Advancing high-resolution modeling to unravel the interplay between extreme weather events and air pollution under global warming

Yang Gao , Xiuwen Guo , Wenbin Kou , Xiaojie Guo , Shaoqing Zhang , Huiwang Gao , Deliang Chen

Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (7) : 100

PDF (2177KB)
Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (7) : 100 DOI: 10.1007/s11783-025-2020-9
PERSPECTIVES

Advancing high-resolution modeling to unravel the interplay between extreme weather events and air pollution under global warming

Author information +
History +
PDF (2177KB)

Abstract

Under global warming, extreme weather events and air pollution are becoming increasingly critical challenges. Both pose serious risks to human health, economies, and societal stability, and their complex interactions can further amplify these impacts. Numerical models are essential tools for studying these phenomena; however, traditional low-resolution Earth system models often fail to accurately capture the dynamics of extreme weather and air pollution. This limitation hinders our mechanistic understanding, reduces the reliability of future projections, and constrains the development of effective adaptation strategies. Dynamical downscaling—an approach that uses high-resolution regional models nested within global models—offers a partial solution. However, this method inherits biases from the parent global models and often fails to adequately represent multi-scale and cross-sphere interactions involving the atmosphere, land, and oceans. These shortcomings underscore the growing need for developing and applying high-resolution Earth system models that can more comprehensively and accurately depict land–sea–atmosphere interactions, including heat and material exchanges and their spatial heterogeneity. This article explores the current challenges, recent advances, and future opportunities in understanding the interplay between extreme weather events and air pollution, with a focus on the critical role of high-resolution modeling.

Graphical abstract

Keywords

High-resolution Modeling / Extreme weather events / Air pollution / Multiscale and multi-sphere interactions

Highlight

● Understanding the interaction between extreme weather and air pollution is essential.

● High-resolution Earth system models are key to capturing multi-sphere interactions.

● There is a growing need to develop and apply high-resolution Earth system models.

Cite this article

Download citation ▾
Yang Gao, Xiuwen Guo, Wenbin Kou, Xiaojie Guo, Shaoqing Zhang, Huiwang Gao, Deliang Chen. Advancing high-resolution modeling to unravel the interplay between extreme weather events and air pollution under global warming. Front. Environ. Sci. Eng., 2025, 19(7): 100 DOI:10.1007/s11783-025-2020-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aghakouchak A, Chiang F, Huning L S, Love C A, Mallakpour I, Mazdiyasni O, Moftakhari H, Papalexiou S M, Ragno E, Sadegh M. (2020). Climate extremes and compound hazards in a warming world. Annual Reviews, 48: 519–548

[2]

Bey I, Jacob D J, Yantosca R M, Logan J A, Field B D, Fiore A M, Li Q, Liu H Y, Mickley L J, Schultz M G. (2001). Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation. Journal of Geophysical Research-Atmospheres, 106(D19): 23073–23095

[3]

Boville B A, Gent P R. (1998). The NCAR climate system model, version one. Journal of Climate, 11(6): 1115–1130

[4]

Chang P, Zhang S, Danabasoglu G, Yeager S G, Fu H, Wang H, Castruccio F S, Chen Y, Edwards J, Fu D. . (2020). An unprecedented set of high-resolution earth system simulations for understanding multiscale interactions in climate variability and change. Journal of Advances in Modeling Earth Systems, 12(12): e2020MS002298

[5]

ChenD, Rojas M, SamsetB H, CobbK, Diongue-Niang A, EdwardsP, EmoriS, FariaS H, HawkinsE, Hope P, et al. (2021). Framing, context, and methods. In: Masson-Delmotte V, Zhai P, Pirani A, Connors S L, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis M I, et al. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 147–286

[6]

Chen D, Tang X C, Peng Z, Yan H S, Cheng Y L. (2024). Opportunities and challenges of artificial intelligence in climate research and services. Advances in Climate Change Research, 20(6): 669–681

[7]

Chen X, Leung L R, Gao Y, Liu Y, Wigmosta M. (2023). Sharpening of cold-season storms over the western United States. Nature Climate Change, 13(2): 167–173

[8]

Coppola E, Sobolowski S, Pichelli E, Raffaele F, Ahrens B, Anders I, Ban N, Bastin S, Belda M, Belusic D. . (2020). A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Climate Dynamics, 55(1−2): 3–34

[9]

Cosby A G, Lebakula V, Smith C N, Wanik D W, Bergene K, Rose A N, Swanson D, Bloom D E. (2024). Accelerating growth of human coastal populations at the global and continent levels: 2000–2018. Scientific Reports, 14(1): 22489

[10]

Dickinson R E, Errico R M, Giorgi F, Bates G T. (1989). A regional climate model for the western United States. Climatic Change, 15(3): 383–422

[11]

Eyring V, Cox P M, Flato G M, Gleckler P J, Abramowitz G, Caldwell P, Collins W D, Gier B K, Hall A D, Hoffman F M. . (2019). Taking climate model evaluation to the next level. Nature Climate Change, 9(2): 102–110

[12]

Fu Z H, Zhou W, Xie S P, Zhang R, Wang X. (2024). Dynamic pathway linking Pakistan flooding to East Asian heatwaves. Science Advances, 10(17): eadk9250

[13]

Gao Y, Fu J S, Drake J B, Liu Y, Lamarque J F. (2012). Projected changes of extreme weather events in the Eastern United States based on a high-resolution climate modeling system. Environmental Research Letters, 7(4): 044025

[14]

Gao Y, Guo X, Lu J, Woolings T, Chen D, Guo X, Kou W, Zhang S, Leung L R, Schiemann R. . (2025a). Enhanced simulation of atmospheric blocking in a high-resolution earth system model: projected changes and implications for extreme weather events. Journal of Geophysical Research: Atmospheres, 130(3): e2024JD042045

[15]

Gao Y, Kou W, Cheng W, Guo X, Qu B, Wu Y, Zhang S, Liao H, Chen D, Leung L R. . (2025b). Reducing long-standing surface ozone overestimation in Earth system modeling by high-resolution simulation and dry deposition improvement. Journal of Advances in Modeling Earth Systems, 17(3): e2023MS004192

[16]

Gao Y, Lu J, Leung L R. (2016). Uncertainties in projecting future changes in atmospheric rivers and their impacts on heavy precipitation over Europe. Journal of Climate, 29(18): 6711–6726

[17]

Gao Y, Wu Y, Guo X, Kou W, Zhang S, Leung L R, Chen X, Lu J, Diffenbaugh N S, Horton D E. . (2023). More frequent and persistent heatwaves due to increased temperature skewness projected by a high-resolution Earth system model. Geophysical Research Letters, 50(18): e2023GL105840

[18]

Gao Y, Zhang J, Yan F, Leung L R, Luo K, Zhang Y, Bell M L. (2020). Nonlinear effect of compound extreme weather events on ozone formation over the United States. Weather and Climate Extremes, 30: 100285

[19]

Giorgi F. (1990). Simulation of regional climate using a limited area model nested in a general circulation model. Journal of Climate, 3(9): 941–963

[20]

Giorgi F, Coppola E, Jacob D, Teichmann C, Abba Omar S, Ashfaq M, Ban N, Bülow K, Bukovsky M, Buntemeyer L. . (2022). The CORDEX-CORE EXP-I initiative: description and highlight results from the initial analysis. Bulletin of the American Meteorological Society, 103(2): E293–E310

[21]

Giorgi F, Gutowski W J Jr. (2015). Regional dynamical downscaling and the CORDEX initiative. Annual Review of Environment and Resources, 40(1): 467–490

[22]

Giorgi F, Jones C, Asrar G R. (2009). Addressing climate information needs at the regional level: the CORDEX framework. WMO Bulletin, 58(3): 175–183

[23]

Grell G A, Peckham S E, Schmitz R, Mckeen S A, Frost G, Skamarock W C, Eder B. (2005). Fully coupled “online” chemistry within the WRF model. Atmospheric Environment, 39(37): 6957–6975

[24]

Guo X, Gao Y, Zhang S, Cai W, Chen D, Leung L R, Zscheischler J, Thompson L, Davis K, Qu B. . (2024a). Intensification of future subsurface marine heatwaves in an eddy-resolving model. Nature Communications, 15(1): 10777

[25]

Guo X, Gao Y, Zhang S, Cai W, Leung L R, Lu J, Chen X, Zscheischler J, Thompson L, Guan B. . (2024b). More high-impact atmospheric river-induced extreme precipitation events under warming in a high-resolution model. One Earth, 7(12): 2223–2234

[26]

Guo X, Gao Y, Zhang S, Wu L, Chang P, Cai W, Zscheischler J, Leung L R, Small J, Danabasoglu G. . (2022). Threat by marine heatwaves to adaptive large marine ecosystems in an eddy-resolving model. Nature Climate Change, 12(2): 179–186

[27]

Gutowski W J Jr, Giorgi F, Timbal B, Frigon A, Jacob D, Kang H S, Raghavan K, Lee B, Lennard C, Nikulin G. . (2016). WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6. Geoscientific Model Development, 9(11): 4087–4095

[28]

Haarsma R J, Roberts M J, Vidale P L, Senior C A, Bellucci A, Bao Q, Chang P, Corti S, Fučkar N S, Guemas V. . (2016). High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geoscientific Model Development, 9(11): 4185–4208

[29]

He C, Kumar R, Tang W, Pfister G, Xu Y, Qian Y, Brasseur G. (2024). Air pollution interactions with weather and climate extremes: current knowledge, gaps, and future directions. Current Pollution Reports, 10(3): 430–442

[30]

Hess P, Lange S, Schötz C, Boers N. (2023). Deep learning for bias-correcting CMIP6-class Earth system models. Earth’s Future, 11(10): e2023EF004002

[31]

Hohenegger C, Korn P, Linardakis L, Redler R, Schnur R, Adamidis P, Bao J, Bastin S, Behravesh M, Bergemann M. . (2023). ICON-Sapphire: simulating the components of the Earth system and their interactions at kilometer and subkilometer scales. Geoscientific Model Development, 16(2): 779–811

[32]

Holbrook N J, Scannell H A, Sen Gupta A, Benthuysen J A, Feng M, Oliver E C J, Alexander L V, Burrows M T, Donat M G, Hobday A J. . (2019). A global assessment of marine heatwaves and their drivers. Nature Communications, 10(1): 2624

[33]

Huang Y, Li S, Zhu Y, Liu Y, Hong Y, Chen X, Deng W, Xi X, Lu X, Fan Q. (2025). Increasing sea-land breeze frequencies over coastal areas of china in the past five decades. Geophysical Research Letters, 52(4): e2024GL112480

[34]

Jacox M G. (2019). Marine heatwaves in a changing climate. Nature, 571(7766): 485–487

[35]

Kathole A B, Vhatkar K, Lonare S, Kshirsagar A P. (2025). Optimization-based resource scheduling techniques in cloud computing environment: a review of scientific workflows and future directions. Computers & Electrical Engineering, 123: 110080

[36]

Kim Y H, Min S K, Zhang X, Sillmann J, Sandstad M. (2020). Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather and Climate Extremes, 29: 100269

[37]

Klein S A, Hall A. (2015). Emergent constraints for cloud feedbacks and climate sensitivity. Current Climate Change Reports, 1(4): 276–287

[38]

Lamarque J F, Shindell D T, Josse B, Young P J, Cionni I, Eyring V, Bergmann D, Cameron-Smith P, Collins W J, Doherty R. . (2013). The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics. Geoscientific Model Development, 6(1): 179–206

[39]

Lambert S J, Boer G J. (2001). CMIP1 evaluation and intercomparison of coupled climate models. Climate Dynamics, 17(2−3): 83–106

[40]

Leung L R, Wigmosta M S, Ghan S J, Epstein D J, Vail L W. (1996). Application of a subgrid orographic precipitation/surface hydrology scheme to a mountain watershed. Journal of Geophysical Research, 101(D8): 12803–12817

[41]

LiaoH, Gao Y, ChenD, DaiH, DuN, FangL, Kang L, QianJ, QinZ, WangY, et al. (2021). Assessment of air quality-climate interactions in IPCC AR6. Transactions of Atmospheric Sciences, 44(5): 658–666 (in Chinese)

[42]

Luijendijk A, Hagenaars G, Ranasinghe R, Baart F, Donchyts G, Aarninkhof S. (2018). The state of the world’s beaches. Scientific Reports, 8(1): 6641

[43]

Ma X, Zhang X, Wu L, Tang Z, Yang P, Song F, Jing Z, Chen H, Qu Y, Yuan M. . (2024). Midlatitude mesoscale thermal air−sea interaction enhanced by greenhouse warming. Nature Communications, 15(1): 7699

[44]

O’Gorman P A, Dwyer J G. (2018). Using machine learning to parameterize moist convection: potential for modeling of climate, climate change, and extreme events. Journal of Advances in Modeling Earth Systems, 10(10): 2548–2563

[45]

Ou T H, Chen D L, Tang J P, Lin C G, Wang X J, Kukulies J, Lai H W. (2023). Wet bias of summer precipitation in the northwestern Tibetan Plateau in ERA5 is linked to overestimated lower-level southerly wind over the plateau. Climate Dynamics, 61(5−6): 2139–2153

[46]

Qian Y, Ghan S J, Leung L R. (2010). Downscaling hydroclimatic changes over the Western US based on CAM subgrid scheme and WRF regional climate simulations. International Journal of Climatology, 30(5): 675–693

[47]

Rai P, Bangelesa F, Abel D, Ziegler K, Huang J, Schaffhauser T, Pollinger F, Disse M, Paeth H. (2024). Extreme precipitation and temperature indices under future climate change in central Asia based on CORDEX-CORE. Theoretical and Applied Climatology, 155(7): 6015–6039

[48]

Rasch P J, Xie S, Ma P L, Lin W, Wang H, Tang Q, Burrows S M, Caldwell P, Zhang K, Easter R C. . (2019). An overview of the atmospheric component of the Energy Exascale Earth System Model. Journal of Advances in Modeling Earth Systems, 11(8): 2377–2411

[49]

Reed K A, Stansfield A M, Hsu W-C, Kooperman G J, Akinsanola A A, Hannah W M, Pendergrass A G, Medeiros B. (2023). Evaluating the simulation of CONUS precipitation by storm type in E3SM. Research Letter, 50(12): e2022GL102409

[50]

Rummukainen M, Räisänen J, Bringfelt B, Ullerstig A, Omstedt A, Willén U, Hansson U, Jones C. (2001). A regional climate model for northern Europe: model description and results from the downscaling of two GCM control simulations. Climate Dynamics, 17(5−6): 339–359

[51]

Salvador R, Calbó J, Millán M M. (1999). Horizontal grid size selection and its influence on mesoscale model simulations. Journal of Applied Meteorology, 38(9): 1311–1329

[52]

Stock C A, John J G, Rykaczewski R R, Asch R G, Cheung W W L, Dunne J P, Friedland K D, Lam V W Y, Sarmiento J L, Watson R A. (2017). Reconciling fisheries catch and ocean productivity. Proceedings of the National Academy of Sciences of the United States of America, 114(8): E1441–E1449

[53]

SzopaS, Naik V, AdhikaryB, ArtaxoP, Berntsen T, CollinsW D, FuzziS, Gallardo L, Kiendler-ScharrA, KlimontZ, et al. (2021). Short-lived climate forcers. In: Masson-Delmotte V, Zhai P, Pirani A, Connors S L, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis M I, Huang M, Leitzell K, Lonnoy E, Matthews J B R, Maycock T K, Waterfield T, Yelekçi O, Yu R, Zhou B, editors. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, USA: Cambridge University Press, 817–922

[54]

Tapiador F J, Navarro A, Moreno R, Sánchez J L, García-Ortega E. (2020). Regional climate models: 30 years of dynamical downscaling. Atmospheric Research, 235: 104785

[55]

Tavakolifar H, Shahghasemi E, Nazif S. (2017). Evaluation of climate change impacts on extreme rainfall events characteristics using a synoptic weather typing-based daily precipitation downscaling model. Journal of Water and Climate Change, 8: jwc2017107

[56]

Walton D B, Sun F, Hall A, Capps S. (2015). A hybrid dynamical–statistical downscaling technique. Part I: Development and validation of the technique. Journal of Climate, 28(12): 4597–4617

[57]

Wang S, Ma X, Zhou S, Wu L, Wang H, Tang Z, Xu G, Jing Z, Chen Z, Gan B. (2023). Extreme atmospheric rivers in a warming climate. Nature Communications, 14(1): 3219

[58]

Yuval J, O’Gorman P A. (2020). Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions. Nature Communications, 11(1): 3295

[59]

Zhang S, Fu H, Wu L, Li Y, Wang H, Zeng Y, Duan X, Wan W, Wang L, Zhuang Y. . (2020). Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform. Geoscientific Model Development, 13(10): 4809–4829

[60]

Zhang S, Xu S, Fu H, Wu L, Liu Z, Gao Y, Zhao C, Wan W, Wan L, Lu H. (2023). Toward Earth System Modeling with resolved clouds and ocean submesoscales on heterogeneous many-core HPCs. National Science Review, 10(6): nwad069

[61]

Zhuang J, Jacob D J, Lin H, Lundgren E W, Yantosca R M, Gaya J F, Sulprizio M P, Eastham S D. (2020). Enabling high-performance cloud computing for Earth Science Modeling on over a thousand cores: application to the GEOS-Chem atmospheric chemistry model. Journal of Advances in Modeling Earth Systems, 12(5): e2020MS002064

[62]

Zscheischler J, Seneviratne S I. (2017). Dependence of drivers affects risks associated with compound events. Science Advances, 3(6): e1700263

[63]

Zscheischler J, Westra S, Van Den Hurk B J J M, Seneviratne S I, Ward P J, Pitman A, Aghakouchak A, Bresch D N, Leonard M, Wahl T. . (2018). Future climate risk from compound events. Nature Climate Change, 8(6): 469–477

RIGHTS & PERMISSIONS

The Author(s) 2025. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (2177KB)

1209

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/