Upcycling waste protein and heavy metal into single-atom catalytic gas diffusion electrode for CO2 reduction

Baiqin Zhou , Zhida Li , Chunyue Zhang , Lu Lu

Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (4) : 54

PDF (10302KB)
Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (4) : 54 DOI: 10.1007/s11783-025-1974-y
RESEARCH ARTICLE

Upcycling waste protein and heavy metal into single-atom catalytic gas diffusion electrode for CO2 reduction

Author information +
History +
PDF (10302KB)

Abstract

The global production of organic wastes and heavy metals (HMs) poses significant environmental risks, along with considerable carbon emissions from waste decomposition. This highlights the significance of synergistic management of both wastes and CO2, which is a vital strategy for mitigating environmental pollution and climate change. Herein, we employed waste protein from wastewater produced during soybean peptide (SP) processing as a carbon matrix to anchor HMs Ni from electroplating wastewater. This mixture was electrospun into a gas diffusion electrode (GDE). This unique GDE design eliminates the need for a separate gas diffusion layer (GDL) and simplifies catalyst production. This versatile GDE consists of nanofibers with uniformly dispersed Ni single atom catalysts (SACs) on the fiber surface. Therefore, boasts a porous structure that facilitates CO2 diffusion and storage. The homogeneous distribution of Ni SACs within the GDE fosters high activity in the electrochemical conversion of CO2 to CO. At 50 mA/cm2 and 2.5 V cell voltage, Ni SACs achieved an excellent Faradaic efficiency of 81%−98% in a membrane electrode assembly (MEA). This technique holds a promise in achieving the collaborative management of carbon mitigation and wastes recovery.

Graphical abstract

Keywords

Waste protein / Heavy metal wastewater / Ni single atom / Electrospinning / Gas diffusion electrode / CO 2 reduction

Highlight

● The utilization of waste proteins and heavy metals for CO2 to CO conversion.

● Proteins atomically disperse Ni onto a gas diffusion electrode (GDE).

● Porous structure of GDE is capable of CO2 diffusion and storage.

● N element is crucial to synthesize efficient Ni single atom catalysts (Ni SACs).

● GDE is composed of nanofibers with uniformly dispersed Ni SACs.

Cite this article

Download citation ▾
Baiqin Zhou, Zhida Li, Chunyue Zhang, Lu Lu. Upcycling waste protein and heavy metal into single-atom catalytic gas diffusion electrode for CO2 reduction. Front. Environ. Sci. Eng., 2025, 19(4): 54 DOI:10.1007/s11783-025-1974-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blundell T L, Jenkins J A. (1977). The binding of heavy metal to proteins. Chemical Society Reviews, 6(2): 139–171

[2]

Fan L, Xia C, Zhu P, Lu Y, Wang H. (2020). Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nature Communications, 11(1): 3633

[3]

Ge J, Lei J, Zare R N. (2012). Protein-inorganic hybrid nanoflowers. Nature Nanotechnology, 7(7): 428–432

[4]

Gu C H, Pan Y, Wei T T, Zhang A Y, Si Y, Liu C, Sun Z H, Chen J J, Yu H Q. (2024). Upcycling waste sewage sludge into superior single-atom Fenton-like catalyst for sustainable water purification. Nature Water, 2(7): 649–662

[5]

GustavssonJ, CederbergC, Sonesson U, OtterdijkR, MeybeckA (2011). Global Food Losses and Food Waste-Extent, Causes and Prevention. Rome: Food and Agriculture Organization of the United Nations

[6]

Jiang K, Siahrostami S, Zheng T, Hu Y, Hwang S, Stavitski E, Peng Y, Dynes J, Gangisetty M, Su D. . (2018). Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy & Environmental Science, 11(4): 893–903

[7]

Jones N. (2013). Troubling milestone for CO2. Nature Geoscience, 6(8): 589

[8]

Li T, Lees E W, Goldman M, Salvatore D A, Weekes D M, Berlinguette C P. (2019). Electrolytic conversion of bicarbonate into CO in a flow cell. Joule, 3(6): 1487–1497

[9]

Li Z, He D, Yan X, Dai S, Younan S, Ke Z, Pan X, Xiao X, Wu H, Gu J. (2020). Size-dependent nickel-based electrocatalysts for selective CO2 reduction. Angewandte Chemie International Edition, 59(42): 18572–18577

[10]

Liang S, Jiang Q, Wang Q, Liu Y. (2021). Revealing the real role of nickel decorated nitrogen-doped carbon catalysts for electrochemical reduction of CO2 to CO. Advanced Energy Materials, 11(36): 2101477

[11]

Liu C, Wu Y, Sun K, Fang J, Huang A, Pan Y, Cheong W C, Zhuang Z, Zhuang Z, Yuan Q. . (2021). Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. Chem, 7(5): 1297–1307

[12]

Liu Y, Li H, Chen S, Zhang L, Li S, Lv H, Gao J, Cui S, Jiang K. (2024). Synergetic pathways of water-energy-carbon in ecologically vulnerable regions aiming for carbon neutrality: a case study of Shaanxi, China. Frontiers of Environmental Science & Engineering, 18: 106

[13]

Lu L, Guest J S, Peters C A, Zhu X, Rau G H, Ren Z J. (2018). Wastewater treatment for carbon capture and utilization. Nature Sustainability, 1(12): 750–758

[14]

Mohareb E A, Heller M C, Guthrie P M. (2018). Cities’ role in mitigating united states food system greenhouse gas emissions. Environmental Science & Technology, 52(10): 5545–5554

[15]

Nguyen T N, Dinh C T. (2020). Gas diffusion electrode design for electrochemical carbon dioxide reduction. Chemical Society Reviews, 49(21): 7488–7504

[16]

Peng C, Luo G, Zhang J, Chen M, Wang Z, Sham T K, Zhang L, Li Y, Zheng G. (2021). Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol. Nature Communications, 12(1): 1580

[17]

Qin J, Wang Q, Han B, Jin C, Luo C, Sun Y, Dai Z, Wang S, Liu H, Zheng X. . (2025). Heterogeneous Fe–Ni dual-atom catalysts coupled N-vacancy engineering for enhanced activation of peroxymonosulfate. Applied Catalysis B: Environment and Energy, 360: 124538

[18]

Reichstein M, Riede F, Frank D. (2021). More floods, fires and cyclones-plan for domino effects on sustainability goals. Nature, 592(7854): 347–349

[19]

Sharifian R, Wagterveld R M, Digdaya I A, Xiang C, Vermaas D A. (2021). Electrochemical carbon dioxide capture to close the carbon cycle. Energy & Environmental Science, 14(2): 781–814

[20]

Sun J, Tu R, Xu Y, Yang H, Yu T, Zhai D, Ci X, Deng W. (2024). Machine learning aided design of single-atom alloy catalysts for methane cracking. Nature Communications, 15(1): 6036

[21]

Sun M, Guan W, Chen C, Wu C, Liu X, Meng B, Chen T, Han Y, Wang J, Xi S. . (2025). Mechanistic insight into the synergy between nickel single atoms and nanoparticles on N-doped carbon for electroreduction of CO2. Journal of Energy Chemistry, 100: 327–336

[22]

Tan A, Zhao F, Zhang Y, Li G, Wu C, Liu Z, Li J, Liu J. (2025). Innovative application of transfer learning on small-scale datasets: analysis and optimization of catalyst ink for the low-iridium membrane electrode assemblies of proton exchange membrane water electrolysis. Chemical Engineering Science, 302: 120814

[23]

Verma S, Kim B, Jhong H R M, Ma S, Kenis P J A. (2016). A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem, 9(15): 1972–1979

[24]

Voosen P. (2020). The hunger forecast. Science, 368: 226–229

[25]

Wang W, Shao C, Feng Y, Cheng Y. (2024). Effect of single atom loading on the CO2 reduction activity of pure and defective W2CO2 MXene. Molecular Catalysis, 569: 114550

[26]

Weekes D M, Salvatore D A, Reyes A, Huang A, Berlinguette C P. (2018). Electrolytic CO2 Reduction in a flow cell. Accounts of Chemical Research, 51(4): 910–918

[27]

WengS, Xu Y (2016). Analysis of Fourier Transform Infrared Spectroscopy (3rd edition). Beijing: Chemical Industry Press (in Chinese)

[28]

Xia C, Zhu P, Jiang Q, Pan Y, Liang W, Stavitski E, Alshareef H N, Wang H. (2019). Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nature Energy, 4(9): 776–785

[29]

Xu X, Sharma P, Shu S, Lin T S, Ciais P, Tubiello F N, Smith P, Campbell N, Jain A K. (2021). Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nature Food, 2(9): 724–732

[30]

Yang H, Lin Q, Zhang C, Yu X, Cheng Z, Li G, Hu Q, Ren X, Zhang Q, Liu J. . (2020). Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nature Communications, 11(1): 593

[31]

Yang H, Wu Y, Li G, Lin Q, Hu Q, Zhang Q, Liu J, He C. (2019). Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. Journal of the American Chemical Society, 141(32): 12717–12723

[32]

Yang M, Li X, Chao W, Gao X, Wang H, Lu L. (2024). Renewable biosynthesis of isoprene from wastewater through a synthetic biology approach: the role of individual organic compounds. Frontiers of Environmental Science & Engineering, 18: 28

[33]

Yao R, Sun K, Zhang K, Wu Y, Du Y, Zhao Q, Liu G, Chen C, Sun Y, Li J. (2024). Stable hydrogen evolution reaction at high current densities via designing the Ni single atoms and Ru nanoparticles linked by carbon bridges. Nature Communications, 15(1): 2218

[34]

Ye C, Guo Z, Zhou Y, Shen Y. (2025). Nickel-based dual single atom electrocatalysts for the nitrate reduction reaction. Journal of Colloid and Interface Science, 677: 933–941

[35]

Yuan X, Zhang X, Yang Y, Li X, Xing X, Zuo J. (2024). Emission of greenhouse gases from sewer networks: field assessment and isotopic characterization. Frontiers of Environmental Science & Engineering, 18: 119

[36]

Zheng T, Jiang K, Ta N, Hu Y, Zeng J, Liu J, Wang H. (2019). Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule, 3(1): 265–278

RIGHTS & PERMISSIONS

Higher Education Press 2025

AI Summary AI Mindmap
PDF (10302KB)

Supplementary files

FSE-25012-OF-ZBQ_suppl_1

939

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/