tong M. (2015). A new mechanism in electrochemical process for arsenic oxidation: production of H2O2 from anodic O2 reduction on the cathode under automatically developed alkaline conditions. Environmental Science & Technology, 49(9): 5689–5696

[42]

Qiang Z M, Chang J H, Huang C P. (2002). Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Research, 36(1): 85–94

[43]

Ren G B, Zhou M H, Zhang Q Z, Xu X, Li Y C, Su P. (2020). A novel stacked flow-through electro-Fenton reactor as decentralized system for the simultaneous removal of pollutants (COD, NH3-N and TP) and disinfection from domestic sewage containing chloride ions. Chemical Engineering Journal, 387: 124037

[44]

Salmerón I, Plakas K V, Sirés I, Oller I, Maldonado M I, Karabelas A J, Malato S. (2019). Optimization of electrocatalytic H2O2 production at pilot plant scale for solar-assisted water treatment. Applied Catalysis B: Environmental, 242: 327–336

[45]

Sandoval M A, Calzadilla W, Salazar R. (2022). Influence of reactor design on the electrochemical oxidation and disinfection of wastewaters using boron-doped diamond electrodes. Current Opinion in Electrochemistry, 33: 100939

[46]

Silva K J S, de Souza Leite L, Daniel L A, Sabogal-Paz L P. (2022). Hydrogen peroxide-assisted pasteurization: an alternative for household water disinfection. Journal of Cleaner Production, 357: 131958

[47]

Silva T O, Goulart L A, Sánchez-Montes I, Santos G O S, Santos R B, Colombo R, Lanza M R V. (2023). Using a novel gas diffusion electrode based on PL6 carbon modified with benzophenone for efficient H2O2 electrogeneration and degradation of ciprofloxacin. Chemical Engineering Journal, 455: 140697

[48]

Sun R X, Zhu M H, Chen J, Yan L, Bai L Y, Ning J Q, Zhong Y J, Hu Y. (2025). Tuning the formation kinetics of *OOH intermediate with hollow bowl-like carbon by pulsed electroreduction for enhanced H2O2 production. ACS Nano, 19(13): 13414–13426

[49]

Tang J Y, Zhao T S, Solanki D, Miao X B, Zhou W G, Hu S. (2021). Selective hydrogen peroxide conversion tailored by surface, interface, and device engineering. Joule, 5(6): 1432–1461

[50]

Vincent I, Choi B, Nakoji M, Ishizuka M, Tsutsumi K, Tsutsumi A. (2018). Pulsed current water splitting electrochemical cycle for hydrogen production. International Journal of Hydrogen Energy, 43(22): 10240–10248

[51]

Wang J G, Zhou W, Li J Y, Yang C W, Meng X X, Gao J H. (2023). Insights into the effects of pulsed parameters on H2O2 synthesis by two-electron oxygen reduction under pulsed electrocatalysis. Electrochemistry Communications, 146: 107414

[52]

Wang J W, Li C L, Rauf M, Luo H J, Sun X, Jiang Y Q. (2021). Gas diffusion electrodes for H2O2 production and their applications for electrochemical degradation of organic pollutants in water: a review. Science of the Total Environment, 759: 143459

[53]

Wang X L, Jiang M K, Yang P, Zhou H X, Xi W L, Duan J Y, Ratova M, Wu D, Jiang X L. (2024a). Recent advances in pulsed electrochemical techniques: synthesis of electrode materials and electrocatalytic reactions. Surfaces and Interfaces, 50: 104519

[54]

Wang Z W, Liu S B, Cui S H, Jing B J, Qiu S, Deng F X. (2024b). Electrochemical disinfection boosting by a pulsed-assisted MXene-based cathode. Electrochimica Acta, 489: 144232

[55]

Wei J J, Zhu X P, Ni J R. (2011). Electrochemical oxidation of phenol at boron-doped diamond electrode in pulse current mode. Electrochimica Acta, 56(15): 5310–5315

[56]

Wen X, Zhang X C, Wang M, Yuan C L, Lang J Y, Li X, Wei H, Mandler D, Long M C. (2024). Efficient electrocatalytic H2O2 activation over nitrogen-doped carbon encapsulated Co3O4 for drinking water disinfection. Applied Catalysis B: Environmental, 342: 123437

[57]

Xin H J, Wang H, Zhang W, Chen Y, Ji Q H, Zhang G, Liu H J, Taylor A D, Qu J H. (2022). In operando visualization and dynamic manipulation of electrochemical processes at the electrode–solution interface. Angewandte Chemie International Edition, 61(36): e202206236

[58]

Xin H J, Zhang W, Zhang X F, Zhang G, Ji Q H, Liu H J, Qu J H. (2024). Energy recovery from hexavalent chromium reduction for in situ electrocatalytic hydrogen peroxide production. Environmental Science & Technology, 58(39): 17485–17496

[59]

Yang S L, Liu S B, Li H S, Wang Z W, Zhang J Y, Liu M H, Ding J, Qiu S, Deng F X. (2024). Boosting oxygen mass transfer for efficient H2O2 generation via 2e-ORR: a state-of-the-art overview. Electrochimica Acta, 479: 143889

[60]

Yin K M. (1998). A theoretical analysis of the effect of inert blocking agent on the galvanostatic pulse plating. Journal of the Electrochemical Society, 145(11): 3851–3856

[61]

Yu X M, Zhou M H, Ren G B, Ma L. (2015). A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton. Chemical Engineering Journal, 263: 92–100

[62]

Zhan X F, Lian J, Li H J, Wang X B, Zhou J A, Trieu K, Zhang X P. (2021). Preparation of highly (111) textured nanotwinned copper by medium-frequency pulsed electrodeposition in an additive-free electrolyte. Electrochimica Acta, 365: 137391

[63]

Zhang G, Li Y Q, Zhao C X, Gu J B, Zhou G, Shi Y F, Zhou Q, Xiao F, Fu W J, Chen Q B. . (2024a). Redox-neutral electrochemical decontamination of hypersaline wastewater with high technology readiness level. Nature Nanotechnology, 19(8): 1130–1140

[64]

Zhang Q Z, Zhou M H, Ren G B, Li Y W, Li Y C, Du X D. (2020a). Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion. Nature Communications, 11(1): 1731

[65]

Zhang S X, Yue Z, Pang X F, Pan M Z, Tang J J, Cheng X Z, Li J F, Liu Y L, Shen W J. (2020b). In-situ synthesis of hydrogen peroxide using water electrolysis and Pd/MWCNTs catalyst. Desalination and Water Treatment, 179: 387–395

[66]

Zhang X, Zhao X H, Zhu P, Adler Z, Wu Z Y, Liu Y Y, Wang H T. (2022). Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media. Nature Communications, 13(1): 2880

[67]

Zhang X Y, Wang H, Guo Y J, Bian Z Y. (2024b). Tetracycline degradation through selective activation of molecular oxygen by a fluidic sequential photoelectro-Fenton system. Separation and Purification Technology, 350: 127959

[68]

Zhao Y W, Cui J X, Zhou W, Hojabri S, Alshawabkeh A N. (2020). Electrogeneration of H2O2 utilizing anodic O2 on a polytetrafluoroethylene-modified cathode in a flow-through reactor. Electrochemistry Communications, 121: 106868

[69]

Zhou W, Gao J H, Ding Y N, Zhao H Q, Meng X X, Wang Y, Kou K K, Xu Y Q, Wu S H, Qin Y K. (2018a). Drastic enhancement of H2O2 electro-generation by pulsed current for ibuprofen degradation: Strategy based on decoupling study on H2O2 decomposition pathways. Chemical Engineering Journal, 338: 709–718

[70]

Zhou W, Gao J H, Rajic L, Kou K K, Zhao Y W, Meng X X, Wang Y, Ding Y N, Xu Y Q, Zhao H Q. . (2018c). Highly efficient H2O2 electrogeneration from O2 reduction by pulsed current: facilitated release of H2O2 from porous cathode to bulk. Journal of the Taiwan Institute of Chemical Engineers, 83: 59–63

[71]

Zhou W, Rajic L, Zhao Y W, Gao J H, Qin Y K, Alshawabkeh A N. (2018b). Rates of H2O2 electrogeneration by reduction of anodic O2 at RVC foam cathodes in batch and flow-through cells. Electrochimica Acta, 277: 185–196

[72]

Zhou Y J, Ji Q H, Hu C Z, Liu H J, Qu J H. (2023). A hybrid fuel cell for water purification and simultaneously electricity generation. Frontiers of Environmental Science & Engineering, 17(1): 11

[73]

Zhu Q H, Pan Z H, Hu S, Kim J H. (2019). Cathodic hydrogen peroxide electrosynthesis using anthraquinone modified carbon nitride on gas diffusion electrode. ACS Applied Energy Materials, 2(11): 7972–7979

RIGHTS & PERMISSIONS

Higher Education Press 2025

AI Summary AI Mindmap
PDF (5418KB)

Supplementary files

FSE-25101-OF-ZXF_suppl_1

624

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/