Sub-chronic exposure to ambient ozone induced liver and lung damage: raveled by lung-liver axis

Linkang Chen , Yibin Jia , Hongtian Su , Liuwen Chen , Ping Zhang , Dan Li , Jianmin Chen

Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (9) : 118

PDF (9528KB)
Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (9) : 118 DOI: 10.1007/s11783-025-2038-z
RESEARCH ARTICLE

Sub-chronic exposure to ambient ozone induced liver and lung damage: raveled by lung-liver axis

Author information +
History +
PDF (9528KB)

Abstract

Ozone (O3) has become a major air pollutant worldwide, posing an alarming threat to public health. However, whether the exposure to O3 induces liver and lung damage remains unclear, alongside the underlying mechanisms. In this study, the mice were exposed to environmentally-relevant concentrations of O3 for 30 d, alongside the systemic analysis of the injuries in lungs and livers. The results revealed that O3 exposure could reduce weight gain and induce histopathological damage in both lungs and livers, accompanied by dysregulated oxidative stress-related genes and elevated pro-inflammatory factors. Additionally, the lung microbiome analysis demonstrated that the microbial abundance was decreased and community structure was altered, and it was indicated by the network analysis that the complexity of the microbial network was diminished. Besides, the aspartate aminotransferase (AST) activity, malondialdehyde (MDA), and Fe2+ levels were found to be elevated after O3 exposure by the hepatic profile assessment, accompanied by depleted glutathione (GSH) both in liver and plasma. These alterations were associated with a ferroptosis process in the liver, and it was confirmed by lipidomics that the most significantly impacted processes were ferroptosis-related. Additionally, multi-omics mediation analysis demonstrated that lung injury could mediate liver lipid dysregulation through lung microbiota. These findings provide novel mechanistic insights into the toxicological mechanism of O3 via the lung-liver axis.

Graphical abstract

Keywords

Ozone / Environmentally-relevant O 3 concentrations / Lung microbial / Liver ferroptosis / Lung-liver axis

Highlight

● O3 reduced lung microbiota α -diversity and network stability.

● O3 induced lung dysbiosis and pulmonary injury.

● O3 exposure impaired weight gain and elevated hepatic AST, MDA, and Fe2+.

● Lung injury mediated liver lipid dysregulation via lung microbiota modulation.

Cite this article

Download citation ▾
Linkang Chen, Yibin Jia, Hongtian Su, Liuwen Chen, Ping Zhang, Dan Li, Jianmin Chen. Sub-chronic exposure to ambient ozone induced liver and lung damage: raveled by lung-liver axis. Front. Environ. Sci. Eng., 2025, 19(9): 118 DOI:10.1007/s11783-025-2038-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bi Y G, Liu S L, Qin X, Abudureyimu M, Wang L, Zou R J, Ajoolabady A, Zhang W J, Peng H, Ren J. . (2024). FUNDC1 interacts with GPx4 to govern hepatic ferroptosis and fibrotic injury through a mitophagy-dependent manner. Journal of Advanced Research, 55: 45–60

[2]

Cao L, Yang L, Swanson C S, Li S, He Q. (2021). Comparative analysis of impact of human occupancy on indoor microbiomes. Frontiers of Environmental Science & Engineering, 15(5): 89

[3]

Chen L K, Li C J, Zhong X T, Lai C Z, Zhang B, Luo Y, Guo H H, Liang K Q, Fang J W, Zhu X. . (2023). The gut microbiome promotes arsenic metabolism and alleviates the metabolic disorder for their mammal host under arsenic exposure. Environment International, 171: 107660

[4]

Chen L M, Zhernakova D V, Kurilshikov A, Andreu-Sánchez S, Wang D M, Augustijn H E, Vich Vila A, Weersma R K, Medema M H, Netea M G. . (2022). Influence of the microbiome, diet and genetics on inter-individual variation in the human plasma metabolome. Nature Medicine, 28(11): 2333–2343

[5]

Cheng R T, Wang L, Le S L, Yang Y F, Zhao C, Zhang X Q, Yang X, Xu T, Xu L T, Wiklund P. . (2022). A randomized controlled trial for response of microbiome network to exercise and diet intervention in patients with nonalcoholic fatty liver disease. Nature Communications, 13(1): 2555

[6]

Chung K F, Togbe D, Ryffel B. (2021). Editorial: ozone as a driver of lung inflammation and innate immunity and as a model for lung disease. Frontiers in Immunology, 12: 714161

[7]

Dabravolski S A, Bezsonov E E, Baig M S, Popkova T V, Orekhov A N. (2021). Mitochondrial lipid homeostasis at the crossroads of liver and heart diseases. International Journal of Molecular Sciences, 22(13): 6949

[8]

DimakopoulouK, Douros J, Samoli E, Karakatsani A, Rodopoulou S, Papakosta D, Grivas G, Tsilingiridis G, Mudway I, Moussiopoulos N, et al. (2020). Long-term exposure to ozone and children’s respiratory health: Results from the RESPOZE study. Environmental Research, 182, 109002

[9]

Douglas G M, Maffei V J, Zaneveld J R, Yurgel S N, Brown J R, Taylor C M, Huttenhower C, Langille M G I. (2020). PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 38(6): 685–688

[10]

Feng J, Teng Z J, Yang Y, Liu J Z, Chen S C. (2024). Effects of semaglutide on gut microbiota, cognitive function and inflammation in obese mice. PeerJ, 12: e17891

[11]

Gavzy S J, Kensiski A, Lee Z L, Mongodin E F, Ma B, Bromberg J S. (2023). Bifidobacterium mechanisms of immune modulation and tolerance. Gut Microbes, 15(2): 2291164

[12]

Ganusov V V, Auerbach J. (2014). Mathematical modeling reveals kinetics of lymphocyte recirculation in the whole organism. PLoS Computational Biology, 10(5): e1003586

[13]

Guo G Y, Yang W T, Sun C, Wang X Y. (2023). Dissecting the potential role of ferroptosis in liver diseases: an updated review. Free Radical Research, 57(4): 282–293

[14]

Herrero R, Sánchez G, Asensio I, López E, Ferruelo A, Vaquero J, Moreno L, de Lorenzo A, Bañares R, Lorente J A. (2020). Liver–lung interactions in acute respiratory distress syndrome. Intensive Care Medicine Experimental, 8(S1): 48

[15]

Hilliard K L, Allen E, Traber K E, Yamamoto K, Stauffer N M, Wasserman G A, Jones M R, Mizgerd J P, Quinton L J. (2015). The lung-liver axis: a requirement for maximal innate immunity and hepatoprotection during pneumonia. American Journal of Respiratory Cell and Molecular Biology, 53(3): 378–390

[16]

Hollingsworth J W, Kleeberger S R, Foster W M. (2007). Ozone and pulmonary innate immunity. Proceedings of the American Thoracic Society, 4(3): 240–246

[17]

Hong Y, Li H, Chen L K, Su H T, Zhang B, Luo Y, Li C J, Zhao Z G, Shao Y M, Guo L X. (2024). Short-term exposure to antibiotics begets long-term disturbance in gut microbial metabolism and molecular ecological networks. Microbiome, 12(1): 80

[18]

Hu L H, Feng X Y, Lan Y Z, Zhang J F, Nie P H, Xu H Y. (2024). Co-exposure with cadmium elevates the toxicity of microplastics: Trojan horse effect from the perspective of intestinal barrier. Journal of Hazardous Materials, 466: 133587

[19]

Huang Z, Guo L X, Chen X, Sun J D, Ye Y L, Sheng L N, Zhang Y Z, Zhou J Z, Ji J, Sun X L. (2023). Long-term chronic food-derived arsenic exposure induce the urinary system metabolic dysfunction in mice. Science of the Total Environment, 898: 165499

[20]

Jiang M, Jike Y, Liu K, Gan F, Zhang K, Xie M, Zhang J, Chen C, Zou X, Jiang X, et al. (2023). Exosome-mediated miR-144-3p promotes ferroptosis to inhibit osteosarcoma proliferation, migration, and invasion through regulating ZEB1. Molecular Cancer, 22, 113

[21]

Kartsoli S, Kostara C E, Tsimihodimos V, Bairaktari E T, Christodoulou D K(2020). Lipidomics in non-alcoholic fatty liver disease. World Journal of Hepatology, 12(8), 436–450

[22]

Kim H J, Kim H, Kim J J, Myeong N R, Kim T, Park T, Kim E, Choi J Y, Lee J, An S S. . (2018). Fragile skin microbiomes in megacities are assembled by a predominantly niche-based process. Science Advances, 4(3): e1701581

[23]

Lai C, Chen L K, Zhong X T, Tian X B, Zhang B, Li H, Zhang G W, Wang L P, Sun Y Q, Guo L X. (2024). Long-term arsenic exposure decreases mice body weight and liver lipid droplets. Environment International, 192: 109025

[24]

Law S H, Chan M L, Marathe G K, Parveen F, Chen C H, Ke L Y. (2019). An updated review of lysophosphatidylcholine metabolism in human diseases. International Journal of Molecular Sciences, 20(5): 1149

[25]

Lee M R, Suh H R, Kim M W, Cho J Y, Song H K, Jung Y S, Hwang D Y, Kim K S. (2018). Comparison of the anesthetic effects of 2,2,2-tribromoethanol on ICR mice derived from three different sources. Laboratory Animal Research, 34(4): 270–278

[26]

Li J, Wei H, Wang N, Chen J, Zhang W P, An Z, Song J, Liang Y X, Liu X W, Wu W D. (2024). Concurrent ozone and high temperature exacerbates nasal epithelial barrier damage in allergic rhinitis mice: insights from the nasal transcriptome and nasal microbiota. Journal of Hazardous Materials, 480: 135800

[27]

Li D, Li Y. (2020). The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduction and Targeted Therapy, 5: 108

[28]

Lin H Y, Ma X P, Yang X R, Chen Q Q, Wen Z L, Yang M K, Fu J Y, Yin T M, Lu G H, Qi J L. . (2022). Natural shikonin and acetyl-shikonin improve intestinal microbial and protein composition to alleviate colitis-associated colorectal cancer. International Immunopharmacology, 111: 109097

[29]

Liang D, Minikes A M, Jiang X. (2022). Ferroptosis at the intersection of lipid metabolism and cellular signaling. Molecular Cell, 82(12): 2215–2227

[30]

Liu H, Wang G C, Zhang J, Lu B J, Li D, Chen J M. (2024). Inhalation of diesel exhaust particulate matter accelerates weight gain via regulation of hypothalamic appetite-related genes and gut microbiota metabolism. Journal of Hazardous Materials, 466: 133570

[31]

Lu W, Jiang C, Chen Y, Lu Z, Xu X, Zhu L, Xi H, Ye G, Yan C, Chen J, et al. (2024). Altered metabolome and microbiome associated with compromised intestinal barrier induced hepatic lipid metabolic disorder in mice after subacute and subchronic ozone exposure. Environment International, 185: 108559

[32]

Mazumder M H H, Gandhi J, Majumder N, Wang L, Cumming R I, Stradtman S, Velayutham M, Hathaway Q A, Shannahan J, Hu G Q. . (2023). Lung-gut axis of microbiome alterations following co-exposure to ultrafine carbon black and ozone. Particle and Fibre Toxicology, 20(1): 15

[33]

Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. (2020). Environmental and health impacts of air pollution: a review. Frontiers in Public Health, 8: 14

[34]

Marchini T(2023). Redox and inflammatory mechanisms linking air pollution particulate matter with cardiometabolic derangements. Free Radical Biology and Medicine, 209: 320–341

[35]

Miller D B, Karoly E D, Jones J C, Ward W O, Vallanat B D, Andrews D L, Schladweiler M C, Snow S J, Bass, V L, Richards J E, et al. (2015). Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats. Toxicology and Applied Pharmacology, 286(2), 65–79

[36]

Mouskeftara T, Kalopitas G, Liapikos T, Arvanitakis K, Germanidis G, Gika H. (2024). Predicting non-alcoholic steatohepatitis: a lipidomics-driven machine learning approach. International Journal of Molecular Sciences, 25(11): 5965

[37]

Odom C V, Kim Y, Burgess C L, Baird L A, Korkmaz F T, Na E, Shenoy A T, Arafa E I, Lam T T, Jones M R. . (2021). Liver-dependent lung remodeling during systemic inflammation shapes responses to secondary infection. The Journal of Immunology, 207(7): 1891–1902

[38]

Niu Y, Zhou Y, Chen R, Yin P, Meng X, Wang W, Liu C, Ji J S, Qiu Y, Kan H, et al. (2022). Long-term exposure to ozone and cardiovascular mortality in China: a nationwide cohort study. The Lancet Planetary Health, 6(6), e496–e503

[39]

Radbel J, Meshanni J A, Vayas K N, Le-Hoang O, Abramova E, Zhou P H, Joseph L B, Laskin J D, Gow A J, Laskin D L. (2024). Effects of ozone exposure on lung injury, inflammation, and oxidative stress in a murine model of nonpneumonic endotoxemia. Toxicological Sciences, 200(2): 299–311

[40]

Ran Z, An Y, Zhou J, Yang J, Zhang Y, Yang J, Wang L, Li X, Lu D, Zhong J, et al. (2021). Subchronic exposure to concentrated ambient PM2.5 perturbs gut and lung microbiota as well as metabolic profiles in mice. Environmental Pollution, 272, 115987

[41]

Sakamoto W, Masuno T, Yokota H, Takizawa T. (2017). Expression profiles and circulation dynamics of rat mesenteric lymph microRNAs. Molecular Medicine Reports, 15(4): 1989–1996

[42]

Shu Y, He D, Li W, Wang M, Zhao S, Liu L, Cao Z, Liu R, Huang Y, Li, H, et al. (2020). Hepatoprotective effect of Citrus aurantium L. against APAP-induced liver injury by regulating liver lipid metabolism and apoptosis. International Journal of Biological Sciences, 16(5), 752–765

[43]

Singh S A, Suresh S, Vellapandian C. (2023). Ozone-induced neurotoxicity: In vitro and in vivo evidence. Ageing Research Reviews, 91: 102045

[44]

Sproston N R, Ashworth J J. (2018). Role of C-reactive protein at sites of inflammation and infection: frontiers in immunology, 9: 754

[45]

Sun N, Huang Y, Zhang X, Niu Y, Duan Y, Kan H, Zhang R. (2023). Involvements of Nrf2 and oxidative stress in the ozone-elicited exacerbation in an allergic rhinitis model. Ecotoxicology and Environmental Safety, 255: 114822

[46]

Tang J, Xu L Q, Zeng Y W, Gong F. (2021). Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway. International Immunopharmacology, 91: 107272

[47]

Tian Y C, Xu P C, Wu X Y, Gong Z H, Yang X W, Zhu H Z, Zhang J Y, Hu Y C, Li G K, Sang N. . (2024). Lung injuries induced by ozone exposure in female mice: potential roles of the gut and lung microbes. Environment International, 183: 108422

[48]

Vazquez Santiago J, Hata H, Martinez-Noriega E J, Inoue K. (2024). Ozone trends and their sensitivity in global megacities under the warming climate. Nature Communications, 15(1): 10236

[49]

Viebahn-Haensler R, León Fernández O S. (2024). Mitochondrial dysfunction, its oxidative stress-induced pathologies and redox bioregulation through low-dose medical ozone: a systematic review. Molecules, 29(12): 2738

[50]

Wagner J G, Barkauskas C E, Vose A, Lewandowski R P, Harkema J R, Tighe R M. (2020). Repetitive ozone exposures and evaluation of pulmonary inflammation and remodeling in diabetic mouse strains. Environmental Health Perspectives, 128(11): 117009

[51]

Wang L, Chen B H, Ouyang J Y, Mu Y S, Zhen L, Yang L, Xu W, Tang L N. (2025). Causal-inference machine learning reveals the drivers of China’s 2022 ozone rebound. Environmental Science and Ecotechnology, 24: 100524

[52]

WangPZhu S QVrekoussisMBrasseurG PWangS X ZhangH L (2022). Is atmospheric oxidation capacity better in indicating tropospheric O3 formation? Frontiers of Environmental Science & Engineering, 16(5): 65

[53]

Weng J L, Liu Q, Li C F, Feng Y, Chang Q, Xie M Q, Wang X H, Li M N, Zhang H, Mao R L. . (2024). TRPA1-PI3K/Akt-OPA1-ferroptosis axis in ozone-induced bronchial epithelial cell and lung injury. Science of the Total Environment, 918: 170668

[54]

Wiegman C H, Li F, Ryffel B, Togbe D, Chung K F. (2020). Oxidative stress in ozone-induced chronic lung inflammation and emphysema: a facet of chronic obstructive pulmonary disease. Frontiers in Immunology, 11: 1957

[55]

WHO (2021). WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Geneva: World Health Organization, WHO Guidelines Approved by the Guidelines Review Committee

[56]

Wiegman C H, Michaeloudes C, Haji G, Narang P, Clarke C J, Russell K E, Bao W P, Pavlidis S, Barnes P J, Kanerva J. . (2015). Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology, 136(3): 769–780

[57]

Wu H, Yuan X P, Xie M, Gao J W, Xiong Z Z, Song R, Xie Z G, Ou D S. (2023). The impact of niclosamide exposure on the activity of antioxidant enzymes and the expression of glucose and lipid metabolism genes in black carp (Mylopharyngodon piceus). Genes, 14(12): 2196

[58]

Xing W M, Gao W Y, Lv X L, Zhao Z L, Mao G X, Dong X Y, Zhang Z Y. (2022). The effects of supplementation of probiotics, prebiotics, or synbiotics on patients with non-alcoholic fatty liver disease: a meta-analysis of randomized controlled trials. Frontiers in Nutrition, 9: 1024678

[59]

Xu J, He Y J, Li M Z, Zhang Z Z, Du X H, Wang J K, Yang X, Wu Z H, Li H, Chen Y Z. . (2021). A high ozone event over Beijing after the May 2017 Belt and Road Forum. Atmospheric Pollution Research, 12(3): 334–344

[60]

Yuan M M, Guo X, Wu L W, Zhang Y, Xiao N J, Ning D L, Shi Z, Zhou X S, Wu L Y, Yang Y F. . (2021). Climate warming enhances microbial network complexity and stability. Nature Climate Change, 11(4): 343–348

[61]

Zhang L L, Zi L L, Kuang T R, Wang K P, Qiu Z D, Wu Z K, Liu L, Liu R Q, Wang P, Wang W X. (2023). Investigating causal associations among gut microbiota, metabolites, and liver diseases: a Mendelian randomization study. Frontiers in Endocrinology, 14: 1159148

[62]

Zhang Y L, Zhao Q L, Zhao R, Lu Y, Jiang S, Tang Y P. (2024). Efficacy of DHA-enriched phosphatidylserine and its underlying mechanism in alleviating polystyrene nanoplastics-induced hepatotoxicity in mice. International Immunopharmacology, 142: 113154

[63]

Zhao S N, Guo Y, Yin X Z. (2023). Lipid peroxidation in ferroptosis and association with nonalcoholic fatty liver disease. Frontiers in Bioscience-Landmark, 28(12): 332

[64]

Zhou R R, Liu T T, Qin Y, Xie J, Zhang S H, Xie Y, Lao J, He W, Zeng H L, Tang X Y. . (2025). Polygonatum cyrtonema Hua polysaccharides alleviate muscle atrophy and fat lipolysis by regulating the gut microenvironment in chemotherapy-induced cachexia. Frontiers in Pharmacology, 16: 1503785

[65]

Zhu J W, Wang H M, Aisikaer M, Yisimayili Z, Yang T T, Zhou W J, Zhao J F, Yunusi K, Aximujiang K. (2024). L.acidophilus HSCC LA042 and HKL suspension ameliorate DSS-induced ulcerative colitis in mice by improving the intestinal barrier inhibiting the NLRP3 inflammasome and pathogenic bacteria. Heliyon, 10(12): e33053

[66]

Zhu Q Y, Bi J Z, Liu X, Li S S, Wang W H, Zhao Y, Liu Y. (2022). Satellite-based long-term spatiotemporal patterns of surface ozone concentrations in China: 2005–2019. Environmental Health Perspectives, 130(2): 027004

RIGHTS & PERMISSIONS

Higher Education Press 2025

AI Summary AI Mindmap
PDF (9528KB)

Supplementary files

FSE-25080-OF-CLK_suppl_1

549

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/