Depth-related variation in the activity and community structure of nitrite- and nitrate-coupled anaerobic methanotrophs in freshwater lake sediment

Sile Wen , Lidong Shen , Yanwen Yu , Wangting Yang , Junting Ma , Yuling Yang , Lan Zhou , Yuzhi Song , Yanan Bai

Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (8) : 112

PDF (6193KB)
Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (8) : 112 DOI: 10.1007/s11783-025-2032-5
RESEARCH ARTICLE

Depth-related variation in the activity and community structure of nitrite- and nitrate-coupled anaerobic methanotrophs in freshwater lake sediment

Author information +
History +
PDF (6193KB)

Abstract

Nitrite- and nitrate-coupled anaerobic oxidation of methane (AOM), mediated by Candidatus Methylomirabilis-like bacteria and Methanoperedens-like archaea, respectively, are two recent additions of freshwater carbon and nitrogen cycles. However, the quantitative roles of the two AOM processes in CH4 emission reduction in lakes have not yet been characterized. Here, we explored vertical (0–10, 10–20, and 20–30 cm) variation in nitrite- and nitrate-coupled AOM activity, as well as the abundance and community structure of Methylomirabilis- and Methanoperedens-like methanotrophs in freshwater lake sediment. The potential rates of nitrite- and nitrate-coupled AOM quantified via 13CH4 isotopic experiments were 0.41–3.84 and 0.32–3.88 nmol CH4/(g·d), respectively. The rates of AOM exhibited significant and consistent depth-related variation across different sampling sites, with both peaking in the 10–20 cm layer. The abundance of Methylomirabilis-like bacteria and Methanoperedens-like archaea quantified via quantitative PCR was 3.34 × 105–9.17 × 106 and 1.27 × 106–9.46 × 106 copies/g, respectively. There was no consistent depth-related variation in the abundance of bacteria or archaea. The community composition of both Methylomirabilis- and Methanoperedens-like methanotrophs remained relatively stable along the sediment profile, while the composition significantly changed across sampling sites. Sediment pH and the content of NH4+ and organic carbon were key variables influencing the community structure of Methylomirabilis- and Methanoperedens-like methanotrophs. Overall, we characterized vertical variation in nitrite- and nitrate-coupled AOM processes in lake sediment, which helps quantify their role in CH4 consumption in freshwater aquatic ecosystems.

Graphical abstract

Keywords

Nitrite- and nitrite-coupled AOM / Sediment depth / Methylomirabilis / Methanoperedens / Aquatic ecosystem

Highlight

● Nitrite- and nitrate-coupled AOM activity both peaked at 10–20 cm sediment.

● There was no consistent depth-related variation in abundance of the methanotrophs.

● Community composition of methanotrophs remained relatively stable along the sediment.

● Nitrite- and nitrate-coupled AOM showed equal importance in CH4 consumption.

● Sediment pH, NH4+ and organic carbon contents were key factors affecting the AOM.

Cite this article

Download citation ▾
Sile Wen, Lidong Shen, Yanwen Yu, Wangting Yang, Junting Ma, Yuling Yang, Lan Zhou, Yuzhi Song, Yanan Bai. Depth-related variation in the activity and community structure of nitrite- and nitrate-coupled anaerobic methanotrophs in freshwater lake sediment. Front. Environ. Sci. Eng., 2025, 19(8): 112 DOI:10.1007/s11783-025-2032-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bai Y N, Yang W T, Li H Y, Hu Q N, Wen S L, Shen L D, Song Y Z. (2024). Simultaneous methane mitigation and nitrogen removal by denitrifying anaerobic methane oxidation in lake sediments. Science of the Total Environment, 932: 173134

[2]

Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel J P, Peyret P, Fonty G, Lehours A C. (2011). Production and consumption of methane in freshwater lake ecosystems. Research in Microbiology, 162(9): 832–847

[3]

Cai C, Leu A O, Xie G J, Guo J H, Feng Y X, Zhao J X, Tyson G W, Yuan Z G, Hu S H. (2018). A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME Journal, 12(8): 1929–1939

[4]

Chen F Y, Zheng Y L, Hou L J, Niu Y H, Gao D Z, An Z R, Zhou J, Yin G Y, Dong H, Han P. . (2021). Microbial abundance and activity of nitrite/nitrate-dependent anaerobic methane oxidizers in estuarine and intertidal wetlands: heterogeneity and driving factors. Water Research, 190: 116737

[5]

Chen F Y, Zheng Y L, Hou L J, Zhou J, Yin G Y, Liu M. (2020). Denitrifying anaerobic methane oxidation in marsh sediments of Chongming eastern intertidal flat. Marine Pollution Bulletin, 150: 110681

[6]

Chen J, Zhou Z C, Gu J D. (2015). Complex community of nitrite-dependent anaerobic methane oxidation bacteria in coastal sediments of the Mai Po wetland by PCR amplification of both 16S rRNA and pmoA genes. Applied Microbiology and Biotechnology, 99(3): 1463–1473

[7]

Cheng H X, Yang Y L, He Y F, Zhan X G, Liu Y, Hu Z F, Huang H C, Yao X C, Yang W T, Jin J H. . (2023). Spatio-temporal variations of activity of nitrate-driven anaerobic oxidation of methane and community structure of Candidatus Methanoperedens-like archaea in sediment of Wuxijiang River. Chemosphere, 324: 138295

[8]

Cheng H X, Yang Y L, Shen L D, Liu Y, Zhan X G, Hu Z F, Huang H C, Jin J H, Ren B J, He Y F. . (2022). Spatial variations of activity and community structure of nitrite-dependent anaerobic methanotrophs in river sediment. Science of the Total Environment, 851: 158288

[9]

Davidson T A, Audet J, Svenning J C, Lauridsen T L, Søndergaard M, Landkildehus F, Larsen S E, Jeppesen E. (2015). Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming. Global Change Biology, 21(12): 4449–4463

[10]

Deutzmann J S, Schink B. (2011). Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Applied and Environmental Microbiology, 77(13): 4429–4436

[11]

Ding J, Qin F, Li C X, Tang M F, Sheng G D. (2022). Niche differentiation of denitrifying anaerobic methane oxidation microbes in Taihu Lake of China. Environmental Technology & Innovation, 28: 102670

[12]

Etminan M, Myhre G, Highwood E J, Shine K P. (2016). Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing. Geophysical Research Letters, 43(24): 12614–12623

[13]

Ettwig K F, Butler M K, Paslier D L, Pelletier E, Mangenot S, Kuypers M M M, Schreiber F, Dutilh B E, Zedelius J, de Beer D. . (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464(7288): 543–548

[14]

Ettwig K F, van Alen T, van de Pas-Schoonen K T, Jetten M S, Strous M. (2009). Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Applied and Environmental Microbiology, 75(11): 3656–3662

[15]

Geng C Y, Shen L D, Ren B J, Huang H C, Jin J H, Yang W T, Agathokleous E, Liu J Q, Yang Y L, Bai Y N. . (2024). Vertical and temporal variations in activity, abundance, and composition of nitrite-driven anaerobic methanotrophs in a paddy field. Applied Soil Ecology, 197: 105342

[16]

Guerrero-Cruz S, Cremers G, van Alen T A, Op den Camp H J M, Jetten M S M, Rasigraf O, Vaksmaa A (2018). Response of the anaerobic methanotroph “Candidatus Methanoperedens nitroreducens” to oxygen stress. Applied and Environmental Microbiology, 84(24): e01832–e18

[17]

Haroon M F, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson G W. (2013). Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 500(7464): 567–570

[18]

He Z F, Cai C Y, Wang J Q, Xu X H, Zheng P, Jetten M S, Hu B L. (2016). A novel denitrifying methanotroph of the NC10 phylum and its microcolony. Scientific Reports, 6: 32241

[19]

IPCC (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York: Cambridge University Press

[20]

Ji P P, Chen J H, Chen R J, Liu J B, Yu C Q, Chen F H. (2024). Nitrogen and phosphorus trends in lake sediments of China may diverge. Nature Communications, 15(1): 2644

[21]

Juretschko S, Timmermann G, Schmid M, Schleifer K H, Pommerening Röser A, Koops H P, Wagner M. (1998). Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Applied and Environmental Microbiology, 64(8): 3042–3051

[22]

Kojima H, Tsutsumi M, Ishikawa K, Iwata T, Mußmann M, Fukui M. (2012). Distribution of putative denitrifying methane oxidizing bacteria in sediment of a freshwater lake, Lake Biwa. Systematic and Applied Microbiology, 35(4): 233–238

[23]

Leu A O, Cai C, McIlroy S J, Southam G, Orphan V J, Yuan Z G, Hu S H, Tyson G W. (2020). Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. ISME Journal, 14(4): 1030–1041

[24]

Liu J Q, Wang W Q, Shen L D, Bai Y N, Yang W T, Yang Y L, Xu J B, Tian M H, Liu X, Jin J H. . (2024). Variations of activity and community structure of nitrite-driven anaerobic methanotrophs in soils between native and invasive species in China’s coastal wetlands. European Journal of Soil Biology, 120: 103592

[25]

Lomakina A, Pogodaeva T, Kalmychkov G, Chernitsyna S, Zemskaya T. (2020). Diversity of NC10 bacteria and ANME-2d archaea in sediments of fault zones at Lake Baikal. Diversity, 12(1): 10

[26]

Luesken F A, Wu M L, Op den Camp H J M, Keltjens J T, Stunnenberg H, Francoijs K J, Strous M, Jetten M S M. (2012). Effect of oxygen on the anaerobic methanotroph “Candidatus Methylomirabilis oxyfera”: kinetic and transcriptional analysis. Environmental Microbiology, 14(4): 1024–1034

[27]

Martinez-Cruz K, Sepulveda‐Jauregui A, Casper P, Anthony K W, Smemo K A, Thalasso F. (2018). Ubiquitous and significant anaerobic oxidation of methane in freshwater lake sediments. Water Research, 144: 332–340

[28]

Nie W B, Ding J, Xie G J, Tan X, Lu Y, Peng L, Liu B F, Xing D F, Yuan Z G, Ren N Q. (2021). Simultaneous nitrate and sulfate dependent anaerobic oxidation of methane linking carbon, nitrogen and sulfur cycles. Water Research, 194: 116928

[29]

Niu Y H, Zheng Y L, Hou L J, Gao D Z, Chen F Y, Pei C Y, Dong H P, Liang X, Liu M. (2022). Microbial dynamics and activity of denitrifying anaerobic methane oxidizers in China’s estuarine and coastal wetlands. Science of the Total Environment, 806: 150425

[30]

Rissanen A J, Karvinen A, Nykänen H, Peura S, Tiirola M, Mäki A, Kankaala P. (2017). Effects of alternative electron acceptors on the activity and community structure of methane-producing and consuming microbes in the sediments of two shallow boreal lakes. FEMS Microbiology Ecology, 93(7): fix078

[31]

Roland F A, Borges A V, Bouillon S, Morana C. (2021). Nitrate-dependent anaerobic methane oxidation and chemolithotrophic denitrification in a temperate eutrophic lake. FEMS Microbiology Ecology, 97(10): fiab124

[32]

Rosentreter J A, Borges A V, Deemer B R, Holgerson M A, Liu S D, Song C L, Melack J, Raymond P A, Duarte C M, Allen G H. . (2021). Half of global methane emissions come from highly variable aquatic ecosystem sources. Nature Geoscience, 14(4): 225–230

[33]

Shen L D, He Z F, Zhu Q, Chen D Q, Lou L P, Xu X Y, Zheng P, Hu B L. (2012). Microbiology, ecology, and application of the nitrite-dependent anaerobic methane oxidation process. Frontiers in Microbiology, 3: 269

[34]

Shen L D, Ouyang L, Zhu Y Z, Trimmer M. (2019). Spatial separation of anaerobic ammonium oxidation and nitrite-dependent anaerobic methane oxidation in permeable riverbeds. Environmental Microbiology, 21(4): 1185–1195

[35]

Shen L D, Tian M H, Cheng H X, Liu X, Yang Y L, Liu J Q, Xu J B, Kong Y, Li J H, Liu Y. (2020). Different responses of nitrite- and nitrate-dependent anaerobic methanotrophs to increasing nitrogen loading in a freshwater reservoir. Environmental Pollution, 263: 114623

[36]

Strous M, Jetten M S. (2004). Anaerobic oxidation of methane and ammonium. Annual Review of Microbiology, 58(1): 99–117

[37]

Vaksmaa A, Jetten M S, Ettwig K F, Lüke C. (2017). McrA primers for the detection and quantification of the anaerobic archaeal methanotroph ‘Candidatus Methanoperedens nitroreducens’. Applied Microbiology and Biotechnology, 101(4): 1631–1641

[38]

Versantvoort W, Guerrero-Cruz S, Speth D R, Frank J, Gambelli L, Cremers G, van Alen T A, Jetten M S M, Kartal B, Op den Camp H J M. . (2018). Comparative genomics of Candidatus Methylomirabilis species and description of Ca. Methylomirabilis lanthanidiphila. Frontiers in Microbiology, 9: 1672

[39]

West W E, Creamer K P, Jones S E. (2016). Productivity and depth regulate lake contributions to atmospheric methane. Limnology and Oceanography, 61(S1): S51–S61

[40]

Xie F, Ma A Z, Zhou H C, Liang Y, Yin J, Ma K, Zhuang X L, Zhuang G Q. (2020). Niche differentiation of denitrifying anaerobic methane oxidizing bacteria and archaea leads to effective methane filtration in a Tibetan alpine wetland. Environment International, 140: 105764

[41]

Xu S, Cai C, Guo J H, Lu W J, Yuan Z G, Hu S H. (2018). Different clusters of Candidatus ‘Methanoperedens nitroreducens’-like archaea as revealed by high-throughput sequencing with new primers. Scientific Reports, 8(1): 7695

[42]

Yang W T, Shen L D, Bai Y N. (2023). Role and regulation of anaerobic methane oxidation catalyzed by NC10 bacteria and ANME-2d archaea in various ecosystems. Environmental Research, 219: 115174

[43]

Yang W T, Wang W Q, Agathokleous E, Bai Y N, Zhang S, Wang C, Feng Y F, Liu J Q, Yang Y L, Geng C Y. . (2024a). Climatic factors and fertilization rates co-regulate anaerobic methane oxidation driven by multiple electron acceptors in Chinese paddy fields. Journal of Cleaner Production, 436: 140600

[44]

Yang Y L, Shen L D, Geng C Y, Ren B J, Bai Y N, Jin J H, Yang W T. (2024b). Activity of anaerobic methane oxidation driven by different electron acceptors and the relative microbiome in paddy fields across various rice growth periods and soil layers. Biology and Fertility of Soils, 60(8): 1073–1084

[45]

Yang Y Y, Chen J F, Pratscher J, Xie S G. (2022). DNA-SIP reveals an overlooked methanotroph, Crenothrix sp., involved in methane consumption in shallow lake sediments. Science of the Total Environment, 814: 152742

[46]

Yao X W, Wang J Q, He M Y, Liu Z S, Zhao Y X, Li Y F, Chi T, Zhu L, Zheng P, Jetten M S. . (2024). Methane-dependent complete denitrification by a single Methylomirabilis bacterium. Nature Microbiology, 9(2): 464–476

[47]

Yu B H, Zeng Q C, Li J L, Li J, Tan X, Gao X, Mao Z Q, Huang P, Wu S J. (2023). Sediment depth-related variations of comammox Nitrospira: evidence in the Three Gorges Reservoir, China. Science of the Total Environment, 905: 167055

[48]

Zhao X Q, Yang L Y, Yu Z Y, Peng N Y, Xiao L, Yin D Q, Qin B Q. (2008). Characterization of depth-related microbial communities in lake sediment by denaturing gradient gel electrophoresis of amplified 16S rRNA fragments. Journal of Environmental Sciences, 20(2): 224–230

[49]

Zheng Y L, Hou L J, Chen F Y, Zhou J, Liu M, Yin G Y, Gao J, Han P. (2020). Denitrifying anaerobic methane oxidation in intertidal marsh soils: occurrence and environmental significance. Geoderma, 357: 113943

RIGHTS & PERMISSIONS

Higher Education Press 2025

AI Summary AI Mindmap
PDF (6193KB)

Supplementary files

FSE-25064-OF-WSL_suppl_1

434

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/