Impact of different DNA enrichment methods on 16S rRNA amplicon based and nanopore metagenomic sequencing based microbial investigation of low biomass samples

Miao Zhang , Changling Zhang , Zhanwen Cheng , Bixi Zhao , Yuxi Yan , Zhiyun Deng , Luyang Zhao , Yu Xia

Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (10) : 140

PDF (4834KB)
Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (10) : 140 DOI: 10.1007/s11783-025-2060-1
RESEARCH ARTICLE

Impact of different DNA enrichment methods on 16S rRNA amplicon based and nanopore metagenomic sequencing based microbial investigation of low biomass samples

Author information +
History +
PDF (4834KB)

Abstract

The efficacy of DNA sequencing, particularly long reads nanopore sequencing, is critically dependent on the amount and quality of the input DNA. However, extracting high concentrations of DNA from low biomass samples, especially from solid matrices, presents significant challenges, this limitation not only substantially hampers the scope of environmental microbiology studies but also makes enhancing DNA yield indispensable in many instances. Therefore, in this study, we systematically evaluated the impact of four different DNA enrichment methods on both amplicon and metagenomic community analyses of solid-phase, low-biomass samples: permafrost soil and biofilm of sand filter. These methods include multiple displacement amplification (MDA), centrifugal filtration (CF), freeze vacuum drying at (FVD) as well as vacuum centrifugal at 35, 45, and 60 °C (namely VC35, VC45, VC60). Our results indicate that FVD was the most effective for increasing DNA concentration, while VC methods best preserved DNA fragment length. In contrast, the widely used MDA and CF methods exhibited biases, preferentially enriching low-GC content sequences, which affected both assembly and annotation outcomes. Metagenomic assembly from MDA and CF samples was suboptimal, with fewer contigs and no middle quality MAGs recovered compared to other methods. Community composition analysis revealed significant shifts across all enrichment methods, with Sphingomonas and Sphingorhabdus genera could be obviously enriched. These findings highlight the necessity and importance of carefully selecting DNA enrichment methods to ensure reliable metagenomic investigation of low-biomass environmental samples.

Graphical abstract

Keywords

DNA enrichment / Low biomass samples / Nanopore sequencing / Community composition / Metagenomic assembly

Highlight

● FVD was most effective in increasing DNA concentration in low biomass samples.

● VC methods best preserved the length of DNA fragments.

● MDA and CF methods preferentially enrich low-GC sequences.

Sphingomonas and Sphingorhabdus could be obviously enriched by all methods.

Cite this article

Download citation ▾
Miao Zhang, Changling Zhang, Zhanwen Cheng, Bixi Zhao, Yuxi Yan, Zhiyun Deng, Luyang Zhao, Yu Xia. Impact of different DNA enrichment methods on 16S rRNA amplicon based and nanopore metagenomic sequencing based microbial investigation of low biomass samples. Front. Environ. Sci. Eng., 2025, 19(10): 140 DOI:10.1007/s11783-025-2060-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ambers A, Wiley R, Novroski N, Budowle B. (2018). Direct PCR amplification of DNA from human bloodstains, saliva, and touch samples collected with microFLOQ® swabs. Forensic Science International: Genetics, 32: 80–87

[2]

Binga E K, Lasken R S, Neufeld J D. (2008). Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology. The ISME Journal, 2(3): 233–241

[3]

Bowers R M, Kyrpides N C, Stepanauskas R, Harmon-Smith M, Doud D, Reddy T B K, Schulz F, Jarett J, Rivers A R, Eloe-Fadrosh E A. . (2017). Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nature Biotechnology, 35(8): 725–731

[4]

Brunet A, Salomé L, Rousseau P, Destainville N, Manghi M, Tardin C (2018). How does temperature impact the conformation of single DNA molecules below melting temperature? Nucleic Acids Research, 46(4): 2074–2081

[5]

Centurion V B, Campanaro S, Basile A, Treu L, Oliveira V M. (2022). Microbiome structure in biofilms from a volcanic island in Maritime Antarctica investigated by genome-centric metagenomics and metatranscriptomics. Microbiological Research, 265: 127197

[6]

Chen S F. (2023). Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta, 2(2): e107

[7]

Chen T T, Chen X, Zhang S S, Zhu J W, Tang B X, Wang A K, Dong L L, Zhang Z W, Yu C X, Sun Y L. . (2021). The genome sequence archive family: toward explosive data growth and diverse data types. Genomics Proteomics & Bioinformatics, 19(4): 578–583

[8]

Cheng Z W, Li X, Palomo A, Yang Q, Han L, Wu Z Q, Li Z Y, Zhang M, Chen L M, Zhao B X. . (2023). Virus impacted community adaptation in oligotrophic groundwater environment revealed by Hi-C coupled metagenomic and viromic study. Journal of Hazardous Materials, 458: 131944

[9]

Ciobanu D, Clum A, Ahrendt S, Andreopoulos W B, Salamov A, Chan S, Quandt C A, Foster B, Meier-Kolthoff J P, Tang Y T. . (2021). A single-cell genomics pipeline for environmental microbial eukaryotes. iScience, 24(4): 102290

[10]

CNCB-NGDC Members. (2022). Database resources of the national genomics data center, China national center for bioinformation in 2022. Nucleic Acids Research, 50(D1): D27–D38

[11]

De Coster W, Rademakers R. (2023). NanoPack2: population-scale evaluation of long-read sequencing data. Bioinformatics, 39(5): btad311

[12]

Desmyter S, De Cock G, Moulin S, Noël F. (2017). Organic extraction of bone lysates improves DNA purification with silica beads. Forensic Science International, 273: 96–101

[13]

Doran A E, Foran D R. (2014). Assessment and mitigation of DNA loss utilizing centrifugal filtration devices. Forensic Science International: Genetics, 13: 187–190

[14]

Dorey A, Howorka S. (2024). Nanopore DNA sequencing technologies and their applications towards single-molecule proteomics. Nature Chemistry, 16(3): 314–334

[15]

Edgar R C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10(10): 996–998

[16]

Espinosa E, Bautista R, Larrosa R, Plata O. (2024). Advancements in long-read genome sequencing technologies and algorithms. Genomics, 116(3): 110842

[17]

Ferrer I, Armstrong J, Capellari S, Parchi P, Arzberger T, Bell J, Budka H, Ströbel T, Giaccone G, Rossi G. . (2007). Effects of formalin fixation, paraffin embedding, and time of storage on DNA preservation in brain tissue: a BrainNet Europe study. Brain Pathology, 17(3): 297–303

[18]

Galicia-Andrés E, Escalona Y, Oostenbrink C, Tunega D, Gerzabek M H. (2021). Soil organic matter stabilization at molecular scale: the role of metal cations and hydrogen bonds. Geoderma, 401: 115237

[19]

He S X, Liu Y X, Fang S X, Li Y D, Weng T, Tian R, Yin Y J, Zhou D M, Yin B H, Wang Y J. . (2024). Solid-State nanopore DNA Sequencing: advances, challenges and prospects. Coordination Chemistry Reviews, 510: 215816

[20]

Hiramatsu K, Matsuda C, Masago K, Toriyama K, Sasaki E, Fujita Y, Haneda M, Ebi H, Shibata N, Hosoda W. (2023). Diagnostic utility of DNA integrity number as an indicator of sufficient DNA quality in next-generation sequencing-based genomic profiling. American Journal of Clinical Pathology, 160(3): 261–267

[21]

Kang L Y, Song Y T, Mackelprang R, Zhang D Y, Qin S Q, Chen L Y, Wu L W, Peng Y F, Yang Y H. (2024). Metagenomic insights into microbial community structure and metabolism in alpine permafrost on the Tibetan Plateau. Nature Communications, 15(1): 5920

[22]

Katevatis C, Fan A, Klapperich C M. (2017). Low concentration DNA extraction and recovery using a silica solid phase. PLoS One, 12(5): e0176848

[23]

Kolmogorov M, Bickhart D M, Behsaz B, Gurevich A, Rayko M, Shin S B, Kuhn K, Yuan J, Polevikov E, Smith T P L. . (2020). metaFlye: scalable long-read metagenome assembly using repeat graphs. Nature Methods, 17(11): 1103–1110

[24]

Kuhn R, Böllmann J, Krahl K, Bryant I M, Martienssen M. (2017). Comparison of ten different DNA extraction procedures with respect to their suitability for environmental samples. Journal of Microbiological Methods, 143: 78–86

[25]

Kwok K Y, Adami R C, Hester K C, Park Y, Thomas S, Rice K G. (2000). Strategies for maintaining the particle size of peptide DNA condensates following freeze-drying. International Journal of Pharmaceutics, 203(1−2): 81–88

[26]

Li X, Wu Z Q, Dang C Y, Zhang M, Zhao B X, Cheng Z W, Chen L M, Zhong Z F, Ye Y H, Xia Y. (2021). A metagenomic-based method to study hospital air dust resistome. Chemical Engineering Journal, 406: 126854

[27]

Li X, Zhang M, Dang C Y, Wu Z Q, Xia Y. (2023). In situ Nanopore sequencing reveals metabolic characteristics of the Qilian glacier meltwater microbiome. Environmental Science and Pollution Research, 30(35): 84805–84813

[28]

Mackelprang R, Burkert A, Haw M, Mahendrarajah T, Conaway C H, Douglas T A, Waldrop M P. (2017). Microbial survival strategies in ancient permafrost: insights from metagenomics. The ISME Journal, 11(10): 2305–2318

[29]

Maghini D G, Moss E L, Vance S E, Bhatt A S. (2021). Improved high-molecular-weight DNA extraction, nanopore sequencing and metagenomic assembly from the human gut microbiome. Nature Protocols, 16(1): 458–471

[30]

Marine R, McCarren C, Vorrasane V, Nasko D, Crowgey E, Polson S W, Wommack K E. (2014). Caught in the middle with multiple displacement amplification: the myth of pooling for avoiding multiple displacement amplification bias in a metagenome. Microbiome, 2(1): 3

[31]

Ospino M C, Engel K, Ruiz-Navas S, Binns W J, Doxey A C, Neufeld J D. (2024). Evaluation of multiple displacement amplification for metagenomic analysis of low biomass samples. ISME Communications, 4(1): ycae024

[32]

Pan S J, Zhao X M, Coelho L P. (2023). SemiBin2: self-supervised contrastive learning leads to better MAGs for short- and long-read sequencing. Bioinformatics, 39(S1): i21–i29

[33]

Picher Á J, Budeus B, Wafzig O, Krüger C, García-Gómez S, Martínez-Jiménez M I, Díaz-Talavera A, Weber D, Blanco L, Schneider A. (2016). TruePrime is a novel method for whole-genome amplification from single cells based on TthPrimPol. Nature Communications, 7: 13296

[34]

Pinard R, de Winter A, Sarkis G J, Gerstein M B, Tartaro K R, Plant R N, Egholm M, Rothberg J M, Leamon J H. (2006). Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing. BMC Genomics, 7(1): 216

[35]

Polson S W, Wilhelm S W, Wommack K E. (2011). Unraveling the viral tapestry (from inside the capsid out). The ISME Journal, 5(2): 165–168

[36]

Robin J D, Ludlow A T, LaRanger R, Wright W E, Shay J W. (2016). Comparison of DNA quantification methods for next generation sequencing. Scientific Reports, 6: 24067

[37]

Sánchez I, Betsou F, Mathieson W (2019). Does vacuum centrifugal concentration reduce yield or quality of nucleic acids extracted from FFPE biospecimens? Analytical Biochemistry, 566: 16–19

[38]

Satam H, Joshi K, Mangrolia U, Waghoo S, Zaidi G, Rawool S, Thakare R P, Banday S, Mishra A K, Das G. . (2023). Next-generation sequencing technology: current trends and advancements. Biology, 12(7): 997

[39]

Seville P C, Kellaway I W, Birchall J C. (2002). Preparation of dry powder dispersions for non-viral gene delivery by freeze-drying and spray-drying. The Journal of Gene Medicine, 4(4): 428–437

[40]

Sherier A J, Kieser R E, Novroski N M M, Wendt F R, King J L, Woerner A E, Ambers A, Garofano P, Budowle B. (2020). Copan microFLOQ® Direct Swab collection of bloodstains, saliva, and semen on cotton cloth. International Journal of Legal Medicine, 134(1): 45–54

[41]

Shokralla S, Spall J L, Gibson J F, Hajibabaei M. (2012). Next-generation sequencing technologies for environmental DNA research. Molecular Ecology, 21(8): 1794–1805

[42]

Sidore A M, Lan F, Lim S W, Abate A R. (2016). Enhanced sequencing coverage with digital droplet multiple displacement amplification. Nucleic Acids Research, 44(7): e66

[43]

Sobol M S, Kaster A K. (2023). Back to basics: a simplified improvement to multiple displacement amplification for microbial single-cell genomics. International Journal of Molecular Sciences, 24(5): 4270

[44]

Stepanauskas R, Fergusson E A, Brown J, Poulton N J, Tupper B, Labonté J M, Becraft E D, Brown J M, Pachiadaki M G, Povilaitis T. . (2017). Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nature Communications, 8(1): 84

[45]

Tang X T, Zhang M, Fang Z K, Yang Q, Zhang W, Zhou J X, Zhao B X, Fan T Y, Wang C Z, Zhang C L. . (2023). Changing microbiome community structure and functional potential during permafrost thawing on the Tibetan Plateau. FEMS Microbiology Ecology, 99(11): fiad117

[46]

Tringe S G, Rubin E M. (2005). Metagenomics: DNA sequencing of environmental samples. Nature Reviews Genetics, 6(11): 805–814

[47]

Vestergaard L K, Mikkelsen N S, Oliveira D V N P, Poulsen T S, Hoegdall E V. (2023). Rescue of low-yield DNA samples for next-generation sequencing using vacuum centrifugal concentration in a clinical workflow. Reports, 6(2): 23

[48]

Villette R, Autaa G, Hind S, Holm J B, Moreno-Sabater A, Larsen M. (2021). Refinement of 16S rRNA gene analysis for low biomass biospecimens. Scientific Reports, 11(1): 10741

[49]

Wang X Y, Liu Y P, Liu H N, Pan W J, Ren J, Zheng X M, Tan Y M, Chen Z, Deng Y, He N Y. . (2022). Recent advances and application of whole genome amplification in molecular diagnosis and medicine. MedComm, 3(1): e116

[50]

Wick R R, Holt K E. (2022). Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Computational Biology, 18(1): e1009802

[51]

Wu P, Feng J, Ju M X, Wu S H, Han W C, Wang M, Liao J Q, Zhao L F, Gao Y F, Zheng J. . (2024). Water filter: a rapid water environmental DNA collector in the field. Frontiers in Environmental Science, 12: 1415338

[52]

Xia Y, Li X, Wu Z Q, Nie C L, Cheng Z W, Sun Y H, Liu L, Zhang T. (2023). Strategies and tools in illumina and nanopore-integrated metagenomic analysis of microbiome data. iMeta, 2(1): e72

[53]

Zhang M, Zhao B X, Yan Y X, Cheng Z W, Li Z Y, Han L, Sun Y Q, Zheng Y, Xia Y. (2024). Comamonas-dominant microbial community in carbon poor aquitard sediments revealed by metagenomic-based growth rate investigation. Science of the Total Environment, 912: 169203

RIGHTS & PERMISSIONS

Higher Education Press 2025

AI Summary AI Mindmap
PDF (4834KB)

Supplementary files

FSE-25091-OF-ZM_suppl_1

439

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/