A global perspective on soil microplastic research: status, challenges, and suggestions

Chenzhe Fan , Jing Song , Chunhui Wang , Zhirong Liang , Gang Li

Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (10) : 133

PDF (3262KB)
Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (10) : 133 DOI: 10.1007/s11783-025-2053-0
REVIEW ARTICLE

A global perspective on soil microplastic research: status, challenges, and suggestions

Author information +
History +
PDF (3262KB)

Abstract

Soil microplastics (MPs) are a growing environmental concern with substantial implications for soil ecosystems, agricultural productivity, and human health. Extensive research has been conducted on the sources, transport, distribution, environmental risks, and toxic effects of soil MPs. However, research on soil MPs remains inconsistent and incomplete, and few reviews have provided a comprehensive global perspective on the key challenges in this field. In response, we compiled and analyzed baseline data from 152 studies, and conducted a comprehensive review of the literature on soil MPs. We identified key challenges in four critical areas: extraction methods, data reporting, spatial distribution characteristics, and environmental criteria. Additionally, we provided targeted recommendations: 1) establishment of standardized methods and processes for extracting soil MPs; 2) development of standardized guidelines for describing MPs and soil properties, along with an expansion of research into MP-derived pollutants and use of environmentally relevant MP materials; 3) expansion of soil MP research to socioeconomically vulnerable and ecologically sensitive regions, diverse land use types, and deeper soil layers; and 4) an approach to derive environmental quality criteria for soil MPs, based on human exposure risks. By establishing research standards and broadening the scope of soil MP studies, we aim to enhance global understanding and inform strategies for mitigating soil MP pollution.

Graphical abstract

Keywords

Extraction method / Standard / Quality criteria / Pollutants / Pollution control

Highlight

● The current research status and challenges of soil microplastics are summarized.

● A universal extraction standard for soil microplastics is proposed.

● A characterization protocol for experimental soil and microplastics is proposed.

● A roadmap for the spatial distribution of soil microplastics is proposed.

● A model for soil-environmental quality criteria of microplastics is proposed.

Cite this article

Download citation ▾
Chenzhe Fan, Jing Song, Chunhui Wang, Zhirong Liang, Gang Li. A global perspective on soil microplastic research: status, challenges, and suggestions. Front. Environ. Sci. Eng., 2025, 19(10): 133 DOI:10.1007/s11783-025-2053-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abbasi S, Rezaei M, Mina M, Sameni A, Oleszczuk P, Turner A, Ritsema C. (2023). Entrainment and horizontal atmospheric transport of microplastics from soil. Chemosphere, 322: 138150

[2]

Abbasi S, Turner A, Hoseini M, Amiri H. (2021). Microplastics in the Lut and Kavir deserts, Iran. Environmental Science & Technology, 55(9): 5993–6000

[3]

Adhikari K, Pearce C I, Sanguinet K A, Bary A I, Chowdhury I, Eggleston I, Xing B S, Flury M. (2024). Accumulation of microplastics in soil after long-term application of biosolids and atmospheric deposition. Science of the Total Environment, 912: 168883

[4]

Alfonso M B, Arias A H, Ronda A C, Piccolo M C. (2021). Continental microplastics: presence, features, and environmental transport pathways. Science of the Total Environment, 799: 149447

[5]

Alimi O S, Fadare O O, Okoffo E D. (2021). Microplastics in African ecosystems: current knowledge, abundance, associated contaminants, techniques, and research needs. Science of the Total Environment, 755: 142422

[6]

Allen S, Allen D, Baladima F, Phoenix V R, Thomas J L, Le Roux G, Sonke J E. (2021). Evidence of free tropospheric and long-range transport of microplastic at Pic du Midi Observatory. Nature Communications, 12(1): 7242

[7]

Arias A H, Alfonso M B, Girones L, Piccolo M C, Marcovecchio J E. (2022). Synthetic microfibers and tyre wear particles pollution in aquatic systems: relevance and mitigation strategies. Environmental Pollution, 295: 118607

[8]

Athulya P A, Waychal Y, Rodriguez-Seijo A, Devalla S, Doss C G P, Chandrasekaran N. (2024). Microplastic interactions in the agroecosystems: methodological advances and limitations in quantifying microplastics from agricultural soil. Environmental Geochemistry and Health, 46(3): 85

[9]

Aves A R, Revell L E, Gaw S, Ruffell H, Schuddeboom A, Wotherspoon N E, LaRue M, McDonald A J. (2022). First evidence of microplastics in Antarctic snow. The Cryosphere, 16(6): 2127–2145

[10]

Bahel E. (2018). Cooperation and subgame perfect equilibria in global pollution problems with critical threshold. Environmental and Resource Economics, 70(2): 457–481

[11]

Beiras R, Bellas J, Cachot J, Cormier B, Cousin X, Engwall M, Gambardella C, Garaventa F, Keiter S, Le Bihanic F. . (2018). Ingestion and contact with polyethylene microplastics does not cause acute toxicity on marine zooplankton. Journal of Hazardous Materials, 360: 452–460

[12]

Bi D, Wang B B, Li Z, Zhang Y B, Ke X, Huang C W, Liu W X, Luo Y M, Christie P, Wu L H. (2023). Occurrence and distribution of microplastics in coastal plain soils under three land-use types. Science of the Total Environment, 855: 159023

[13]

Biale G, La Nasa J, Mattonai M, Corti A, Vinciguerra V, Castelvetro V, Modugno F. (2021). A systematic study on the degradation products generated from artificially aged microplastics. Polymers, 13(12): 1997

[14]

BigalkeMFieber MFoetischAReynesJTollanP (2022). Microplastics in agricultural drainage water: a link between terrestrial and aquatic microplastic pollution. Science of the Total Environment, 806(Pt 4): 150709

[15]

Büks F, Kaupenjohann M. (2020). Global concentrations of microplastics in soils: a review. Soil, 6(2): 649–662

[16]

Chandrakanthan K, Fraser M P, Herckes P. (2024). Microplastics are ubiquitous and increasing in soil of a sprawling urban area, Phoenix (Arizona). Science of the Total Environment, 906: 167617

[17]

Chang J N, Liang J S, Fang W, Zhang H B, Zhang Y J, Zhao H J, Zhang R, Zhang P Y, Zhang G M. (2023). Adsorption behaviors and bioavailability of tetrabromobisphenol A in the presence of polystyrene microplastic in soil: effect of microplastics aging. Environmental Pollution, 334: 122156

[18]

Chen H, Chen Y H, Xu Y B, Xiao C Q, Liu J C, Wu R R, Guo X T. (2022a). Different functional areas and human activities significantly affect the occurrence and characteristics of microplastics in soils of the Xi’an metropolitan area. Science of the Total Environment, 852: 158581

[19]

Chen H W, Zhang X, Ji C N, Deng W X, Yang G, Hao Z P, Chen B D. (2023a). Physicochemical properties of environmental media can affect the adsorption of arsenic (As) by microplastics. Environmental Pollution, 338: 122592

[20]

Chen M H, Coleman B, Gaburici L, Prezgot D, Jakubek Z J, Sivarajah B, Vermaire J C, Lapen D R, Velicogna J R, Princz J I. . (2024). Identification of microplastics extracted from field soils amended with municipal biosolids. Science of the Total Environment, 907: 168007

[21]

Chen Q Q, Shi G T, Revell L E, Zhang J, Zuo C C, Wang D H, Le Ru E C, Wu G M, Mitrano D M. (2023b). Long-range atmospheric transport of microplastics across the southern hemisphere. Nature Communications, 14(1): 7898

[22]

Chen S S, Yang Y T, Jing X Y, Zhang L L, Chen J, Rensing C, Luan T G, Zhou S G. (2021). Enhanced aging of polystyrene microplastics in sediments under alternating anoxic-oxic conditions. Water Research, 207: 117782

[23]

Chen Y L, Leng Y F, Liu X N, Wang J. (2020). Microplastic pollution in vegetable farmlands of suburb Wuhan, central China. Environmental Pollution, 257: 113449

[24]

Chen Z, Chen Z W, Sun H Y, Xing R Z, Zhou S G. (2022b). Degradation of microplastics by hydroxyl radicals generated during microbially driven humus redox transformation. Water Research, 221: 118731

[25]

Cheng D D, Liu H T, Qian W X, Yao R, Wang X H. (2024). Migration characteristics of microplastics in riparian soils and groundwater. Environmental Monitoring and Assessment, 196(9): 796

[26]

Chia R W, Lee J Y, Kim H, Jang J. (2021). Microplastic pollution in soil and groundwater: a review. Environmental Chemistry Letters, 19(6): 4211–4224

[27]

Colwell J, Pratt S, Lant P, Laycock B. (2023). Hazardous state lifetimes of biodegradable plastics in natural environments. Science of the Total Environment, 894: 165025

[28]

Da Costa J P, Avellan A, Mouneyrac C, Duarte A, Rocha-Santos T. (2023). Plastic additives and microplastics as emerging contaminants: mechanisms and analytical assessment. TrAC Trends in Analytical Chemistry, 158: 116898

[29]

Dahms H T J, Greenfield R. (2024). A review of the environments, biota, and methods used in microplastics research in South Africa. South African Journal of Science, 120(5−6): 16669

[30]

Debraj D, Lavanya M. (2023). Microplastics everywhere: a review on existing methods of extraction. Science of the Total Environment, 893: 164878

[31]

Deng J B, Wang H F, Su Y, Zhang H J, Qin C, Mosa A, Ling W T. (2024a). Determination of soil environment criteria for ecological safety of benzo[a]pyrene in soil based on the species sensitivity distribution approach. Applied Soil Ecology, 195: 105213

[32]

Deng Y X, Zeng Z J, Feng W Y, Liu J, Yang F. (2024b). Characteristics and migration dynamics of microplastics in agricultural soils. Agriculture, 14(1): 157

[33]

Dhevagi P, Keerthi Sahasa R G, Poornima R, Ramya A. (2024). Unveiling the effect of microplastics on agricultural crops: a review. International Journal of Phytoremediation, 26(6): 793–815

[34]

Ding L, Ouyang Z Z, Liu P, Wang T C, Jia H Z, Guo X T. (2022). Photodegradation of microplastics mediated by different types of soil: the effect of soil components. Science of the Total Environment, 802: 149840

[35]

Dissanayake P D, Kim S, Sarkar B, Oleszczuk P, Sang M K, Haque M N, Ahn J H, Bank M S, Ok Y S. (2022). Effects of microplastics on the terrestrial environment: a critical review. Environmental Research, 209: 112734

[36]

Dong H K, Wang L X, Wang X P, Xu L, Chen M K, Gong P, Wang C F. (2021). Microplastics in a remote lake basin of the Tibetan Plateau: impacts of atmospheric transport and glacial melting. Environmental Science & Technology, 55(19): 12951–12960

[37]

Dong Y M, Gao M L, Cai Q Q, Qiu W W, Xiao L, Chen Z M, Peng H C, Liu Q H, Song Z G. (2024a). The impact of microplastics on sulfur REDOX processes in different soil types: a mechanism study. Journal of Hazardous Materials, 465: 133432

[38]

Dong Y M, Gao M L, Qiu W W, Xiao L, Cheng Z M, Peng H C, Song Z G. (2024b). Investigating the impact of microplastics on sulfur mineralization in different soil types: a mechanism study. Journal of Hazardous Materials, 464: 132942

[39]

Du H, Xie Y Q, Wang J. (2021). Microplastic degradation methods and corresponding degradation mechanism: research status and future perspectives. Journal of Hazardous Materials, 418: 126377

[40]

Emenike E C, Okorie C J, Ojeyemi T, Egbemhenghe A, Iwuozor K O, Saliu O D, Okoro H K, Adeniyi A G. (2023). From oceans to dinner plates: the impact of microplastics on human health. Heliyon, 9(10): e20440

[41]

Enders K, Tagg A S, Labrenz M. (2020). Evaluation of electrostatic separation of microplastics from mineral-rich environmental samples. Frontiers in Environmental Science, 8: 112

[42]

Envall I, Bengtsson J, Jakobsson S, Rundlöf M, Åberg C, Lindborg R. (2021). What is the effect of giving the grazers access to additional nutrient sources on biodiversity in semi-natural pastures? A systematic review protocol. Environmental Evidence, 10(1): 16

[43]

Evangeliou N, Grythe H, Klimont Z, Heyes C, Eckhardt S, Lopez-Aparicio S, Stohl A. (2020). Atmospheric transport is a major pathway of microplastics to remote regions. Nature Communications, 11(1): 3381

[44]

Evangelou I, Tatsii D, Bucci S, Stohl A. (2024). Atmospheric resuspension of microplastics from bare soil regions. Environmental Science & Technology, 58(22): 9741–9749

[45]

Fairbrother A, Hsueh H C, Kim J H, Jacobs D, Perry L, Goodwin D, White C, Watson S, Sung L P. (2019). Temperature and light intensity effects on photodegradation of high-density polyethylene. Polymer Degradation and Stability, 165: 153–160

[46]

Fan C Z, Li Y X, Tian C Q, Li Z Y. (2024). Effects of microplastics on soil C and N cycling with or without interactions with soil amendments or soil fauna. European Journal of Soil Science, 75(1): e13446

[47]

Fan S Y, Yan Z Z, Qiao L, Gui F, Li T J, Yang Q, Zhang X L, Ren C Z. (2023). Biological effects on the migration and transformation of microplastics in the marine environment. Marine Environmental Research, 185: 105875

[48]

Fan Y, Li H, Miguez-Macho G. (2013). Global patterns of groundwater table depth. Science, 339(6122): 940–943

[49]

Farag A A, Youssef H S, Sliem R E, El Gazzar W B, Nabil N, Mokhtar M M, Marei Y M, Ismail N S, Radwaan S E, Badr A M. . (2023). Hematological consequences of polyethylene microplastics toxicity in male rats: oxidative stress, genetic, and epigenetic links. Toxicology, 492: 153545

[50]

Feng S S, Lu H W, Yao T C. (2021). Microplastics footprints in a high-altitude basin of the Tibetan Plateau, China. Water, 13(20): 2805

[51]

Forster N A, Wilson S C, Tighe M K. (2022). Examining sampling protocols for microplastics on recreational trails. Science of the Total Environment, 818: 151813

[52]

Gao J, Pan S Z, Li P F, Wang L W, Hou R J, Wu W M, Luo J, Hou D Y. (2021). Vertical migration of microplastics in porous media: multiple controlling factors under wet-dry cycling. Journal of Hazardous Materials, 419: 126413

[53]

Geyer R, Jambeck J R, Law K L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7): e1700782

[54]

Giyahchi M, Moghimi H. (2024). Acceleration a yeast-based biodegradation process of polyethylene terephthalate microplastics by Tween 20: efficiency, by-product analysis, and metabolic pathway Prediction. Environmental Pollution, 351: 124106

[55]

Greggor A L, Price C J, Shier D M. (2019). Examining the efficacy of anti-predator training for increasing survival in conservation translocations: a systematic review protocol. Environmental Evidence, 8(S1): 11

[56]

Gui X Y, Ren Z F, Xu X Y, Chen X, Chen M, Wei Y Q, Zhao L, Qiu H, Gao B, Cao X D. (2022). Dispersion and transport of microplastics in three water-saturated coastal soils. Journal of Hazardous Materials, 424: 127614

[57]

Guo J J, Huang X P, Xiang L, Wang Y Z, Li Y W, Li H, Cai Q Y, Mo C H, Wong M H. (2020). Source, migration and toxicology of microplastics in soil. Environment International, 137: 105263

[58]

Guo S, Zhang J J, Liu J W, Guo N, Zhang L, Wang S T, Wang X X, Zhao M, Zhang B G, Chen Y H. (2023). Organic fertilizer and irrigation water are the primary sources of microplastics in the facility soil, Beijing. Science of the Total Environment, 895: 165005

[59]

Guo Y T, Wu R S, Zhang H, Guo C S, Wu L L, Xu J. (2025). Distribution of microplastics in the soils of a petrochemical industrial region in China: ecological and Human Health Risks. Environmental Geochemistry and Health, 47(1): 13

[60]

Gurevitch J, Koricheva J, Nakagawa S, Stewart G. (2018). Meta-analysis and the science of research synthesis. Nature, 555(7695): 175–182

[61]

Habib S, Iruthayam A, Abd Shukor M Y, Alias S A, Smykla J, Yasid N A. (2020). Biodeterioration of untreated polypropylene microplastic particles by Antarctic bacteria. Polymers, 12(11): 2616

[62]

Hamid F S, Bhatti M S, Anuar N, Anuar N, Mohan P, Periathamby A (2018). Worldwide distribution and abundance of microplastic: How dire is the situation? Waste Management & Research, 36(10): 873–897

[63]

He D F, Luo Y M, Lu S B, Liu M T, Song Y, Lei L L. (2018). Microplastics in soils: analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry, 109: 163–172

[64]

Heinze W M, Steinmetz Z, Klemmensen N D R, Vollertsen J, Cornelis G. (2024). Vertical distribution of microplastics in an agricultural soil after long-term treatment with sewage sludge and mineral fertiliser. Environmental Pollution, 356: 124343

[65]

Heo S J, Moon N, Kim J H. (2024). A systematic review and quality assessment of estimated daily intake of microplastics through food. Reviews on Environmental Health, 40(2): 371–392

[66]

Hernandez L M, Grant J, Fard P S, Farner J M, Tufenkji N. (2023). Analysis of ultraviolet and thermal degradations of four common microplastics and evidence of nanoparticle release. Journal of Hazardous Materials Letters, 4: 100078

[67]

Hernández-González V, Carné-Torrent J M, Jové-Deltell C, Pano-Rodríguez Á, Reverter-Masia J. (2022). The top 100 most cited scientific papers in the public, environmental & occupational health category of web of science: a bibliometric and visualized analysis. International Journal of Environmental Research and Public Health, 19(15): 9645

[68]

Hodson M E, Duffus-Hodson C A, Clark A, Prendergast-Miller M T, Thorpe K L. (2017). Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environmental Science & Technology, 51(8): 4714–4721

[69]

Hu J, Zhang L Q, Zhang W Y, Muhammad I, Yin C Y, Zhu Y X, Li C, Zheng L G. (2024a). Significant influence of land use types and anthropogenic activities on the distribution of microplastics in soil: a case from a typical mining-agricultural city. Journal of Hazardous Materials, 477: 135253

[70]

HuJ MXie Z WZuoJ E (2024b). Single and combined effects of secondary polyethylene microplastic on the growth of Pak choi and the soil microbiome composition. Frontiers of Environmental Science & Engineering, 18(5): 53

[71]

Hu J N, He D F, Zhang X T, Li X Y, Chen Y X, Wei G, Zhang Y L, Ok Y S, Luo Y M. (2022). National-scale distribution of micro(meso)plastics in farmland soils across China: implications for environmental impacts. Journal of Hazardous Materials, 424: 127283

[72]

Huang Q E, Liu M G, Cao X W, Liu Z. (2023a). Occurrence of microplastics pollution in the Yangtze River: Distinct characteristics of spatial distribution and basin-wide ecological risk assessment. Water Research, 229: 119431

[73]

Huang Z K, Hu B, Wang H. (2023b). Analytical methods for microplastics in the environment: a review. Environmental Chemistry Letters, 21(1): 383–401

[74]

Huerta Lwanga E, Gertsen H, Gooren H, Peters P, Salánki T, van der Ploeg M, Besseling E, Koelmans A A, Geissen V. (2017). Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environmental Pollution, 220: 523–531

[75]

Huerta Lwanga E, van Roshum I, Munhoz D R, Meng K, Rezaei M, Goossens D, Bijsterbosch J, Alexandre N, Oosterwijk J, Krol M. . (2023). Microplastic appraisal of soil, water, ditch sediment and airborne dust: the case of agricultural systems. Environmental Pollution, 316: 120513

[76]

Huliganga E, Marchetti F, O’Brien J M, Chauhan V, Yauk C L. (2022). A case study on integrating a new key event into an existing adverse outcome pathway on oxidative DNA damage: challenges and approaches in a data-rich area. Frontiers in Toxicology, 4: 827328

[77]

Ingraffia R, Amato G, Bagarello V, Carollo F G, Giambalvo D, Iovino M, Lehmann A, Rillig M C, Frenda A S. (2022). Polyester microplastic fibers affect soil physical properties and erosion as a function of soil type. Soil, 8(1): 421–435

[78]

Ivleva N P. (2021). Chemical analysis of microplastics and nanoplastics: challenges, advanced methods, and perspectives. Chemical Reviews, 121(19): 11886–11936

[79]

Jambeck J R, Geyer R, Wilcox C, Siegler T R, Perryman M, Andrady A, Narayan R, Law K L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223): 768–771

[80]

Jeon C, Kim H. (2024). Microplastics and nanoplastics in groundwater: occurrence, analysis, and identification. Trends in Environmental Analytical Chemistry, 44: e00246

[81]

Jeon M S, Kim J W, Han Y B, Jeong M H, Kim H R, Kim H S, Park Y J, Chung K H. (2023). Polystyrene microplastic particles induce autophagic cell death in BEAS-2B human bronchial epithelial cells. Environmental Toxicology, 38(2): 359–367

[82]

Jeong J, Choi J. (2019). Adverse outcome pathways potentially related to hazard identification of microplastics based on toxicity mechanisms. Chemosphere, 231: 249–255

[83]

Jia W Q, Karapetrova A, Zhang M J, Xu L B, Li K, Huang M K, Wang J, Huang Y. (2022). Automated identification and quantification of invisible microplastics in agricultural soils. Science of the Total Environment, 844: 156853

[84]

Kane I A, Clare M A, Miramontes E, Wogelius R, Rothwell J J, Garreau P, Pohl F. (2020). Seafloor microplastic hotspots controlled by deep-sea circulation. Science, 368(6495): 1140–1145

[85]

Kang Q Q, Zhang Y L, Kang S C, Zhang S Y, Luo X, Li L R, Wang Z Q, Zhang S C. (2024). Occurrence of microplastics in natural and farmland soil in the Qilian mountains of the northern Tibetan Plateau. Journal of Mountain Science, 21(7): 2159–2172

[86]

Kataria N, Yadav S, Garg V K, Rene E R, Jiang J J, Rose P K, Kumar M, Khoo K S. (2024). Occurrence, transport, and toxicity of microplastics in tropical food chains: perspectives view and way forward. Environmental Geochemistry and Health, 46(3): 98

[87]

Katsumi N, Nagao S, Okochi H. (2022). Addition of polyvinyl pyrrolidone during density separation with sodium iodide solution improves recovery rate of small microplastics (20–150 μm) from soils and sediments. Chemosphere, 307: 135730

[88]

Kedzierski M, Cirederf-Boulant D, Palazot M, Yvin M, Bruzaud S. (2023). Continents of plastics: an estimate of the stock of microplastics in agricultural soils. Science of the Total Environment, 880: 163294

[89]

Khalid N, Aqeel M, Noman A. (2020). Microplastics could be a threat to plants in terrestrial systems directly or indirectly. Environmental Pollution, 267: 115653

[90]

Kim S W, Waldman W R, Kim T Y, Rillig M C. (2020). Effects of different microplastics on nematodes in the soil environment: tracking the extractable additives using an ecotoxicological approach. Environmental Science & Technology, 54(21): 13868–13878

[91]

Koutnik V S, Leonard J, Alkidim S, Deprima F J, Ravi S, Hoek E M V, Mohanty S K. (2021). Distribution of microplastics in soil and freshwater environments: global analysis and framework for transport modeling. Environmental Pollution, 274: 116552

[92]

Krall M, Roni P. (2023). Effects of livestock exclusion on stream habitat and aquatic biota: a review and recommendations for implementation and monitoring. North American Journal of Fisheries Management, 43(2): 476–504

[93]

Kumar M, Xiong X N, He M J, Tsang D C W, Gupta J, Khan E, Harrad S, Hou D Y, Ok Y S, Bolan N S. (2020). Microplastics as pollutants in agricultural soils. Environmental Pollution, 265: 114980

[94]

Kwak J I, An Y J. (2021). Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. Journal of Hazardous Materials, 402: 124034

[95]

Laju R L, Jayanthi M, Jeyasanta K I, Patterson J, Asir N G G, Sathish M N, Edward J K P. (2022). Spatial and vertical distribution of microplastics and their ecological risk in an Indian freshwater lake ecosystem. Science of the Total Environment, 820: 153337

[96]

Lan T, Dong X M, Liu S, Zhou M H, Li Y, Gao X S. (2024). Coexistence of microplastics and Cd alters soil N transformation by affecting enzyme activity and ammonia oxidizer abundance. Environmental Pollution, 342: 123073

[97]

Lehmann A, Leifheit E F, Gerdawischke M, Rillig M C. (2021). Microplastics have shape- and polymer-dependent effects on soil aggregation and organic matter loss: an experimental and meta-analytical approach. Microplastics and Nanoplastics, 1: 7

[98]

Leitão I A, Van Schaik L, Ferreira A J D, Alexandre N, Geissen V. (2023). The spatial distribution of microplastics in topsoils of an urban environment: Coimbra city case-study. Environmental Research, 218: 114961

[99]

Lenz R, Enders K, Nielsen T G. (2016). Microplastic exposure studies should be environmentally realistic. Proceedings of the National Academy of Sciences of the United States of America, 113(29): E4121–E4122

[100]

Leusch F D L, Ziajahromi S. (2021). Converting mg/L to particles/L: reconciling the occurrence and toxicity literature on microplastics. Environmental Science & Technology, 55(17): 11470–11472

[101]

Li H Q, Aguirre-Villegas H A, Allen R D, Bai X L, Benson C H, Beckham G T, Bradshaw S L, Brown J L, Brown R C, Cecon V S. . (2022a). Expanding plastics recycling technologies: chemical aspects, technology status and challenges. Green Chemistry, 24(23): 8899–9002

[102]

Li H X, Lu X Q, Wang S Y, Zheng B Y, Xu Y. (2021). Vertical migration of microplastics along soil profile under different crop root systems. Environmental Pollution, 278: 116833

[103]

Li J, Song Y, Cai Y B. (2020). Focus topics on microplastics in soil: analytical methods, occurrence, transport, and ecological risks. Environmental Pollution, 257: 113570

[104]

Li J, Yu S G, Yu Y F, Xu M L. (2022b). Effects of microplastics on higher plants: a review. Bulletin of Environmental Contamination and Toxicology, 109(2): 241–265

[105]

Li S M, Li Z Y, Xue J, Chen S, Li H B, Ji J, Liang Y X, Fei J Y, Jiang W Y. (2023a). Pollution and distribution of microplastics in grassland soils of Qinghai-Tibet Plateau, China. Toxics, 11(1): 86

[106]

Li S S, Yang B, Wang M, Zhang R, Chen K, He Z X, Shi H D, Chen S B (2022c). Environmental quality standards for agricultural land in China: what should be improved on derivation methodology? Journal of Environmental Management, 324: 116334

[107]

Li S T, Ding F, Flury M, Wang Z, Xu L, Li S Y, Jones D L, Wang J K. (2022d). Macro- and microplastic accumulation in soil after 32 years of plastic film mulching. Environmental Pollution, 300: 118945

[108]

LiW FWang S ZWufuerRDuoJPanX L (2023b). Distinct soil microplastic distributions under various farmland-use types around Urumqi, China. Science of the Total Environment, 857(Pt 3): 159573

[109]

Li X Z, Du J Y, Sun L, Zhang Y, Feng Y H, Zheng L P, Wang G Q, Huang X H. (2022e). Derivation of soil criteria of cadmium for safe rice production applying soil-plant transfer model and species sensitivity distribution. International Journal of Environmental Research and Public Health, 19(14): 8854

[110]

Li Y, Tao L, Wang Q, Wang F B, Li G, Song M Y. (2023c). Potential health impact of microplastics: a review of environmental distribution, human exposure, and toxic effects. Environment & Health, 1(4): 249–257

[111]

Li Y J, Xu G H, Yu Y. (2024). Freeze-thaw aged polyethylene and polypropylene microplastics alter enzyme activity and microbial community composition in soil. Journal of Hazardous Materials, 470: 134249

[112]

Liakos K G, Busato P, Moshou D, Pearson S, Bochtis D. (2018). Machine learning in agriculture: a review. Sensors, 18(8): 2674

[113]

Liang T, Lei Z Y, Fuad T I, Wang Q, Sun S C, Fang J K H, Liu X S. (2022). Distribution and potential sources of microplastics in sediments in remote lakes of Tibet, China. Science of the Total Environment, 806: 150526

[114]

Lin B G, Wang L Y, Chen Q Y, Liu Z L, Liu B B, Wen S B, Liu F, Chen X C, Zhang Z Y, Wu L. . (2024). Health assessment based on exposure to microplastics in tropical agricultural soil. Journal of Hazardous Materials, 465: 133372

[115]

Liu F, Rasmussen L A, Klemmensen N D R, Zhao G H, Nielsen R, Vianello A, Rist S, Vollertsen J. (2023a). Shapes of hyperspectral imaged microplastics. Environmental Science & Technology, 57(33): 12431–12441

[116]

LiuL CXu M JYeY HZhangB (2022). On the degradation of (micro)plastics: degradation methods, influencing factors, environmental impacts. Science of the Total Environment, 806(Pt 3): 151312

[117]

Liu P J, Shao L Y, Guo Z Y, Zhang Y X, Cao Y X, Ma X Y, Morawska L. (2025). Physicochemical characteristics of airborne microplastics of a typical coastal city in the Yangtze River Delta Region, China. Journal of Environmental Sciences, 148: 602–613

[118]

Liu Q Y, Wu Y H, Zhao W H, Ma J, Qu Y J, Chen H Y, Tian Y X, Wu F C. (2023b). Soil environmental criteria in six representative developed countries: soil management targets, and human health and ecological risk assessment. Critical Reviews in Environmental Science and Technology, 53(5): 577–600

[119]

Liu Y, Lin Y M, Xie J F, Li P H, Zhou Y, Wang P Y, Wu Y C. (2023c). A method to replace NaCl as a flotation solution for extracting MPs in soil: a case study of the Jiaxing agricultural soil from China. Bulletin of Environmental Contamination and Toxicology, 110(5): 96

[120]

Liu Y, Rillig M C, Liu Q, Huang J J, Khan M A, Li X H, Liu Q, Wang Q Q, Su X S, Lin L Y. . (2023d). Factors affecting the distribution of microplastics in soils of China. Frontiers of Environmental Science & Engineering, 17(9): 110

[121]

Liu Y X, Zhou Q X, Wang Y, Cheng S W, Hao W D. (2021). Deriving soil quality criteria of chromium based on species sensitivity distribution methodology. Toxics, 9(3): 58

[122]

Lozano Y M, Lehnert T, Linck L T, Lehmann A, Rillig M C. (2021). Microplastic shape, polymer type, and concentration affect soil properties and plant biomass. Frontiers in Plant Science, 12: 616645

[123]

Lozano Y M, Perlenfein C, Bernal M G, Rillig M C. (2024). Disentangling mechanisms by which microplastic films affect plant-soil systems: physical effects of particles can override toxic effects of additives. Environmental Sciences Europe, 36(1): 198

[124]

Lu Q W, Zhou Y, Sui Q, Zhou Y B. (2023). Mechanism and characterization of microplastic aging process: a review. Frontiers of Environmental Science & Engineering, 17(8): 100

[125]

Lu X M, Chen Y L. (2022). Varying characteristics and driving mechanisms of antibiotic resistance genes in farmland soil amended with high-density polyethylene microplastics. Journal of Hazardous Materials, 428: 128196

[126]

Luo H W, Liu C Y, He D Q, Xu J, Sun J Q, Li J, Pan X L. (2022). Environmental behaviors of microplastics in aquatic systems: a systematic review on degradation, adsorption, toxicity and biofilm under aging conditions. Journal of Hazardous Materials, 423: 126915

[127]

LuoY CWang LCaoT TChenJ XLvM Q WeiS JLu S XTianX J (2023). Microplastics are transferred by soil fauna and regulate soil function as material carriers. Science of the Total Environment, 857(Pt 3): 159690

[128]

Lv J X, Chen R X, Wu Z, Bai Y, Song H, Tian C, Wang M Y, Lin Z. (2023). Freezing-induced microplastic degradation in an anoxic Fe(II)-containing solution: the key role of Fe(IV) and •OH. Environmental Science: Nano, 10(10): 2744–2753

[129]

Machado-Silva F, Weintraub M N, Ward N D, Doro K O, Regier P J, Ehosioke S, Thomas S P, Peixoto R B, Sandoval L, Forbrich I. . (2024). Short-term groundwater level fluctuations drive subsurface redox variability. Environmental Science & Technology, 58(33): 14687–14697

[130]

Mendoza A, Kortaberria G, Marzo F F, Mayor U, Basurko O C, Peña-Rodriguez C. (2021). Solvent-based elimination of organic matter from marine-collected plastics. Environments, 8(7): 68

[131]

Meng K, Huerta Lwanga E, van der Zee M, Munhoz D R, Geissen V (2023). Fragmentation and depolymerization of microplastics in the earthworm gut: a potential for microplastic bioremediation? Journal of Hazardous Materials, 447: 130765

[132]

Menger F, Römerscheid M, Lips S, Klein O, Nabi D, Gandrass J, Joerss H, Wendt-Potthoff K, Bedulina D, Zimmermann T. . (2024). Screening the release of chemicals and microplastic particles from diverse plastic consumer products into water under accelerated UV weathering conditions. Journal of Hazardous Materials, 477: 135256

[133]

Miao F, Liu Y F, Gao M M, Yu X, Xiao P W, Wang M, Wang S G, Wang X H. (2020). Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode. Journal of Hazardous Materials, 399: 123023

[134]

Minasny B, Fiantis D, Mulyanto B, Sulaeman Y, Widyatmanti W. (2020). Global soil science research collaboration in the 21st century: time to end helicopter research. Geoderma, 373: 114299

[135]

Möller J N, Löder M G J, Laforsch C. (2020). Finding microplastics in soils: a review of analytical methods. Environmental Science & Technology, 54(4): 2078–2090

[136]

Moura D S, Pestana C J, Moffat C F, Hui J N, Irvine J T S, Lawton L A. (2023). Characterisation of microplastics is key for reliable data interpretation. Chemosphere, 331: 138691

[137]

Mu Y T, Liu Z Q, Li Y, Zhu D Y. (2021). Characteristics of soil temperature variation in karst area and its relationship with environmental factors. Acta Ecologica Sinica, 41(7): 2738–2749

[138]

Napper I E, Thompson R C. (2023). Plastics and the environment. Annual Review of Environment and Resources, 48: 55–79

[139]

Nuelle M T, Dekiff J H, Remy D, Fries E. (2014). A new analytical approach for monitoring microplastics in marine sediments. Environmental Pollution, 184: 161–169

[140]

Nyadjro E S, Webster J A B, Boyer T P, Cebrian J, Collazo L, Kaltenberger G, Larsen K, Lau Y H, Mickle P, Toft T. . (2023). The NOAA NCEI marine microplastics database. Scientific Data, 10(1): 726

[141]

O’ConnorDPanS ZShenZ T SongY AJin Y LWuW MHouD Y (2019). Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles. Environmental Pollution, 249: 527–534

[142]

Pan B G, Zhang F T, Zhu X Q, Huang L, Wu Y, Tang J Q, Feng N X. (2024). Global trends and hotspots evolution in soil microplastic pollution research: a bibliometric analysis based on the Web of Science. Ecological Indicators, 161: 111974

[143]

Pan J R, Zhang Q, Zhang K Y, Zhang Z M, Guo X T. (2023). Occurrence of microplastics in agricultural soils in ecologically fragile areas of China. Science of the Total Environment, 904: 166350

[144]

Park S, Kim I, Jeon W H, Moon H S. (2023). Exploring the vertical transport of microplastics in subsurface environments: lab-scale experiments and field evidence. Journal of Contaminant Hydrology, 257: 104215

[145]

PlasticsEurope AISBL (2024). Plastics: The Fast Facts 2024. Brussels: Plastics Europe AISBL

[146]

Potapov A M, Goncharov A A, Semenina E E, Korotkevich A Y, Tsurikov S M, Rozanova O L, Anichkin A E, Zuev A G, Samoylova E S, Semenyuk I I. . (2017). Arthropods in the subsoil: abundance and vertical distribution as related to soil organic matter, microbial biomass and plant roots. European Journal of Soil Biology, 82: 88–97

[147]

Prata J C, Da Costa J P, Lopes I, Andrady A L, Duarte A C, Rocha-Santos T. (2021). A One Health perspective of the impacts of microplastics on animal, human and environmental health. Science of the Total Environment, 777: 146094

[148]

Prata J C, Da Costa J P, Lopes I, Duarte A C, Rocha-Santos T. (2020). Environmental exposure to microplastics: an overview on possible human health effects. Science of the Total Environment, 702: 134455

[149]

Qi R M, Tang Y Y, Jones D L, He W Q, Yan C R. (2023). Occurrence and characteristics of microplastics in soils from greenhouse and open-field cultivation using plastic mulch film. Science of the Total Environment, 905: 166935

[150]

Qiu Y, Zhang T, Zhang P. (2023a). Fate and environmental behaviors of microplastics through the lens of free radical. Journal of Hazardous Materials, 453: 131401

[151]

Qiu Y F, Zhou S L, Zhang C C, Chen L, Qin W D, Zhang Q. (2023b). Vertical distribution and weathering characteristic of microplastics in soil profile of different land use types. Science of the Total Environment, 905: 166902

[152]

Rahman A, Sarkar A, Yadav O P, Achari G, Slobodnik J. (2021). Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: a scoping review. Science of the Total Environment, 757: 143872

[153]

Ramage S J F F, Pagaling E, Haghi R K, Dawson L A, Yates K, Prabhu R, Hillier S, Devalla S. (2022). Rapid extraction of high- and low-density microplastics from soil using high-gradient magnetic separation. Science of the Total Environment, 831: 154912

[154]

Reinecke R, Gnann S, Stein L, Bierkens M, de Graaf I, Gleeson T, Essink G O, Sutanudjaja E H, Ruz Vargas C, Verkaik J. . (2024). Uncertainty in model estimates of global groundwater depth. Environmental Research Letters, 19(11): 114066

[155]

Ren X, Ge J H, Wei Z, Zhang W, Wen H. (2023). The occurrence and characteristics of microplastic pollution in the agricultural soils of Anhui province, in Eastern China. Water, Air, & Soil Pollution, 234(7): 485

[156]

Ren Z F, Gui X Y, Xu X Y, Zhao L, Qiu H, Cao X D. (2021). Microplastics in the soil-groundwater environment: aging, migration, and co-transport of contaminants-a critical review. Journal of Hazardous Materials, 419: 126455

[157]

Revel M, Châtel A, Mouneyrac C (2018). Micro(nano)plastics: a threat to human health? Current Opinion in Environmental Science & Health, 1: 17–23

[158]

Rolf M, Laermanns H, Kienzler L, Pohl C, Möller J N, Laforsch C, Löder M G J, Bogner C. (2022). Flooding frequency and floodplain topography determine abundance of microplastics in an alluvial Rhine soil. Science of the Total Environment, 836: 155141

[159]

Rose P K, Yadav S, Kataria N, Khoo K S. (2023). Microplastics and nanoplastics in the terrestrial food chain: uptake, translocation, trophic transfer, ecotoxicology, and human health risk. TrAC Trends in Analytical Chemistry, 167: 117249

[160]

Rozman U, Turk T, Skalar T, Zupančič M, Čelan Korošin N, Marinšek M, Olivero-Verbel J, Kalčíková G. (2021). An extensive characterization of various environmentally relevant microplastics: material properties, leaching and ecotoxicity testing. Science of the Total Environment, 773: 145576

[161]

Sa'adu I, Farsang A. (2023). Plastic contamination in agricultural soils: a review. Environmental Sciences Europe, 35(1): 13

[162]

Sait S T L, Sørensen L, Kubowicz S, Vike-Jonas K, Gonzalez S V, Asimakopoulos A G, Booth A M. (2021). Microplastic fibres from synthetic textiles: environmental degradation and additive chemical content. Environmental Pollution, 268: 115745

[163]

Sajjad M, Huang Q, Khan S, Khan M A, Liu Y, Wang J F, Lian F Q, Wang Q Q, Guo G M. (2022). Microplastics in the soil environment: a critical review. Environmental Technology & Innovation, 27: 102408

[164]

Salahuddin U, Sun J Y, Zhu C X, Wu M D, Zhao B C, Gao P X. (2023). Plastic recycling: a review on life cycle, methods, misconceptions, and techno-economic analysis. Advanced Sustainable Systems, 7(7): 2200471

[165]

Sbrana A, Valente T, Bianchi J, Franceschini S, Piermarini R, Saccomandi F, de Lucia A G, Camedda A, Matiddi M, Silvestri C. (2023). From inshore to offshore: distribution of microplastics in three Italian seawaters. Environmental Science and Pollution Research, 30(8): 21277–21287

[166]

SchrankITrotter BDummertJScholz-BöttcherB MLöderM G JLaforschC (2019). Effects of microplastic particles and leaching additive on the life history and morphology of Daphnia magna. Environmental Pollution, 255(Pt 2): 113233

[167]

Shafea L, Yap J, Beriot N, Felde V J M N L, Okoffo E D, Enyoh C E, Peth S. (2023). Microplastics in agroecosystems: a review of effects on soil biota and key soil functions. Journal of Plant Nutrition and Soil Science, 186(1): 5–22

[168]

Shanmugam S D, Praveena S M, Sarkar B. (2022). Quality assessment of research studies on microplastics in soils: a methodological perspective. Chemosphere, 296: 134026

[169]

Shen X L, Shen Y Q, Zhao Z Q, Liu X S, Wang F F, Su H L, Wei Y. (2023). Study on water quality criteria and ecological risk assessment of microplastics in China's surface waters. Human and Ecological Risk Assessment: An International Journal, 29(1): 19–35

[170]

Shi J, Sun Y Z, Wang X, Wang J. (2022a). Microplastics reduce soil microbial network complexity and ecological deterministic selection. Environmental Microbiology, 24(4): 2157–2169

[171]

ShiJWangJ LvJ FWang ZPengY MShangJ YWangX (2022b). Microplastic additions alter soil organic matter stability and bacterial community under varying temperature in two contrasting soils. Science of the Total Environment, 838(Pt 3): 156471

[172]

Shi J, Wang Z, Peng Y M, Fan Z M, Zhang Z Y, Wang X, Zhu K, Shang J Y, Wang J. (2023). Effects of microplastics on soil carbon mineralization: the crucial role of oxygen dynamics and electron transfer. Environmental Science & Technology, 57(36): 13588–13600

[173]

Shi W S, Wu N, Zhang Z L, Liu Y T, Chen J S, Li J F. (2024a). A global review on the abundance and threats of microplastics in soils to terrestrial ecosystem and human health. Science of the Total Environment, 912: 169469

[174]

Shi Y Q, Shi L P, Huang H X Y, Ye K F, Yang L M, Wang Z E N, Sun Y F, Li D Z, Shi Y H, Xiao L W. . (2024b). Analysis of aged microplastics: a review. Environmental Chemistry Letters, 22(4): 1861–1888

[175]

Shirkhorshidi B, Ghanatghestani M D, Moeinpour F, Parvaresh H. (2023). Exploring the interaction between microplastics and heavy metals: unveiling the impact of microplastics on lead sorption and desorption in soil. Environmental Monitoring and Assessment, 195(9): 1017

[176]

Sima J Y, Wang J, Song J X, Du X D, Lou F F, Zhu Y Q, Lei J H, Huang Q X. (2024). Efficient degradation of polystyrene microplastic pollutants in soil by dielectric barrier discharge plasma. Journal of Hazardous Materials, 468: 133754

[177]

Singh S, Bhagwat A. (2022). Microplastics: a potential threat to groundwater resources. Groundwater for Sustainable Development, 19: 100852

[178]

Sobhani Z, Panneerselvan L, Fang C, Naidu R, Megharaj M. (2022). Chronic and transgenerational effects of polyethylene microplastics at environmentally relevant concentrations in earthworms. Environmental Technology & Innovation, 25: 102226

[179]

Song J, Wang C H, Li G. (2024). Defining primary and secondary microplastics: a connotation analysis. ACS ES&T Water, 4(6): 2330–2332

[180]

SorensenLGroven A SHovsbakkenI ADelPuerto OKrauseD F SarnoABooth A M (2021). UV degradation of natural and synthetic microfibers causes fragmentation and release of polymer degradation products and chemical additives. Science of the Total Environment, 755(Pt 2): 143170

[181]

Stevens J N, Prockter A K, Fisher H A, Tran H, Evans M V. (2024). A database of chemical absorption in human skin with mechanistic modeling applications. Scientific Data, 11(1): 755

[182]

Sun Q H, Li J, Wang C, Chen A Q, You Y L, Yang S P, Liu H H, Jiang G B, Wu Y N, Li Y S. (2022a). Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment. Frontiers of Environmental Science & Engineering, 16(1): 1

[183]

Sun Y T, Yang C, Liang H J, Zhang S Q, Zhang R F, Dong Y L, Tanveer S K, Hai J B. (2022b). Health risk analysis of microplastics in soil in the 21st century: a scientometrics review. Frontiers in Environmental Science, 10: 976237

[184]

Sun Y Z, Li X F, Cao N, Duan C X, Ding C F, Huang Y, Wang J. (2022c). Biodegradable microplastics enhance soil microbial network complexity and ecological stochasticity. Journal of Hazardous Materials, 439: 129610

[185]

Surendran U, Jayakumar M, Raja P, Gopinath G, Chellam P V. (2023). Microplastics in terrestrial ecosystem: sources and migration in soil environment. Chemosphere, 318: 137946

[186]

TaggA SBrandes EFischerFFischerDBrandtJ LabrenzM (2022). Agricultural application of microplastic-rich sewage sludge leads to further uncontrolled contamination. Science of the Total Environment, 806(Pt 4): 150611

[187]

Tang F H M, Lenzen M, McBratney A, Maggi F. (2021). Risk of pesticide pollution at the global scale. Nature Geoscience, 14(4): 206–210

[188]

Tang K H D, Li R H, Li Z, Wang D. (2024). Health risk of human exposure to microplastics: a review. Environmental Chemistry Letters, 22(3): 1155–1183

[189]

Teker A G. (2021). The bibliometric analysis of top 100 cited articles in environmental epidemiology. Journal of Basic and Clinical Health Sciences, 5(1): 54–59

[190]

Thompson R C, Courtene-Jones W, Boucher J, Pahl S, Raubenheimer K, Koelmans A A (2024). Twenty years of microplastic pollution research—What have we learned? Science, 386(6720): eadl2746

[191]

Thompson R C, Olsen Y, Mitchell R P, Davis A, Rowland S J, John A W G, McGonigle D, Russell A E (2004). Lost at sea—Where is all the plastic? Science, 304(5672): 838

[192]

Tian L L, Cheng J J, Ji R, Ma Y N, Yu X Y. (2022). Microplastics in agricultural soils: sources, effects, and their fate. Current Opinion in Environmental Science & Health, 25: 100311

[193]

Todd P A, Yong C L X, Foo S H, Ying S M, Ledet J. (2024). Plastic-less equipment for sampling marine microplastics. Frontiers in Marine Science, 11: 1345591

[194]

Tunali M M, Myronyuk O, Tunali M, Yenigün O. (2022). Microplastic abundance in human-influenced soils in recreational, residential, and industrial areas. Water, Air, & Soil Pollution, 233(11): 433

[195]

Uheida A, Mejía H G, Abdel-Rehim M, Hamd W, Dutta J. (2021). Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system. Journal of Hazardous Materials, 406: 124299

[196]

van den Berg P, Huerta-Lwanga E, Corradini F, Geissen V. (2020). Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environmental Pollution, 261: 114198

[197]

van Wijnen J, Ragas A M J, Kroeze C. (2019). Modelling global river export of microplastics to the marine environment: sources and future trends. Science of the Total Environment, 673: 392–401

[198]

Wang C H, Chen W K, Zhao H T, Tang J H, Li G, Zhou Q, Sun J T, Xing B S. (2023a). Microplastic fiber release by laundry: a comparative study of hand-washing and machine-washing. ACS ES&T Water, 3(1): 147–155

[199]

Wang C H, Song J, Nunes L M, Zhao H T, Wang P, Liang Z R, Arp H P H, Li G, Xing B S. (2024). Global microplastic fiber pollution from domestic laundry. Journal of Hazardous Materials, 477: 135290

[200]

Wang C H, Tang J H, Yu H X, Wang Y Y, Li H X, Xu S D, Li G, Zhou Q. (2022a). Microplastic pollution in the soil environment: characteristics, influencing factors, and risks. Sustainability, 14(20): 13405

[201]

Wang C H, Zhao J, Xing B S. (2021a). Environmental source, fate, and toxicity of microplastics. Journal of Hazardous Materials, 407: 124357

[202]

Wang J, Coffin S, Sun C L, Schlenk D, Gan J. (2019). Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil. Environmental Pollution, 249: 776–784

[203]

Wang K, Chen W, Tian J Y, Niu F Q, Xing Y, Wu Y M, Zhang R X, Zheng J S, Xu L. (2022b). Accumulation of microplastics in greenhouse soil after long-term plastic film mulching in Beijing, China. Science of the Total Environment, 828: 154544

[204]

Wang L, Zhang J Q, Huang W, He Y. (2023b). Laboratory simulated aging methods, mechanisms and characteristic changes of microplastics: a review. Chemosphere, 315: 137744

[205]

Wang P Y, Zhao Z Y, Xiong X B, Wang N, Zhou R, Zhang Z M, Ding F, Hao M, Wang S, Ma Y. . (2023c). Microplastics affect soil bacterial community assembly more by their shapes rather than the concentrations. Water Research, 245: 120581

[206]

Wang S C, Chen L, Shi X, Wang Y, Xu S W. (2023d). Polystyrene microplastics-induced macrophage extracellular traps contributes to liver fibrotic injury by activating ROS/TGF-β/Smad2/3 signaling axis. Environmental Pollution, 324: 121388

[207]

Wang W F, Ge J, Yu X Y, Li H. (2020). Environmental fate and impacts of microplastics in soil ecosystems: progress and perspective. Science of the Total Environment, 708: 134841

[208]

Wang X H, Liu K, Zhu L X, Li C J, Song Z Y, Li D J. (2021b). Efficient transport of atmospheric microplastics onto the continent via the East Asian summer monsoon. Journal of Hazardous Materials, 414: 125477

[209]

Weber C J, Bigalke M. (2022). Opening space for plastics—Why spatial, soil and land use data are important to understand global soil (micro)plastic pollution. Microplastics, 1(4): 610–625

[210]

Wei Y Q, Chen Y L, Cao X D, Yeh T C J, Zhang J, Zhan Z, Cui Y D, Li H. (2024). Modeling of microplastics migration in soil and groundwater: insights into dispersion and particle property effects. Environmental Science & Technology, 58(34): 15224–15235

[211]

Wen D S, Chen Y Y, Tong Y Z, Wang H, Zhang H B, Luo Y M. (2021). Quantification of microplastics in soils using accelerated solvent extraction: comparison with a visual sorting method. Bulletin of Environmental Contamination and Toxicology, 107(4): 770–777

[212]

Wiesinger H, Wang Z Y, Hellweg S. (2021). Deep dive into plastic monomers, additives, and processing aids. Environmental Science & Technology, 55(13): 9339–9351

[213]

Wu J Y, Zhao X H, Gao L, Li Y, Wang D. (2022). Use of interspecies correlation estimation (ICE) models to derive water quality criteria of microplastics for protecting aquatic organisms. International Journal of Environmental Research and Public Health, 19(16): 10307

[214]

Xing R Z, Chen Z W, Sun H Y, Liao H P, Qin S P, Liu W Z, Zhang Y, Chen Z, Zhou S G. (2022). Free radicals accelerate in situ ageing of microplastics during sludge composting. Journal of Hazardous Materials, 429: 128405

[215]

Xu J, Zuo R, Wu G L, Liu J C, Liu J W, Huang C X, Wang Z W. (2024a). Global distribution, drivers, and potential hazards of microplastics in groundwater: a review. Science of the Total Environment, 954: 176194

[216]

Xu L H, Wang Y H, Wei F, Dai Z X, Zhang M. (2024b). Transport behavior of microplastics in soil-water environments and its dependence on soil components. Environmental Pollution, 346: 123542

[217]

Xu T T, Wang X Y, Shi Q D, Liu H P, Chen Y T, Liu J. (2024c). Review of soil microplastic degradation pathways and remediation techniques. International Journal of Environmental Research, 18(5): 77

[218]

Xue Y H, Li J, Jin T, Liu D S, Zou G Y, Li F, Wang K, Xu L. (2023). Meso- and microplastic contamination in mulching cultivated soil at a national scale, China. Journal of Cleaner Production, 418: 138215

[219]

Ya H B, Xing Y, Zhang T, Lv M J, Jiang B. (2022). LDPE microplastics affect soil microbial community and form a unique plastisphere on microplastics. Applied Soil Ecology, 180: 104623

[220]

Ya H B, Zhang T, Xing Y, Lv M J, Wang X, Jiang B. (2023). Co-existence of polyethylene microplastics and tetracycline on soil microbial community and ARGs. Chemosphere, 335: 139082

[221]

Yan Z W, Lin S, Hu R G, Cheng H G, Xiang R B, Xu H, Zhao J S. (2024). Effects of biodegradable microplastics and straw addition on soil greenhouse gas emissions. Environmental Pollution, 356: 124315

[222]

Yang H R, Yan Y M, Yu Y K, He Y L, Fu B, Wang J. (2022a). Distribution, sources, migration, influence and analytical methods of microplastics in soil ecosystems. Ecotoxicology and Environmental Safety, 243: 114009

[223]

Yang J, Li L Z, Li R J, Xu L, Shen Y C, Li S M, Tu C, Wu L H, Christie P, Luo Y M. (2021a). Microplastics in an agricultural soil following repeated application of three types of sewage sludge: a field study. Environmental Pollution, 289: 117943

[224]

Yang J, Li R J, Zhou Q, Li L Z, Li Y, Tu C, Zhao X Y, Xiong K X, Christie P, Luo Y M. (2021b). Abundance and morphology of microplastics in an agricultural soil following long-term repeated application of pig manure. Environmental Pollution, 272: 116028

[225]

YangJSong K FTuCLiL ZFengY D LiR JXu HLuoY M (2023a). Distribution and weathering characteristics of microplastics in paddy soils following long-term mulching: a field study in Southwest China. Science of the Total Environment, 858(Pt 2): 159774

[226]

Yang L, Kang S C, Wang Z Q, Luo X, Guo J M, Gao T G, Chen P F, Yang C D, Zhang Y L. (2022b). Microplastic characteristic in the soil across the Tibetan Plateau. Science of the Total Environment, 828: 154518

[227]

Yang S J, Lee B T, Kim S O, Park S. (2024). Review of microplastics in soils: state-of-the-art occurrence, transport, and investigation methods. Journal of Soils and Sediments, 24(2): 779–792

[228]

Yang X, Man Y B, Wong M H, Owen R B, Chow K L. (2022c). Environmental health impacts of microplastics exposure on structural organization levels in the human body. Science of the Total Environment, 825: 154025

[229]

Yang X Y, Zhang Z M, Zhang J C. (2023b). Study of soil microplastic pollution and influencing factors based on environmental fragility theory. Science of the Total Environment, 899: 165435

[230]

Yang Y T, Chen J, Chen Z, Yu Z, Xue J C, Luan T G, Chen S S, Zhou S G. (2022d). Mechanisms of polystyrene microplastic degradation by the microbially driven Fenton reaction. Water Research, 223: 118979

[231]

Yong C Q Y, Valiyaveettil S, Tang B L. (2020). Toxicity of microplastics and nanoplastics in mammalian systems. International Journal of Environmental Research and Public Health, 17(5): 1509

[232]

Yoon J H, Kim B H, Kim K H. (2024). Distribution of microplastics in soil by types of land use in metropolitan area of Seoul. Applied Biological Chemistry, 67(1): 15

[233]

Yu H, Zhang Y, Tan W B, Zhang Z. (2022). Microplastics as an emerging environmental pollutant in agricultural soils: effects on ecosystems and human health. Frontiers in Environmental Science, 10: 855292

[234]

Yuan P K, Wang Y, Chen X Q, Gao P. (2024). An overview of microplastic pollution in the environment over the megacity of Shanghai during 2013–2022. Science of the Total Environment, 912: 168986

[235]

Zeng D Y, Kang Y, Chen J H, Li A Y, Chen W Y, Li Z M, He L T, Zhang Q Y, Luo J W, Zeng L X. (2019). Dermal bioaccessibility of plasticizers in indoor dust and clothing. Science of the Total Environment, 672: 798–805

[236]

Zhang B, Yang X, Chen L, Chao J Y, Teng J, Wang Q. (2020). Microplastics in soils: a review of possible sources, analytical methods and ecological impacts. Journal of Chemical Technology and Biotechnology, 95(8): 2052–2068

[237]

Zhang J J, Zou G Y, Wang X X, Ding W C, Xu L, Liu B Y, Mu Y S, Zhu X R, Song L J, Chen Y H. (2021a). Exploring the occurrence characteristics of microplastics in typical maize farmland soils with long-term plastic film mulching in Northern China. Frontiers in Marine Science, 8: 800087

[238]

Zhang M G, Tan M M, Ji R, Ma R H, Li C L. (2022a). Current situation and ecological effects of microplastic pollution in soil. Reviews of Environmental Contamination and Toxicology, 260(1): 11

[239]

Zhang M Y, Liu L H, Xu D Y, Zhang B H, Li J J, Gao B. (2022b). Small-sized microplastics (< 500 μm) in roadside soils of Beijing, China: accumulation, stability, and human exposure risk. Environmental Pollution, 304: 119121

[240]

Zhang S L, Wang W, Yan P K, Wang J Q, Yan S H, Liu X B, Aurangzeib M. (2023a). Microplastic migration and distribution in the terrestrial and aquatic environments: a threat to biotic safety. Journal of Environmental Management, 333: 117412

[241]

Zhang S W, Li Y X, Jiang L S, Han W, Zhao Y, Jiang X M, Li J, Shi W Z, Zhang X L. (2023b). Organic fertilizer facilitates the soil microplastic surface degradation and enriches the diversity of bacterial biofilm. Journal of Hazardous Materials, 459: 132139

[242]

Zhang X T, Chen Y X, Li X Y, Zhang Y L, Gao W, Jiang J, Mo A Y, He D F. (2022c). Size/shape-dependent migration of microplastics in agricultural soil under simulative and natural rainfall. Science of the Total Environment, 815: 152507

[243]

Zhang X Y, Li Y, Ouyang D, Lei J J, Tan Q L, Xie L L, Li Z Q, Liu T, Xiao Y M, Farooq T H. . (2021b). Systematical review of interactions between microplastics and microorganisms in the soil environment. Journal of Hazardous Materials, 418: 126288

[244]

Zhang Y, Wang K, Chen W Z, Ba Y, Khan K, Chen W, Tu C, Chen C E, Xu L. (2022d). Effects of land use and landscape on the occurrence and distribution of microplastics in soil, China. Science of the Total Environment, 847: 157598

[245]

Zhang Y Y, Cai C, Gu Y F, Shi Y S, Gao X S. (2022e). Microplastics in plant-soil ecosystems: a meta-analysis. Environmental Pollution, 308: 119718

[246]

Zhao S L, Zhang Z Q, Chen L, Cui Q L, Cui Y X, Song D X, Fang L C. (2022a). Review on migration, transformation and ecological impacts of microplastics in soil. Applied Soil Ecology, 176: 104486

[247]

Zhao T T, Lozano Y M, Rillig M C. (2021). Microplastics increase soil pH and decrease microbial activities as a function of microplastic shape, polymer type, and exposure time. Frontiers in Environmental Science, 9: 675803

[248]

Zhao X L, Liu Z H, Zuo J C, Cai L, Liu Y H, Han J Q, Zhang M. (2024). Comparison of oil extraction and density extraction method to extract microplastics for typical agricultural soils in China. Agronomy, 14(6): 1193

[249]

Zhao Z Y, Zhao K Y, Zhang T S, Xu Y W, Chen R L, Xue S, Liu M J, Tang D, Yang X M, Giessen V. (2022b). Irrigation-facilitated low-density polyethylene microplastic vertical transport along soil profile: an empirical model developed by column experiment. Ecotoxicology and Environmental Safety, 247: 114232

[250]

Zhou B Y, Wang J Q, Zhang H B, Shi H H, Fei Y F, Huang S Y, Tong Y Z, Wen D S, Luo Y M, Barceló D. (2020a). Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: multiple sources other than plastic mulching film. Journal of Hazardous Materials, 388: 121814

[251]

Zhou Q, Zhang H B, Fu C C, Zhou Y, Dai Z F, Li Y, Tu C, Luo Y M. (2018). The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea. Geoderma, 322: 201–208

[252]

Zhou Q X, Teng Y, Liu Y. (2017). A study on soil-environmental quality criteria and standards of arsenic. Applied Geochemistry, 77: 158–166

[253]

Zhou Y F, He G, Jiang X L, Yao L G, Ouyang L, Liu X Y, Liu W Z, Liu Y. (2021). Microplastic contamination is ubiquitous in riparian soils and strongly related to elevation, precipitation and population density. Journal of Hazardous Materials, 411: 125178

[254]

Zhou Y J, Wang J X, Zou M M, Jia Z Y, Zhou S L, Li Y. (2020b). Microplastics in soils: a review of methods, occurrence, fate, transport, ecological and environmental risks. Science of the Total Environment, 748: 141368

[255]

Zhou Z D, Hua J F, Xue J H, Yu C G. (2024). Differential impacts of polyethylene microplastic and additives on soil nitrogen cycling: a deeper dive into microbial interactions and transformation mechanisms. Science of the Total Environment, 942: 173771

[256]

Zhu J Y, Dong G W, Feng F, Ye J, Liao C H, Wu C H, Chen S C. (2023). Microplastics in the soil environment: focusing on the sources, its transformation and change in morphology. Science of the Total Environment, 896: 165291

[257]

Zhu X, Hoffman M J, Rochman C M. (2024). A city-wide emissions inventory of plastic pollution. Environmental Science & Technology, 58(7): 3375–3385

[258]

Zhu Y D, Shao T J, Wang Y H, Wang R Y. (2022). Review and future trends of soil microplastics research: visual analysis based on Citespace. Environmental Sciences Europe, 34: 122

[259]

Ziani K, Ioniță-Mîndrican C B, Mititelu M, Neacșu S M, Negrei C, Moroșan E, Drăgănescu D, Preda O T. (2023). Microplastics: a real global threat for environment and food safety: a state of the art review. Nutrients, 15(3): 617

[260]

Zou X Y, Cao K B, Wang Q, Kang S L, Wang Y (2024). Enhanced degradation of polylactic acid microplastics in acidic soils—Does the application of biochar matter? Journal of Hazardous Materials, 477: 135262

RIGHTS & PERMISSIONS

Higher Education Press 2025

AI Summary AI Mindmap
PDF (3262KB)

Supplementary files

Supplementary materials

894

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/