Emission of greenhouse gases from sewer networks: field assessment and isotopic characterization
Xin Yuan , Xianguo Zhang , Yuqi Yang , Xuan Li , Xin Xing , Jiane Zuo
Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (10) : 119
Emission of greenhouse gases from sewer networks: field assessment and isotopic characterization
● Sewer network contributes to greenhouse gas emissions. ● Branch pipes contribute a higher portion to greenhouse gas emissions. ● CH4 is the major greenhouse gas in sewer networks. ● Most CH4 is produced via acetate fermentation.
Sewer networks play a vital role in sewage collection and transportation, and they are being rapidly expanded. However, the microbial processes occurring within these networks have emerged as significant contributors to greenhouse gas (GHG) emissions. Compared to that from other sectors, our understanding of the magnitude of GHG emissions from sewer networks is currently limited. In this study, we conducted a GHG emission assessment in an independent sewer network located in Beijing, China. The findings revealed annual emissions of 62.3 kg CH4 and 0.753 kg N2O. CH4 emerged as the primary GHG emitted from sewers, accounting for 87.4% of the total GHG emissions. Interestingly, compared with main pipes, branch pipes were responsible for a larger share of GHG emissions, contributing to 76.7% of the total. A GHG emission factor of 0.26 kg CO2-eq/(m·yr) was established to quantify sewer GHG emissions. By examining the isotopic signatures of CO2/CH4 pairs, it was determined that CH4 production in sewers primarily occurred through acetate fermentation. Additionally, the structure of sewer pipes had a significant impact on GHG levels. This study offers valuable insights into the overall GHG emissions associated with sewer networks and sheds light on the mechanisms driving these emissions.
Sewer network / Greenhouse gases / Stable carbon isotopes / Methane / Nitrous oxide
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
IPCC (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H S, Buendia L, Miwa K, Ngara T, Tanabe K, eds. Tokyo: IGES |
| [18] |
IPCC (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Calvo Buendia E, Tanabe K, Kranjc A, Baasansuren J, Fukuda M, Ngarize S, Osako A, Pyrozhenko Y, Shermanau P, Federici S, eds. Geneva: IPCC |
| [19] |
IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte V, P, Zhai A, Pirani S L, Connors C, Péan S, Berger N, Caud Y, Chen L, Goldfarb M I, Gomis M, et al., eds. Cambridge and New York: Cambridge University Press |
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
Ministry of Environmental Protection (2006). Monitoring and Analytical Methods of Water and Wastewater, 4 ed. Beijing: China Environmental Science Press |
| [28] |
Ministry of Housing and Urban-Rural Development of the People’s Republic of China (2022). Urban and Rural Construction Statistical Yearbook of 2021. Beijing: Ministry of Housing and Urban-Rural Development of the People’s Republic of China |
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
Higher Education Press 2024
Supplementary files
/
| 〈 |
|
〉 |