Long-term exposure to PM2.5 components and mortality in 237 Chinese cities: a modelling study

Siru Yang , Qiongyu Zhu , Chunshuo Chen , Jiami Liang , Mengmeng Li , Zhou Yang , Kaili Lin , Chunlei Han , Di Liu , Jun Yang

Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (9) : 128

PDF (2835KB)
Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (9) : 128 DOI: 10.1007/s11783-025-2048-x
RESEARCH ARTICLE

Long-term exposure to PM2.5 components and mortality in 237 Chinese cities: a modelling study

Author information +
History +
PDF (2835KB)

Abstract

Evidence on the lagged effects of long-term exposure to fine particulate matter (PM2.5) components is limited. Data on air pollution, meteorology, population health and socioeconomic status were collected from 237 major cities in China between 2015 and 2019. The differences-in-differences model was established to analyze the lagged effects of the annual mean concentration of PM2.5 components on mortality. The PM2.5 component-mortality associations exhibited long-term lag patterns, with statistically significantly at lag 2 and lag 3 yr. During the cumulative lags of 0–3 yr, each inter-quartile range increase in exposure to EC, OC, SO42–, NO3, and NH4+, total mortality risk increased by 9% (RR=1.09; 95%CI: 1.02, 1.16), 8% (RR=1.08; 95%CI: 1.01, 1.15), 16% (RR=1.16; 95%CI: 1.07, 1.25), 22% (RR=1.22; 95%CI: 1.08, 1.38), and 16% (RR=1.16; 95%CI: 1.04, 1.29), respectively. Additionally, the observed associations between PM2.5 components and mortality risks were much stronger among the high-longitude (eastern) regions, as well as areas with high air pressure and high GDP per capita. These findings may help provide critical implication for formulating a multi-domain cooperative control strategies on PM2.5 components.

Graphical abstract

Keywords

PM 2.5 components / Long-term exposure / Mortality / Lagged effects / Causal inference

Highlight

● The PM2.5 component-mortality associations exhibited long-term lag patterns.

● PM2.5 component-mortality associations exhibited J-shaped patterns.

● Higher longitude, air pressure, and GDP per capita areas suffered greatly.

Cite this article

Download citation ▾
Siru Yang, Qiongyu Zhu, Chunshuo Chen, Jiami Liang, Mengmeng Li, Zhou Yang, Kaili Lin, Chunlei Han, Di Liu, Jun Yang. Long-term exposure to PM2.5 components and mortality in 237 Chinese cities: a modelling study. Front. Environ. Sci. Eng., 2025, 19(9): 128 DOI:10.1007/s11783-025-2048-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Altman D G, Bland J M. (2003). Interaction revisited: the difference between two estimates. BMJ, 326(7382): 219

[2]

AweY ALarsen B KSanchez-TrianaE (2022). The Global Health Cost of PM2.5 Air Pollution: a Case for Action Beyond 2021. Washington, DC: The World Bank

[3]

Bind M A, Peters A, Koutrakis P, Coull B, Vokonas P, Schwartz J. (2016). Quantile regression analysis of the distributional effects of air pollution on blood pressure, heart rate variability, blood lipids, and biomarkers of inflammation in elderly American men: the normative aging study. Environmental Health Perspectives, 124(8): 1189–1198

[4]

Burnett R, Chen H, Szyszkowicz M, Fann N, Hubbell B, Pope III C A, Apte J S, Brauer M, Cohen A, Weichenthal S. . (2018). Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proceedings of the National Academy of Sciences of the United States of America, 115(38): 9592–9597

[5]

Cao Y Q, Ma Q X, Chu B W, He H. (2023). Homogeneous and heterogeneous photolysis of nitrate in the atmosphere: state of the science, current research needs, and future prospects. Frontiers of Environmental Science & Engineering, 17(4): 48

[6]

Chen K, Wolf K, Breitner S, Gasparrini A, Stafoggia M, Samoli E, Andersen Z J, Bero-Bedada G, Bellander T, Hennig F. . (2018). Two-way effect modifications of air pollution and air temperature on total natural and cardiovascular mortality in eight European urban areas. Environment International, 116: 186–196

[7]

Chen R J, Qiao L P, Li H C, Zhao Y, Zhang Y H, Xu W X, Wang C C, Wang H L, Zhao Z H, Xu X H. . (2015). Fine particulate matter constituents, nitric oxide synthase DNA methylation and exhaled nitric oxide. Environmental Science & Technology, 49(19): 11859–11865

[8]

Chen S J, Dong H, Li M M, Huang L, Lin G Z, Liu Q Y, Wang B G, Yang J. (2022). Interactive effects between temperature and PM2.5 on mortality: a study of varying coefficient distributed lag model-Guangzhou, Guangdong Province, China, 2013–2020. China CDC Weekly, 4(26): 570–576

[9]

Chen S J, Liu D, Huang L, Guo C, Gao X K, Xu Z W, Yang Z, Chen Y, Li M M, Yang J. (2024). Global associations between long-term exposure to PM2.5 constituents and health: a systematic review and meta-analysis of cohort studies. Journal of Hazardous Materials, 474: 134715

[10]

Delfino R J, Staimer N, Tjoa T, Polidori A, Arhami M, Gillen D L, Kleinman M T, Vaziri N D, Longhurst J, Zaldivar F. . (2008). Circulating biomarkers of inflammation, antioxidant activity, and platelet activation are associated with primary combustion aerosols in subjects with coronary artery disease. Environmental Health Perspectives, 116(7): 898–906

[11]

Diao B D, Ding L, Zhang Q, Na J, Cheng J H. (2020). Impact of urbanization on PM2.5-related health and economic loss in China 338 cities. International Journal of Environmental Research and Public Health, 17(3): 990

[12]

Fu X, Wang S X, Chang X, Cai S Y, Xing J, Hao J M. (2016). Modeling analysis of secondary inorganic aerosols over China: pollution characteristics, and meteorological and dust impacts. Scientific Reports, 6: 35992

[13]

Geng G N, Xiao Q Y, Liu S G, Liu X D, Cheng J, Zheng Y X, Xue T, Tong D, Zheng B, Peng Y R. . (2021). Tracking air pollution in China: near real-time PM2.5 retrievals from multisource data fusion. Environmental Science & Technology, 55(17): 12106–12115

[14]

Geng G N, Zhang Q, Tong D, Li M, Zheng Y X, Wang S W, He K B. (2017). Chemical composition of ambient PM2.5 over China and relationship to precursor emissions during 2005–2012. Atmospheric Chemistry and Physics, 17(14): 9187–9203

[15]

Han C L, Xu R B, Ye T T, Xie Y, Zhao Y, Liu H Y, Yu W H, Zhang Y J, Li S S, Zhang Z W. . (2022). Mortality burden due to long-term exposure to ambient PM2.5 above the new WHO air quality guideline based on 296 cities in China. Environment International, 166: 107331

[16]

Hao H, Wang Y F, Zhu Q, Zhang H S, Rosenberg A, Schwartz J, Amini H, Van Donkelaar A, Martin R, Liu P F. . (2023). National cohort study of long-term exposure to PM2.5 components and mortality in medicare american older adults. Environmental Science & Technology, 57(17): 6835–6843

[17]

Hart J E, Puett R C, Rexrode K M, Albert C M, Laden F. (2015). Effect modification of long-term air pollution exposures and the risk of incident cardiovascular disease in US women. Journal of the American Heart Association, 4(12): e002301

[18]

He Y, Jiang Y X, Yang Y, Xu J H, Zhang Y, Wang Q M, Shen H P, Zhang Y P, Yan D H, Peng Z Q. . (2022). Composition of fine particulate matter and risk of preterm birth: a nationwide birth cohort study in 336 Chinese cities. Journal of Hazardous Materials, 425: 127645

[19]

Hong Y, Sun J Y, Ma Y J, Wang Y F, Li X L, Zhang Y H, Liu N W, Zhou D P. (2022). Formation and evolution of secondary particulate matter during heavy haze pollution episodes in winter in a severe cold climate region of Northeast China. Environmental Science and Pollution Research, 29(45): 67821–67836

[20]

Hu J X, Zhou M G, Qin M F, Tong S L, Hou Z L, Xu Y J, Zhou C L, Xiao Y Z, Yu M, Huang B. . (2022). Long-term exposure to ambient temperature and mortality risk in China: a nationwide study using the difference-in-differences design. Environmental Pollution, 292: 118392

[21]

Hu S Y, Zhao G, Tan T Y, Li C C, Zong T M, Xu N, Zhu W F, Hu M. (2021). Current challenges of improving visibility due to increasing nitrate fraction in PM2.5 during the haze days in Beijing, China. Environmental Pollution, 290: 118032

[22]

Huang F F, Li X, Wang C, Xu Q, Wang W, Luo Y X, Tao L X, Gao Q, Guo J, Chen S P. . (2015). PM2.5 spatiotemporal variations and the relationship with meteorological factors during 2013–2014 in Beijing, China. PLoS One, 10(11): e0141642

[23]

Jin H Y, Chen X H, Zhong R D, Liu M Y. (2022). Influence and prediction of PM2.5 through multiple environmental variables in China. Science of the Total Environment, 849: 157910

[24]

Kong L W, Feng M, Liu Y F, Zhang Y Y, Zhang C, Li C L, Qu Y, An J L, Liu X G, Tan Q W. . (2020). Elucidating the pollution characteristics of nitrate, sulfate and ammonium in PM2.5 in Chengdu, southwest China, based on 3-year measurements. Atmospheric Chemistry and Physics, 20(19): 11181–11199

[25]

Kriit H K, Andersson E M, Carlsen H K, Andersson N, Ljungman P L S, Pershagen G, Segersson D, Eneroth K, Gidhagen L, Spanne M. . (2022). Using distributed lag non-linear models to estimate exposure lag-response associations between long-term air pollution exposure and incidence of cardiovascular disease. International Journal of Environmental Research and Public Health, 19(5): 2630

[26]

Landrigan P J, Fuller R, Acosta N J R, Adeyi O, Arnold R, Basu N, Baldé A B, Bertollini R, Bose-O’Reilly S, Boufford J I. . (2018). The lancet commission on pollution and health. The Lancet, 391(10119): 462–512

[27]

Li S C, Guo B, Jiang Y, Wang X, Chen L, Wang X, Chen T, Yang L, Silang Y, Hong F. . (2023). Long-term exposure to ambient PM2.5 and its components associated with diabetes: evidence from a large population-based cohort from China. Diabetes Care, 46(1): 111–119

[28]

Li X, Feng Y J, Liang H Y. (2017). The impact of meteorological factors on PM2.5 variations in Hong Kong. IOP Conference Series: Earth and Environmental Science, 78: 012003

[29]

Li Y, Ma Z Q, Zheng C J, Shang Y. (2015). Ambient temperature enhanced acute cardiovascular-respiratory mortality effects of PM2.5 in Beijing, China. International Journal of Biometeorology, 59(12): 1761–1770

[30]

Liang R M, Chen R J, Yin P, Van Donkelaar A, Martin R V, Burnett R, Cohen A J, Brauer M, Liu C, Wang W D. . (2022). Associations of long-term exposure to fine particulate matter and its constituents with cardiovascular mortality: a prospective cohort study in China. Environment International, 162: 107156

[31]

Lin B Q, Du Z L. (2015). How China’s urbanization impacts transport energy consumption in the face of income disparity. Renewable and Sustainable Energy Reviews, 52: 1693–1701

[32]

Liu L J, Luo S Q, Zhang Y Y, Yang Z M, Zhou P X, Mo S C, Zhang Y Q. (2022). Longitudinal impacts of PM2.5 constituents on adult mortality in China. Environmental Science & Technology, 56(11): 7224–7233

[33]

Liu M M, Huang Y N, Jin Z, Ma Z W, Liu X Y, Zhang B, Liu Y, Yu Y, Wang J N, Bi J. . (2017a). The nexus between urbanization and PM2.5 related mortality in China. Environmental Pollution, 227: 15–23

[34]

Liu M M, Huang Y N, Ma Z W, Jin Z, Liu X Y, Wang H K, Liu Y, Wang J N, Jantunen M, Bi J. . (2017b). Spatial and temporal trends in the mortality burden of air pollution in China: 2004–2012. Environment International, 98: 75–81

[35]

Liu T, Cai Y Y, Feng B X, Cao G X, Lin H L, Xiao J P, Li X, Liu S, Pei L, Fu L. . (2018). Long-term mortality benefits of air quality improvement during the twelfth five-year-plan period in 31 provincial capital cities of China. Atmospheric Environment, 173: 53–61

[36]

Lonati G, Giugliano M, Ozgen S. (2008). Primary and secondary components of PM2.5 in Milan (Italy). Environment International, 34(5): 665–670

[37]

Lu D B, Xu J H, Yang D Y, Zhao J N. (2017). Spatio-temporal variation and influence factors of PM2.5 concentrations in China from 1998 to 2014. Atmospheric Pollution Research, 8(6): 1151–1159

[38]

Lu M M, Tang X, Feng Y C, Wang Z F, Chen X S, Kong L, Ji D S, Liu Z R, Liu K X, Wu H J. . (2021). Nonlinear response of SIA to emission changes and chemical processes over eastern and central China during a heavy haze month. Science of the Total Environment, 788: 147747

[39]

Ma Z W, Hu X F, Huang L, Bi J, Liu Y. (2014). Estimating ground-level PM2.5 in China using satellite remote sensing. Environmental Science & Technology, 48(13): 7436–7444

[40]

Magalhaes S, Baumgartner J, Weichenthal S. (2018). Impacts of exposure to black carbon, elemental carbon, and ultrafine particles from indoor and outdoor sources on blood pressure in adults: a review of epidemiological evidence. Environmental Research, 161: 345–353

[41]

Murray C J L, Aravkin A Y, Zheng P, Abbafati C, Abbas K M, Abbasi-Kangevari M, Abd-Allah F, Abdelalim A, Abdollahi M, Abdollahpour I. . (2020). Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 396(10258): 1223–1249

[42]

Niu Y, Chen R J, Xia Y J, Cai J, Ying Z K, Lin Z J, Liu C, Chen C, Peng L, Zhao Z H. . (2018). Fine particulate matter constituents and stress hormones in the hypotha-lamus–pituitary–adrenal axis. Environment International, 119: 186–192

[43]

Ostro B, Feng W Y, Broadwin R, Green S, Lipsett M. (2007). The effects of components of fine particulate air pollution on mortality in California: results from CALFINE. Environmental Health Perspectives, 115(1): 13–19

[44]

Ostro B, Lipsett M, Reynolds P, Goldberg D, Hertz A, Garcia C, Henderson K D, Bernstein L. (2010). Long-term exposure to constituents of fine particulate air pollution and mortality: results from the California teachers study. Environmental Health Perspectives, 118(3): 363–369

[45]

Peralta A A, Schwartz J, Gold D R, Coull B, Koutrakis P. (2021). Associations between acute and long-term exposure to PM2.5 components and temperature with QT interval length in the VA normative aging study. European Journal of Preventive Cardiology, 28(14): 1610–1617

[46]

Pope III C A, Burnett R T, Thun M J, Calle E E, Krewski D, Ito K, Thurston G D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA, 287(9): 1132–1141

[47]

Pope III C A, Dockery D W. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the Air & Waste Management Association, 56(6): 709–742

[48]

Qi G Z, Wang Z B, Wei L J, Wang Z X. (2022). Multidimensional effects of urbanization on PM2.5 concentration in China. Environmental Science and Pollution Research, 29(51): 77081–77096

[49]

Rajagopalan S, Brook R D. (2012). Air pollution and type 2 diabetes: mechanistic insights. Diabetes, 61(12): 3037–3045

[50]

Walsh M P. (2014). PM2.5: global progress in controlling the motor vehicle contribution. Frontiers of Environmental Science & Engineering, 8(1): 1–17

[51]

Wang Y, Kloog I, Coull B A, Kosheleva A, Zanobetti A, Schwartz J D. (2016). Estimating causal effects of long-term PM2.5 exposure on mortality in New Jersey. Environmental Health Perspectives, 124(8): 1182–1188

[52]

Wang Y F, Xiao S Y, Zhang Y H, Chang H, Martin R V, Van Donkelaar A, Gaskins A, Liu Y, Liu P F, Shi L H. (2022). Long-term exposure to PM2.5 major components and mortality in the southeastern United States. Environment International, 158: 106969

[53]

Wu S W, Deng F R, Huang J, Wang H Y, Shima M, Wang X, Qin Y, Zheng C J, Wei H Y, Hao Y. . (2013). Blood pressure changes and chemical constituents of particulate air pollution: results from the healthy volunteer natural relocation (HVNR) study. Environmental Health Perspectives, 121(1): 66–72

[54]

Wu S W, Wang B, Yang D, Wei H Y, Li H Y, Pan L, Huang J, Wang X, Qin Y, Zheng C J. . (2016). Ambient particulate air pollution and circulating antioxidant enzymes: a repeated-measure study in healthy adults in Beijing, China. Environmental Pollution, 208: 16–24

[55]

Yang J, Sakhvidi M J Z, De Hoogh K, Vienneau D, Siemiatyck J, Zins M, Goldberg M, Chen J, Lequy E, Jacquemin B. (2021a). Long-term exposure to black carbon and mortality: a 28-year follow-up of the GAZEL cohort. Environment International, 157: 106805

[56]

Yang J, Zhou M G, Li M M, Yin P, Hu J L, Zhang C L, Wang H, Liu Q Y, Wang B G. (2020). Fine particulate matter constituents and cause-specific mortality in China: a nationwide modelling study. Environment International, 143: 105927

[57]

Yang S R, Li M M, Guo C, Requia W J, Sakhvidi M J Z, Lin K L, Zhu Q Y, Chen Z Y, Cao P H, Yang L. . (2025). Associations of long-term exposure to nitrogen oxides with all-cause and cause-specific mortality. Nature Communications, 16(1): 1730

[58]

Yang Y, Li J, Zhu G B, Yuan Q Q. (2019). Spatio–temporal relationship and evolvement of socioeconomic factors and PM2.5 in China during 1998–2016. International Journal of Environmental Research and Public Health, 16(7): 1149

[59]

Yang Z, Yang J, Li M M, Chen J J, Ou C Q. (2021b). Nonlinear and lagged meteorological effects on daily levels of ambient PM2.5 and O3: evidence from 284 Chinese cities. Journal of Cleaner Production, 278: 123931

[60]

Yin Z X, Huang X F, He L Y, Cao S Z, Zhang J J. (2020). Trends in ambient air pollution levels and PM2.5 chemical compositions in four Chinese cities from 1995 to 2017. Journal of Thoracic Disease, 12(10): 6396–6410

[61]

Yu W H, Guo Y M, Shi L H, Li S S. (2020). The association between long-term exposure to low-level PM2.5 and mortality in the state of Queensland, Australia: a modelling study with the difference-in-differences approach. PLoS Medicine, 17(6): e1003141

[62]

Zhang H F, Wang Z H, Zhang W Z. (2016). Exploring spatiotemporal patterns of PM2.5 in China based on ground-level observations for 190 cities. Environmental Pollution, 216: 559–567

[63]

Zhang S P, Zheng H T, Liu J, Shi Y, Chen T Z, Xue C Y, Zhang F F, Jiang Y Q, Zhang X P, Sahu S K. . (2024). Underestimated benefits of NOx control in reducing SNA and O3 based on missing heterogeneous HONO sources. Frontiers of Environmental Science & Engineering, 18(3): 30

[64]

Zhang X X, Cheng C X. (2022). Temporal and spatial heterogeneity of PM2.5 related to meteorological and socioeconomic factors across China during 2000–2018. International Journal of Environmental Research and Public Health, 19(2): 707

[65]

Zhang Y J, Cai J, Wang S X, He K B, Zheng M. (2017). Review of receptor-based source apportionment research of fine particulate matter and its challenges in China. Science of the Total Environment, 586: 917–929

[66]

Zhao J J, Chen S B, Wang H, Ren Y, Du K, Xu W H, Zheng H, Jiang B. (2012). Quantifying the impacts of socio-economic factors on air quality in Chinese cities from 2000 to 2009. Environmental Pollution, 167: 148–154

RIGHTS & PERMISSIONS

Higher Education Press 2025

AI Summary AI Mindmap
PDF (2835KB)

Supplementary files

FSE-25088-OF-YSR_suppl_1

406

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/