Modeling the formation of aerosols and their interactions with weather and climate: critical review and future perspectives

Ying Xiong , Qianqian Yang , Yang Gao , Ke Li , Yang Yang , Guangxing Lin , Xiao Lu , Zhili Wang , Hongliang Zhang , Meng Gao

Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (11) : 143

PDF (3833KB)
Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (11) : 143 DOI: 10.1007/s11783-025-2063-y
REVIEW ARTICLE

Modeling the formation of aerosols and their interactions with weather and climate: critical review and future perspectives

Author information +
History +
PDF (3833KB)

Abstract

Aerosols play a critical role in Earth’s system, significantly influencing air quality, weather, and climate dynamics. Accurately modeling their effects is essential for advancing our understanding of the climate system and improving predictive capabilities for future climate scenarios. Despite significant progress in aerosol modeling, substantial challenges persist in representing their formation, properties, and interactions with climate and weather systems. This review synthesizes recent advances in aerosol formation modeling, with particular emphasis on (1) refined nucleation and growth mechanisms, and (2) the integration of satellite observations with machine learning techniques. Furthermore, it evaluates state-of-the-art representation of aerosol-radiation and aerosol-cloud interactions in global and regional models, while systematically identifying persistent uncertainties and ongoing challenges. The study emphasizes the need for future research that integrates global in-situ measurements with high-resolution satellite data and cutting-edge machine learning and modeling frameworks to enhance simulations of aerosol formation and their interactions with climate and weather systems. Ultimately, these efforts will reduce uncertainties in aerosol modeling and provide more reliable climate projections.

Graphical abstract

Keywords

Aerosol / Climate / Aerosol-climate interactions / Model uncertainty

Highlight

● Aerosol modeling uncertainties limit climate and weather prediction accuracy.

● Enhanced satellite/ in-situ data and physics-guided ML can advance aerosol modeling.

● Interdisciplinary collaboration is needed to refine models and improve projections.

Cite this article

Download citation ▾
Ying Xiong, Qianqian Yang, Yang Gao, Ke Li, Yang Yang, Guangxing Lin, Xiao Lu, Zhili Wang, Hongliang Zhang, Meng Gao. Modeling the formation of aerosols and their interactions with weather and climate: critical review and future perspectives. Front. Environ. Sci. Eng., 2025, 19(11): 143 DOI:10.1007/s11783-025-2063-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albrecht B A. (1989). Aerosols, cloud microphysics, and fractional cloudiness. Science, 245(4923): 1227–1230

[2]

Andreae M O, Rosenfeld D. (2008). Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews, 89(1−2): 13–41

[3]

Behnke W, George C, Scheer V, Zetzsch C. (1997). Production and decay of ClNO2 from the reaction of gaseous N2O5 with NaCl solution: bulk and aerosol experiments. Journal of Geophysical Research: Atmospheres, 102(D3): 3795–3804

[4]

Bellouin N, Quaas J, Gryspeerdt E, Kinne S, Stier P, Watson-Parris D, Boucher O, Carslaw K S, Christensen M, Daniau A L. . (2020). Bounding global aerosol radiative forcing of climate change. Reviews of Geophysics, 58(1): e2019RG000660

[5]

Bretherton C S, Henn B, Kwa A, Brenowitz N D, Watt-Meyer O, Mcgibbon J, Perkins W A, Clark S K, Harris L. (2022). Correcting coarse-grid weather and climate models by machine learning from global storm-resolving simulations. Journal of Advances in Modeling Earth Systems, 14(2): e2021MS002794

[6]

Carslaw K S, Boucher O, Spracklen D V, Mann G W, Rae J G L, Woodward S, Kulmala M. (2010). A review of natural aerosol interactions and feedbacks within the Earth system. Atmospheric Chemistry and Physics, 10(4): 1701–1737

[7]

Chen J Y, Liu Y G, Zhang M H, Peng Y R. (2016). New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect effects. Geophysical Research Letters, 43(4): 1780–1787

[8]

Chen L J, Gao Y, Ma M C, Wang L L, Wang Q L, Guan S H, Yao X H, Gao H W. (2023). Striking impacts of biomass burning on PM2.5 concentrations in Northeast China through the emission inventory improvement. Environmental Pollution, 318: 120835

[9]

Cheng Y Y, Liu C, Wang J D, Wang J P, Zhang Z Y, Chen L, Ge D F, Zhu C J, Wang J B, Ding A J. (2024). An observation-constrained estimation of brown carbon aerosol direct radiative effects. Atmospheric Chemistry and Physics, 24(5): 3065–3078

[10]

Chung E S, Soden B J. (2017). Hemispheric climate shifts driven by anthropogenic aerosol–cloud interactions. Nature Geoscience, 10(8): 566–571

[11]

Connelly D S, Thompson D R, Mahowald N M, Li L L, Carmon N, Okin G S, Green R O. (2021). The EMIT mission information yield for mineral dust radiative forcing. Remote Sensing of Environment, 258: 112380

[12]

Crippa M, Guizzardi D, Muntean M, Schaaf E, Dentener F, Van Aardenne J A, Monni S, Doering U, Olivier J G J, Pagliari V. . (2018). Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2. Earth System Science Data, 10(4): 1987–2013

[13]

Dada L, Stolzenburg D, Simon M, Fischer L, Heinritzi M, Wang M Y, Xiao M, Vogel A L, Ahonen L, Amorim A. . (2023). Role of sesquiterpenes in biogenic new particle formation. Science Advances, 9(36): eadi5297

[14]

DulacFSauvage SHamonouE (2022). Atmospheric Chemistry in the Mediterranean Region: Volume 2-From Air Pollutant Sources to Impacts. Cham: Springer, 165–183

[15]

Dunstone N J, Smith D M, Booth B B B, Hermanson L, Eade R. (2013). Anthropogenic aerosol forcing of Atlantic tropical storms. Nature Geoscience, 6(7): 534–539

[16]

Emmons L K, Schwantes R H, Orlando J J, Tyndall G, Kinnison D, Lamarque J F, Marsh D, Mills M J, Tilmes S, Bardeen C. . (2020). The chemistry mechanism in the Community Earth System Model version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12(4): e2019MS001882

[17]

Ervens B, Turpin B J, Weber R J. (2011). Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmospheric Chemistry and Physics, 11(21): 11069–11102

[18]

Ervens B, Volkamer R. (2010). Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles. Atmospheric Chemistry and Physics, 10(17): 8219–8244

[19]

Fan J W, Wang Y, Rosenfeld D, Liu X H. (2016). Review of aerosol–cloud interactions: mechanisms, significance, and challenges. Journal of the Atmospheric Sciences, 73(11): 4221–4252

[20]

Fang C W, Haywood J M, Liang J, Johnson B T, Chen Y, Zhu B. (2023). Impacts of reducing scattering and absorbing aerosols on the temporal extent and intensity of South Asian summer monsoon and East Asian summer monsoon. Atmospheric Chemistry and Physics, 23(14): 8341–8368

[21]

Fang C W, Zhu B, Pan C, Qian P, Wang D D, Zhang Y L, Lu C S, Liao H. (2025). Inconsistent fast and slow responses of East Asian summer monsoon precipitation forced by black carbon. Journal of Climate, 38(4): 1081–1103

[22]

Farina S C, Adams P J, Pandis S N. (2010). Modeling global secondary organic aerosol formation and processing with the volatility basis set: implications for anthropogenic secondary organic aerosol. Journal of Geophysical Research: Atmospheres, 115(D9): D09202

[23]

Farley R, Zhou S, Collier S, Jiang W Q, Onasch T B, Shilling J E, Kleinman L, Sedlacek III A J, Zhang Q. (2025). Chemical evolution of biomass burning aerosols across wildfire plumes in the Western U.S.: from near-source to regional scales. ACS ES&T Air, 2(4): 677–691

[24]

Feng Y, Ramanathan V, Kotamarthi V R (2013). Brown carbon: a significant atmospheric absorber of solar radiation? Atmospheric Chemistry and Physics, 13(17): 8607–8621

[25]

Feng Y, Wang H, Rasch P J, Zhang K, Lin W, Tang Q, Xie S, Hamilton D S, Mahowald N, Yu H. (2022). Global dust cycle and direct radiative effect in E3SM version 1: impact of increasing model resolution. Journal of Advances in Modeling Earth Systems, 14(7): e2021MS002909

[26]

Gao Y, Zhang M, Liu Z, Wang L, Wang P, Xia X, Tao M, Zhu L. (2015). Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog–haze event over the North China Plain. Atmospheric Chemistry and Physics, 15(8): 4279–4295

[27]

Gao Y Q, Wang S Y, Zhang Z L, Yu W X, Wang S, Zhu S Q, Wang P, Li Y, Sun Y L, Zhang H L. (2024). Response of warm season secondary pollutants to emissions and meteorology in the North China Plain region during 2018–2022. Atmospheric and Oceanic Science Letters, 17(4): 100495

[28]

Goldberg D L, Tao M D K, Kerr G H, Ma S Q, Tong D Q, Fiore A M, Dickens A F, Adelman Z E, Anenberg S C. (2024). Evaluating the spatial patterns of U.S. urban NOx emissions using TROPOMI NO2. Remote Sensing of Environment, 300: 113917

[29]

Goto D, Takemura T, Nakajima T. (2008). Importance of global aerosol modeling including secondary organic aerosol formed from monoterpene. Journal of Geophysical Research: Atmospheres, 113(D7): D07205

[30]

Griffin R J, Cocker III D R, Flagan R C, Seinfeld J H. (1999). Organic aerosol formation from the oxidation of biogenic hydrocarbons. Journal of Geophysical Research: Atmospheres, 104(D3): 3555–3567

[31]

Guenther A B, Jiang X, Heald C L, Sakulyanontvittaya T, Duhl T, Emmons L K, Wang X. (2012). The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5(6): 1471–1492

[32]

Guevara M, Petetin H, Jorba O, Denier van der Gon H, Kuenen J, Super I, Jalkanen J P, Majamäki E, Johansson L, Peuch V H. . (2022). European primary emissions of criteria pollutants and greenhouse gases in 2020 modulated by the COVID-19 pandemic disruptions. Earth System Science Data, 14(6): 2521–2552

[33]

Hammer M S, van Donkelaar A, Li C, Lyapustin A, Sayer A M, Hsu N C, Levy R C, Garay M J, Kalashnikova O V, Kahn R A. . (2020). Global estimates and long-term trends of fine particulate matter concentrations (1998–2018). Environmental Science & Technology, 54(13): 7879–7890

[34]

Harder P, Watson-Parris D, Stier P, Strassel D, Gauger N R, Keuper J. (2022). Physics-informed learning of aerosol microphysics. Environmental Data Science, 1: e20

[35]

Hasekamp O P, Fu G L, Rusli S P, Wu L H, Di Noia A, de Brugh J A, Landgraf J, Martijn Smit J, Rietjens J, Van Amerongen A. (2019). Aerosol measurements by SPEXone on the NASA PACE mission: expected retrieval capabilities. Journal of Quantitative Spectroscopy and Radiative Transfer, 227: 170–184

[36]

Haywood J, Boucher O. (2000). Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Reviews of Geophysics, 38(4): 513–543

[37]

He X L, Li Y P, Liu S M, Xu T R, Chen F, Li Z H, Zhang Z, Liu R, Song L S, Xu Z W. . (2023). Improving regional climate simulations based on a hybrid data assimilation and machine learning method. Hydrology and Earth System Sciences, 27(7): 1583–1606

[38]

Heald C L, Ridley D A, Kroll J H, Barrett S R H, Cady-Pereira K E, Alvarado M J, Holmes C D. (2014). Contrasting the direct radiative effect and direct radiative forcing of aerosols. Atmospheric Chemistry and Physics, 14(11): 5513–5527

[39]

HickmanS H MKelpMGriffiths P TDoerksenKMiyazakiKPennington E AKorenGIglesias-SuarezFSchultz M GChangK L, . (2025). Applications of machine learning and artificial intelligence in tropospheric ozone research. EGU Sphere [preprint], https://doi.org/10.5194/egusphere-2024-3739

[40]

Hodnebrog Ø, Myhre G, Jouan C, Andrews T, Forster P M, Jia H L, Loeb N G, Olivié D J L, Paynter D, Quaas J. . (2024). Recent reductions in aerosol emissions have increased Earth’s energy imbalance. Communications Earth & Environment, 5(1): 166

[41]

Hoesly R M, Smith S J, Feng L Y, Klimont Z, Janssens-Maenhout G, Pitkanen T, Seibert J J, Vu L, Andres R J, Bolt R M. . (2018). Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development, 11(1): 369–408

[42]

Hoffmann T, Odum J R, Bowman F, Collins D, Klockow D, Flagan R C, Seinfeld J H. (1997). Formation of organic aerosols from the oxidation of biogenic hydrocarbons. Journal of Atmospheric Chemistry, 26(2): 189–222

[43]

Hu W W, Hu M, Hu W, Jimenez J L, Yuan B, Chen W T, Wang M, Wu Y S, Chen C, Wang Z B. . (2016). Chemical composition, sources, and aging process of submicron aerosols in Beijing: contrast between summer and winter. Journal of Geophysical Research: Atmospheres, 121(4): 1955–1977

[44]

Huang X, Ding A J. (2021). Aerosol as a critical factor causing forecast biases of air temperature in global numerical weather prediction models. Science Bulletin, 66(18): 1917–1924

[45]

Huang X, Song Y, Zhao C, Cai X H, Zhang H S, Zhu T. (2015). Direct radiative effect by multicomponent aerosol over China. Journal of Climate, 28(9): 3472–3495

[46]

Jacobson M Z. (2001). Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. Journal of Geophysical Research: Atmospheres, 106(D2): 1551–1568

[47]

Jana S, Gogoi M M, Babu S S. (2024). Change in precipitation pattern over South Asia in response to the trends in regional warming and free-tropospheric aerosol loading. Scientific Reports, 14(1): 14528

[48]

Jia H L, Ma X Y, Yu F Q, Quaas J. (2021). Significant underestimation of radiative forcing by aerosol–cloud interactions derived from satellite-based methods. Nature Communications, 12(1): 3649

[49]

Jia Y C, Andersen H, Cermak J. (2024). Analysis of the cloud fraction adjustment to aerosols and its dependence on meteorological controls using explainable machine learning. Atmospheric Chemistry and Physics, 24(22): 13025–13045

[50]

Jo D S, Park R J, Lee S, Kim S W, Zhang X L. (2016). A global simulation of brown carbon: implications for photochemistry and direct radiative effect. Atmospheric Chemistry and Physics, 16(5): 3413–3432

[51]

Johnson B T, Shine K P, Forster P M. (2004). The semi‐direct aerosol effect: impact of absorbing aerosols on marine stratocumulus. Quarterly Journal of the Royal Meteorological Society, 130(599): 1407–1422

[52]

Judt F. (2020). Atmospheric predictability of the tropics, middle latitudes, and polar regions explored through global storm-resolving simulations. Journal of the Atmospheric Sciences, 77(1): 257–276

[53]

Kahn R A, Andrews E, Brock C A, Chin M, Feingold G, Gettelman A, Levy R C, Murphy D M, Nenes A, Pierce J R. . (2023). Reducing aerosol forcing uncertainty by combining models with satellite and within-the-atmosphere observations: a three-way street. Reviews of Geophysics, 61(2): e2022RG000796

[54]

Kirkby J, Duplissy J, Sengupta K, Frege C, Gordon H, Williamson C, Heinritzi M, Simon M, Yan C, Almeida J. . (2016). Ion-induced nucleation of pure biogenic particles. Nature, 533(7604): 521–526

[55]

Kok J F, Storelvmo T, Karydis V A, Adebiyi A A, Mahowald N M, Evan A T, He C L, Leung D M. (2023). Mineral dust aerosol impacts on global climate and climate change. Nature Reviews Earth & Environment, 4(2): 71–86

[56]

Kristiansen N I, Stohl A, Wotawa G. (2012). Atmospheric removal times of the aerosol-bound radionuclides 137Cs and 131I measured after the Fukushima Dai-ichi nuclear accident: a constraint for air quality and climate models. Atmospheric Chemistry and Physics, 12(22): 10759–10769

[57]

Kroll J H, Seinfeld J H. (2008). Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere. Atmospheric Environment, 42(16): 3593–3624

[58]

Kuenen J, Dellaert S, Visschedijk A, Jalkanen J P, Super I, Denier van der Gon H. (2022). CAMS-REG-v4: a state-of-the-art high-resolution European emission inventory for air quality modelling. Earth System Science Data, 14(2): 491–515

[59]

Kurokawa J, Ohara T. (2020). Long-term historical trends in air pollutant emissions in Asia: Regional Emission inventory in ASia (REAS) version 3. Atmospheric Chemistry and Physics, 20(21): 12761–12793

[60]

LangY WZhang JZhaoJGongY HHanT DengX QLiu Y Q (2025). Mechanisms and quantification: how anthropogenic aerosols weaken the East Asian summer monsoon. npj Climate and Atmospheric Science, 8(1): 13

[61]

Lee H J, Aiona P K, Laskin A, Laskin J, Nizkorodov S A. (2014). Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon. Environmental Science & Technology, 48(17): 10217–10226

[62]

Li J, Carlson B E, Yung Y L, Lv D R, Hansen J, Penner J E, Liao H, Ramaswamy V, Kahn R A, Zhang P. . (2022). Scattering and absorbing aerosols in the climate system. Nature Reviews Earth & Environment, 3(6): 363–379

[63]

Li L L, Mahowald N M, Miller R L, Pérez García-Pando C, Klose M, Hamilton D S, Gonçalves Ageitos M, Ginoux P, Balkanski Y, Green R O. . (2021). Quantifying the range of the dust direct radiative effect due to source mineralogy uncertainty. Atmospheric Chemistry and Physics, 21(5): 3973–4005

[64]

Li M, Zhang Q, Kurokawa J I, Woo J H, He K B, Lu Z F, Ohara T, Song Y, Streets D G, Carmichael G R. . (2017). MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmospheric Chemistry and Physics, 17(2): 935–963

[65]

Li Z Q, Lau W K M, Ramanathan V, Wu G, Ding Y, Manoj M G, Liu J, Qian Y, Li J, Zhou T. . (2016). Aerosol and monsoon climate interactions over Asia. Reviews of Geophysics, 54(4): 866–929

[66]

Li Z Q, Niu F, Fan J W, Liu Y G, Rosenfeld D, Ding Y N. (2011). Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nature Geoscience, 4(12): 888–894

[67]

Liu J Q, Xing J. (2023). Identifying contributors to PM2.5 simulation biases of chemical transport model using fully connected neural networks. Journal of Advances in Modeling Earth Systems, 15(2): e2021MS002898

[68]

LiuPLiuY X HuangQ SChao X YZhongM RYinJ YZhangX W LiL FKang X YChenZ, . (2025). Sulfate formation through copper-catalyzed SO2 oxidation by NO2 at aerosol surfaces. npj Climate and Atmospheric Science, 8(1): 57

[69]

Liu X, Ma P L, Wang H, Tilmes S, Singh B, Easter R C, Ghan S J, Rasch P J. (2016). Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geoscientific Model Development, 9(2): 505–522

[70]

López-Romero J M, Montávez J P, Jerez S, Lorente-Plazas R, Palacios-Peña L, Jiménez-Guerrero P. (2021). Precipitation response to aerosol–radiation and aerosol–cloud interactions in regional climate simulations over Europe. Atmospheric Chemistry and Physics, 21(1): 415–430

[71]

Lu Q Y, Murphy B N, Qin M M, Adams P J, Zhao Y L, Pye H O T, Efstathiou C, Allen C, Robinson A L. (2020). Simulation of organic aerosol formation during the CalNex study: updated mobile emissions and secondary organic aerosol parameterization for intermediate-volatility organic compounds. Atmospheric Chemistry and Physics, 20(7): 4313–4332

[72]

Ma P L, Rasch P J, Wang M H, Wang H L, Ghan S J, Easter R C, Gustafson Jr W I, Liu X H, Zhang Y Y, Ma H Y (2015). How does increasing horizontal resolution in a global climate model improve the simulation of aerosol-cloud interactions? Geophysical Research Letters, 42(12): 5058–5065

[73]

Ma W, Feng Z M, Chen X, Xia M, Liu Y F, Zhang Y S, Liu Y, Wang Y Z, Zheng F X, Hua C J. . (2025a). Overlooked significance of reactive chlorines in the reacted loss of VOCs and the formation of O3 and SOA. Environmental Science & Technology, 59(12): 6155–6166

[74]

Ma X X, Liu H N, Peng Z. (2025b). Improving WRF-Chem PM2.5 predictions by combining data assimilation and deep-learning-based bias correction. Environment International, 195: 109199

[75]

Malavelle F F, Haywood J M, Jones A, Gettelman A, Clarisse L, Bauduin S, Allan R P, Karset I H H, Kristjánsson J E, Oreopoulos L. . (2017). Strong constraints on aerosol–cloud interactions from volcanic eruptions. Nature, 546(7659): 485–491

[76]

Matus A V, L'ecuyer T S, Henderson D S. (2019). New estimates of aerosol direct radiative effects and forcing from A-train satellite observations. Geophysical Research Letters, 46(14): 8338–8346

[77]

Mccoy D T, Bender F A M, Mohrmann J K C, Hartmann D L, Wood R, Grosvenor D P. (2017). The global aerosol-cloud first indirect effect estimated using MODIS, MERRA, and AeroCom. Journal of Geophysical Research: Atmospheres, 122(3): 1779–1796

[78]

Mcdonald B C, De Gouw J A, Gilman J B, Jathar S H, Akherati A, Cappa C D, Jimenez J L, Lee-Taylor J, Hayes P L, Mckeen S A. . (2018). Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science, 359(6377): 760–764

[79]

Mcduffie E E, Martin R V, Spadaro J V, Burnett R, Smith S J, O’rourke P, Hammer M S, van Donkelaar A, Bindle L, Shah V. . (2021). Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nature Communications, 12(1): 3594

[80]

McMurry P H. (2000). A review of atmospheric aerosol measurements. Atmospheric Environment, 34(12−14): 1959–1999

[81]

Miltenberger A K, Field P R, Hill A A, Rosenberg P, Shipway B J, Wilkinson J M, Scovell R, Blyth A M. (2018a). Aerosol–cloud interactions in mixed-phase convective clouds—Part 1: aerosol perturbations. Atmospheric Chemistry and Physics, 18(5): 3119–3145

[82]

Miltenberger A K, Field P R, Hill A A, Shipway B J, Wilkinson J M. (2018b). Aerosol–cloud interactions in mixed-phase convective clouds—Part 2: meteorological ensemble. Atmospheric Chemistry and Physics, 18(14): 10593–10613

[83]

Moosmüller H, Chakrabarty R K, Arnott W P. (2009). Aerosol light absorption and its measurement: a review. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(11): 844–878

[84]

Ning A, Shen J W, Zhao B, Wang S X, Cai R L, Jiang J K, Yan C, Fu X, Zhang Y H, Li J. . (2024). Overlooked significance of iodic acid in new particle formation in the continental atmosphere. Proceedings of the National Academy of Sciences, 121(31): e2404595121

[85]

Nousiainen T. (2009). Optical modeling of mineral dust particles: a review. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(14−16): 1261–1279

[86]

Odum J R, Hoffmann T, Bowman F, Collins D, Flagan R C, Seinfeld J H. (1996). Gas/particle partitioning and secondary organic aerosol yields. Environmental Science & Technology, 30(8): 2580–2585

[87]

Olenius T, Riipinen I. (2017). Molecular-resolution simulations of new particle formation: evaluation of common assumptions made in describing nucleation in aerosol dynamics models. Aerosol Science and Technology, 51(4): 397–408

[88]

Peng J F, Hu M, Shang D J, Wu Z J, Du Z F, Tan T Y, Wang Y N, Zhang F, Zhang R Y. (2021). Explosive secondary aerosol formation during severe haze in the North China Plain. Environmental Science & Technology, 55(4): 2189–2207

[89]

Pennington E A, Seltzer K M, Murphy B N, Qin M M, Seinfeld J H, Pye H O T. (2021). Modeling secondary organic aerosol formation from volatile chemical products. Atmospheric Chemistry and Physics, 21(24): 18247–18261

[90]

Perkins W A, Brenowitz N D, Bretherton C S, Nugent J M. (2024). Emulation of cloud microphysics in a climate model. Journal of Advances in Modeling Earth Systems, 16(4): e2023MS003851

[91]

Pöschl U. (2005). Atmospheric aerosols: composition, transformation, climate and health effects. Angewandte Chemie International Edition, 44(46): 7520–7540

[92]

Pun B K, Seigneur C, Lohman K. (2006). Modeling secondary organic aerosol formation via multiphase partitioning with molecular data. Environmental Science & Technology, 40(15): 4722–4731

[93]

Pun V C, Kazemiparkouhi F, Manjourides J, Suh H H. (2017). Long-term PM2.5 exposure and respiratory, cancer, and cardiovascular mortality in older US adults. American Journal of Epidemiology, 186(8): 961–969

[94]

Qiu Y L, Liao H, Zhang R J, Hu J L. (2017). Simulated impacts of direct radiative effects of scattering and absorbing aerosols on surface layer aerosol concentrations in China during a heavily polluted event in February 2014. Journal of Geophysical Research: Atmospheres, 122(11): 5955–5975

[95]

Quaas J, Boucher O, Bellouin N, Kinne S. (2008). Satellite-based estimate of the direct and indirect aerosol climate forcing. Journal of Geophysical Research: Atmospheres, 113(D5): D05204

[96]

Ran Q, Moore J, Dong T Y, Lee S Y, Dong W J. (2023). Statistical bias correction for CESM-simulated PM2.5. Environmental Research Communications, 5(10): 101001

[97]

Rap A, Scott C E, Spracklen D V, Bellouin N, Forster P M, Carslaw K S, Schmidt A, Mann G. (2013). Natural aerosol direct and indirect radiative effects. Geophysical Research Letters, 40(12): 3297–3301

[98]

Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais N. (2019). Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743): 195–204

[99]

Rosenfeld D, Andreae M O, Asmi A, Chin M, De Leeuw G, Donovan D P, Kahn R, Kinne S, Kivekäs N, Kulmala M. . (2014). Global observations of aerosol-cloud-precipitation-climate interactions. Reviews of Geophysics, 52(4): 750–808

[100]

Sasidharan S, He Y C, Akherati A, Li Q, Li W H, Cocker D, Mcdonald B C, Coggon M M, Seltzer K M, Pye H O T. . (2023). Secondary organic aerosol formation from volatile chemical product emissions: model parameters and contributions to anthropogenic aerosol. Environmental Science & Technology, 57(32): 11891–11902

[101]

Satoh M, Stevens B, Judt F, Khairoutdinov M, Lin S J, Putman W M, Düben P. (2019). Global cloud-resolving models. Current Climate Change Reports, 5(3): 172–184

[102]

Sayeed A, Gupta P, Henderson B, Kondragunta S, Zhang H, Liu Y. (2025). GOES-R PM2.5 evaluation and bias correction: a deep learning approach. Earth and Space Science, 12(2): e2024EA004012

[103]

Schobesberger S, Junninen H, Bianchi F, Lönn G, Ehn M, Lehtipalo K, Dommen J, Ehrhart S, Ortega I K, Franchin A. . (2013). Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proceedings of the National Academy of Sciences, 110(43): 17223–17228

[104]

SeinfeldJ HPandis S N (2016). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 3rd ed. Hoboken: John Wiley & Sons

[105]

Shan Y P, Fan J W, Zhang K, Shpund J, Terai C, Zhang G J, Song X L, Chen C C J, Lin W Y, Liu X H. . (2024). Improving aerosol radiative forcing and climate in E3SM: impacts of new cloud microphysics and improved wet removal treatments. Journal of Advances in Modeling Earth Systems, 16(8): e2023MS004059

[106]

Shang D J, Peng J F, Guo S, Wu Z J, Hu M. (2021). Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei Region, China. Frontiers of Environmental Science & Engineering, 15(2): 34

[107]

Shiraiwa M, Yee L D, Schilling K A, Loza C L, Craven J S, Zuend A, Ziemann P J, Seinfeld J H. (2013). Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation. Proceedings of the National Academy of Sciences, 110(29): 11746–11750

[108]

Shrivastava M, Cappa C D, Fan J W, Goldstein A H, Guenther A B, Jimenez J L, Kuang C, Laskin A, Martin S T, Ng N L. . (2017). Recent advances in understanding secondary organic aerosol: implications for global climate forcing. Reviews of Geophysics, 55(2): 509–559

[109]

Singh D, Choi Y, Park J, Salman A K, Sayeed A, Song C H. (2024). Deep-BCSI: a deep learning-based framework for bias correction and spatial imputation of PM2.5 concentrations in South Korea. Atmospheric Research, 301: 107283

[110]

Sobel A H, Camargo S J, Hall T M, Lee C Y, Tippett M K, Wing A A. (2016). Human influence on tropical cyclone intensity. Science, 353(6296): 242–246

[111]

Song Q Q, Zhang Z B, Yu H B, Kato S, Yang P, Colarco P, Remer L A, Ryder C L. (2018). Net radiative effects of dust in the tropical North Atlantic based on integrated satellite observations and in situ measurements. Atmospheric Chemistry and Physics, 18(15): 11303–11322

[112]

Soulie A, Granier C, Darras S, Zilbermann N, Doumbia T, Guevara M, Jalkanen J P, Keita S, Liousse C, Crippa M. . (2024). Global anthropogenic emissions (CAMS-GLOB-ANT) for the Copernicus Atmosphere Monitoring Service simulations of air quality forecasts and reanalyses. Earth System Science Data, 16(5): 2261–2279

[113]

Stevens B, Satoh M, Auger L, Biercamp J, Bretherton C S, Chen X, Düben P, Judt F, Khairoutdinov M, Klocke D. . (2019). DYAMOND: the DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. Progress in Earth and Planetary Science, 6(1): 61

[114]

Su T N, Li Z Q, Henao N R, Luan Q Z, Yu F Q. (2024). Constraining effects of aerosol-cloud interaction by accounting for coupling between cloud and land surface. Science Advances, 10(21): eadl5044

[115]

Sun H, Pan Z T, Liu X D. (2012). Numerical simulation of spatial‐temporal distribution of dust aerosol and its direct radiative effects on East Asian climate. Journal of Geophysical Research: Atmospheres, 117(D13): D13206

[116]

Sutherland B, Meskhidze N. (2025). Type-based assessment of aerosol direct radiative effects: a proof-of-concept using GEOS-Chem and CATCH. Atmospheric Research, 320: 108036

[117]

Tang I N. (1996). Chemical and size effects of hygroscopic aerosols on light scattering coefficients. Journal of Geophysical Research: Atmospheres, 101(D14): 19245–19250

[118]

Tang S Q, Fast J D, Zhang K, Hardin J C, Varble A C, Shilling J E, Mei F, Zawadowicz M A, Ma P L. (2022). Earth System Model Aerosol–Cloud Diagnostics (ESMAC Diags) package, version 1: assessing E3SM aerosol predictions using aircraft, ship, and surface measurements. Geoscientific Model Development, 15(10): 4055–4076

[119]

Tegen I, Hollrig P, Chin M, Fung I, Jacob D, Penner J. (1997). Contribution of different aerosol species to the global aerosol extinction optical thickness: estimates from model results. Journal of Geophysical Research: Atmospheres, 102(D20): 23895–23915

[120]

Thongthammachart T, Araki S, Shimadera H, Matsuo T, Kondo A. (2022). Incorporating Light Gradient Boosting Machine to land use regression model for estimating NO2 and PM2.5 levels in Kansai region, Japan. Environmental Modelling & Software, 155: 105447

[121]

Thornhill G D, Collins W J, Kramer R J, Olivié D, Skeie R B, O'connor F M, Abraham N L, Checa-Garcia R, Bauer S E, Deushi M. . (2021). Effective radiative forcing from emissions of reactive gases and aerosols: a multi-model comparison. Atmospheric Chemistry and Physics, 21(2): 853–874

[122]

Tian C G, Yue X, Zhu J, Liao H, Yang Y, Lei Y D, Zhou X Y, Zhou H, Ma Y M, Cao Y. (2022). Fire-climate interactions through the aerosol radiative effect in a global chemistry-climate-vegetation model. Atmospheric Chemistry and Physics, 22(18): 12353–12366

[123]

Tilmes S, Hodzic A, Emmons L K, Mills M J, Gettelman A, Kinnison D E, Park M, Lamarque J F, Vitt F, Shrivastava M. . (2019). Climate forcing and trends of organic aerosols in the community earth system model (CESM2). Journal of Advances in Modeling Earth Systems, 11(12): 4323–4351

[124]

Tröstl J, Chuang W K, Gordon H, Heinritzi M, Yan C, Molteni U, Ahlm L, Frege C, Bianchi F, Wagner R. . (2016). The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature, 533(7604): 527–531

[125]

Twomey S. (1974). Pollution and the planetary albedo. Atmospheric Environment (1967), 8(12): 1251–1256

[126]

Twomey S A, Piepgrass M, Wolfe T L. (1984). An assessment of the impact of pollution on global cloud albedo. Tellus B: Chemical and Physical Meteorology, 36(5): 356–366

[127]

van der Werf G R, Randerson J T, Giglio L, Van Leeuwen T T, Chen Y, Rogers B M, Mu M Q, van Marle M J E, Morton D C, Collatz G J. . (2017). Global fire emissions estimates during 1997–2016. Earth System Science Data, 9(2): 697–720

[128]

van Donkelaar A, Hammer M S, Bindle L, Brauer M, Brook J R, Garay M J, Hsu N C, Kalashnikova O V, Kahn R A, Lee C. . (2021). Monthly global estimates of fine particulate matter and their uncertainty. Environmental Science & Technology, 55(22): 15287–15300

[129]

Velazquez-Garcia A, Crumeyrolle S, De Brito J F, Tison E, Bourrianne E, Chiapello I, Riffault V. (2023). Deriving composition-dependent aerosol absorption, scattering and extinction mass efficiencies from multi-annual high time resolution observations in Northern France. Atmospheric Environment, 298: 119613

[130]

Wang C G, Soden B J, Yang W C, Vecchi G A. (2021). Compensation between cloud feedback and aerosol-cloud interaction in CMIP6 models. Geophysical Research Letters, 48(4): e2020GL091024

[131]

Wang D D, Zhu B, Jiang Z H, Yang X Q, Zhu T. (2016). The impact of the direct effects of sulfate and black carbon aerosols on the subseasonal march of the East Asian subtropical summer monsoon. Journal of Geophysical Research: Atmospheres, 121(6): 2610–2625

[132]

Wang F, Gao M. (2025). Reduced aerosols and intensified summertime rainfall in India during the pandemic suggest potentially more amplified precipitation in the future. Environmental Research Letters, 20(2): 024038

[133]

Wang F, Lu Z F, Lin G X, Carmichael G R, Gao M. (2025). Brown carbon in East Asia: seasonality, sources, and influences on regional climate and air quality. ACS Environmental Au, 5(1): 128–137

[134]

Wang F, Xu Y Y, Patel P N, Gautam R, Gao M, Liu C, Ding Y H, Chen H S, Yang Y J, Zhou Y Y. . (2024). Arctic amplification–induced decline in West and South Asia dust warrants stronger antidesertification toward carbon neutrality. Proceedings of the National Academy of Sciences, 121(14): e2317444121

[135]

Wang H, Easter R C, Rasch P J, Wang M, Liu X, Ghan S J, Qian Y, Yoon J H, Ma P L, Vinoj V. (2013). Sensitivity of remote aerosol distributions to representation of cloud–aerosol interactions in a global climate model. Geoscientific Model Development, 6(3): 765–782

[136]

Wang H C, Wang H L, Lu X, Lu K D, Zhang L, Tham Y J, Shi Z B, Aikin K, Fan S J, Brown S S. . (2023a). Increased night-time oxidation over China despite widespread decrease across the globe. Nature Geoscience, 16(3): 217–223

[137]

Wang J B, Wang J P, Nie W, Chi X G, Ge D F, Zhu C J, Wang L, Li Y Y, Huang X, Qi X M. . (2023b). Response of organic aerosol characteristics to emission reduction in Yangtze River Delta region. Frontiers of Environmental Science & Engineering, 17(9): 114

[138]

Wang W, An X Q, Li Q Y, Geng Y A, Yu H M, Zhou X Y. (2022). Optimization research on air quality numerical model forecasting effects based on deep learning methods. Atmospheric Research, 271: 106082

[139]

Watson-Parris D, Bellouin N, Deaconu L T, Schutgens N A J, Yoshioka M, Regayre L A, Pringle K J, Johnson J S, Smith C J, Carslaw K S. . (2020). Constraining uncertainty in aerosol direct forcing. Geophysical Research Letters, 47(9): e2020GL087141

[140]

Wei J, Li Z Q, Lyapustin A, Sun L, Peng Y R, Xue W H, Su T N, Cribb M. (2021). Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications. Remote Sensing of Environment, 252: 112136

[141]

Wei J, Li Z Q, Lyapustin A, Wang J, Dubovik O, Schwartz J, Sun L, Li C, Liu S, Zhu T. (2023). First close insight into global daily gapless 1 km PM2.5 pollution, variability, and health impact. Nature Communications, 14(1): 8349

[142]

Wei X D, Hu J L, Liu C, Xie X D, Yin J J, Guo S, Hu M, Peng J F, Wang H J. (2024). Advanced modeling of the absorption enhancement of black carbon particles in chamber experiments by considering the morphology and coating thickness. Frontiers of Environmental Science & Engineering, 18(9): 116

[143]

WHO(2016). Ambient Air Pollution: a Global Assessment of Exposure and Burden of Disease. Geneva: World Health Organization

[144]

Wu J, Fu C B, Xu Y Y, Tang J P, Han Z W, Zhang R J. (2009). Effects of total aerosol on temperature and precipitation in East Asia. Climate Research, 40(1): 75–87

[145]

WuY TLiang Y CPrevidiMPolvaniL MEnglandM R SigmondMLo M H (2024). Stronger Arctic amplification from anthropogenic aerosols than from greenhouse gases. npj Climate and Atmospheric Science, 7(1): 142

[146]

Xing Z Y, Xiong Y, Du K. (2020). Source apportionment of airborne particulate matters over the Athabasca oil sands region: inter-comparison between PMF modeling and ground-based remote sensing. Atmospheric Environment, 221: 117103

[147]

XiongYDu KHuangY X (2024). One-third of global population at cancer risk due to elevated volatile organic compounds levels. npj Climate and Atmospheric Science, 7(1): 54

[148]

Xiong Y, Partha D, Prime N, Smith S J, Mariscal N, Salah H, Huang Y X. (2022). Long-term trends of impacts of global gasoline and diesel emissions on ambient PM2.5 and O3 pollution and the related health burden for 2000–2015. Environmental Research Letters, 17(10): 104042

[149]

Xiong Y, Zhou J B, Schauer J J, Yu W Y, Hu Y. (2017). Seasonal and spatial differences in source contributions to PM2.5 in Wuhan, China. Science of the Total Environment, 577: 155–165

[150]

XuX ZSun X YHanWZhongX HChenL GaoZ QLi H (2025). FuXi-DA: a generalized deep learning data assimilation framework for assimilating satellite observations. npj Climate and Atmospheric Science, 8(1): 156

[151]

Xue J, Wang F T, Zhang K, Zhai H H, Jin D, Duan Y S, Yaluk E, Wang Y J, Huang L, Li Y W. . (2023). Elucidate long-term changes of ozone in Shanghai based on an integrated machine learning method. Frontiers of Environmental Science & Engineering, 17(11): 138

[152]

Xue W H, Zhang J, Deng X Q, Tian Y L. (2024). Responses of vegetation photosynthetic processes to aerosol-induced direct radiative effect in China. Atmospheric Environment, 329: 120557

[153]

Yan J P, Wang X P, Gong P, Wang C F, Cong Z Y. (2018). Review of brown carbon aerosols: recent progress and perspectives. Science of The Total Environment, 634: 1475–1485

[154]

Yao M, Zhao Y, Hu M H, Huang D D, Wang Y C, Yu J Z, Yan N Q. (2019). Multiphase reactions between secondary organic aerosol and sulfur dioxide: kinetics and contributions to sulfate formation and aerosol aging. Environmental Science & Technology Letters, 6(12): 768–774

[155]

Yu F Q, Ma X Y, Luo G. (2013). Anthropogenic contribution to cloud condensation nuclei and the first aerosol indirect climate effect. Environmental Research Letters, 8(2): 024029

[156]

Yu Q R, Huang Y. (2023). Distributions and trends of the aerosol direct radiative effect in the 21st century: aerosol and environmental contributions. Journal of Geophysical Research: Atmospheres, 128(4): e2022JD037716

[157]

Zelinka M D, Andrews T, Forster P M, Taylor K E. (2014). Quantifying components of aerosol-cloud-radiation interactions in climate models. Journal of Geophysical Research: Atmospheres, 119(12): 7599–7615

[158]

Zeng L H, Zhang A X, Wang Y H, Wagner N L, Katich J M, Schwarz J P, Schill G P, Brock C, Froyd K D, Murphy D M. . (2020). Global measurements of brown carbon and estimated direct radiative effects. Geophysical Research Letters, 47(13): e2020GL088747

[159]

Zhang A X, Wang Y H, Zhang Y Z, Weber R J, Song Y J, Ke Z M, Zou Y F. (2020a). Modeling the global radiative effect of brown carbon: a potentially larger heating source in the tropical free troposphere than black carbon. Atmospheric Chemistry and Physics, 20(4): 1901–1920

[160]

Zhang H, Sharma G, Dhawan S, Dhanraj D, Li Z C, Biswas P. (2020b). Comparison of discrete, discrete-sectional, modal and moment models for aerosol dynamics simulations. Aerosol Science and Technology, 54(7): 739–760

[161]

Zhang Q, Zheng Y X, Tong D, Shao M, Wang S X, Zhang Y H, Xu X D, Wang J N, He H, Liu W Q. . (2019). Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 116(49): 24463–24469

[162]

Zhang S, Gao Y N, Xu X B, Chen L Y, Wu C, Li Z, Li R J, Xiao B Y, Liu X D, Li R. . (2024). Heterogeneous formation and light absorption of secondary organic aerosols from acetone photochemical reactions: remarkably enhancing effects of seeds and ammonia. Atmospheric Chemistry and Physics, 24(24): 14177–14190

[163]

Zhang Y W, Fan J W, Li Z Q, Rosenfeld D. (2021). Impacts of cloud microphysics parameterizations on simulated aerosol–cloud interactions for deep convective clouds over Houston. Atmospheric Chemistry and Physics, 21(4): 2363–2381

[164]

Zhao C F, Yang Y K, Fan H, Huang J P, Fu Y F, Zhang X Y, Kang S C, Cong Z Y, Letu H, Menenti M. (2020). Aerosol characteristics and impacts on weather and climate over the Tibetan Plateau. National Science Review, 7(3): 492–495

[165]

Zhao Y, Xia Y M, Zhou Y D. (2018). Assessment of a high-resolution NOx emission inventory using satellite observations: a case study of southern Jiangsu, China. Atmospheric Environment, 190: 135–145

[166]

Zheng B, Tong D, Li M, Liu F, Hong C P, Geng G N, Li H Y, Li X, Peng L Q, Qi J. . (2018). Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmospheric Chemistry and Physics, 18(19): 14095–14111

[167]

Zheng G J, Duan F K, Su H, Ma Y L, Cheng Y, Zheng B, Zhang Q, Huang T, Kimoto T, Chang D. . (2015). Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions. Atmospheric Chemistry and Physics, 15(6): 2969–2983

[168]

Zhu J, Che H Z, Xia X G, Yu X N, Wang J H. (2019). Analysis of water vapor effects on aerosol properties and direct radiative forcing in China. Science of The Total Environment, 650: 257–266

[169]

Ziemann P J, Atkinson R. (2012). Kinetics, products, and mechanisms of secondary organic aerosol formation. Chemical Society Reviews, 41(19): 6582–6605

RIGHTS & PERMISSIONS

Higher Education Press 2025

AI Summary AI Mindmap
PDF (3833KB)

945

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/