Synergistic promotion of particulate matter reduction and production performance via adjusting electrochemical reactions in the zinc electrolysis industry
Zizhen Ma , Jingkun Jiang , Lei Duan , Jianguo Deng , Fuyuan Xu , Zehui Li , Linhua Jiang , Ning Duan
Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (1) : 2
Synergistic promotion of particulate matter reduction and production performance via adjusting electrochemical reactions in the zinc electrolysis industry
● Electrolytic PM can be reduced by controlling operation parameters. ● The optimization conditions exist, reducing PM without deteriorating PC and CEZn. ● Abatement essence is to inhibit gas evolution reactions.
Heavy particulate matter (PM) pollution and high energy consumption are the bottlenecks of hydrometallurgy, especially in the electrolysis process. Therefore, an urgent need is to explore PM reduction methods with production performance co-benefits. This study presents three PM reduction methods based on controlling operating parameters, i.e., lowering electrolyte temperature, H2SO4 concentration, and current density of the cathode. The optimized conditions were also investigated using the response surface methodology to balance the PM reduction effect and Zn production. The results showed that lowering electrolyte temperature is the most efficient, with an 89.0% reduction in the PM generation flux (GFPM). Reducing H2SO4 concentration led to the minimum side effects on the current efficiency of Zn deposition (CEZn) or power consumption (PC). With the premise of non-deteriorating CEZn and PC, GFPM can be reduced by 86.3% at the optimal condition (electrolyte temperature = 295 K, H2SO4 = 110 g/L, current density = 373 A/m2). In addition, the reduction mechanism was elucidated by comprehensively analyzing bubble characteristics, electrochemical reactions, and surface tension. Results showed that lower electrolyte temperature inhibited the oxygen evolution reaction (OER) and compressed gas volume. Lower H2SO4 concentration inhibited the hydrogen evolution reaction (HER) and reduced electrolyte surface tension. Lower current density inhibited both OER and HER by decreasing the reaction current. The inhibited gas evolutions reduced the microbubbles’ number and size, thereby reducing GFPM. These results may provide energy-efficient PM reduction methods and theoretical hints of exploring cleaner PM reduction approaches for industrial electrolysis.
Zinc electrolysis / Particulate matter / Energy consumption / Operating parameters / Bubble characteristic / Electrochemical reaction
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
The Author(s) . This article is published with open access at link.springer.com and journal.hep.com.cn
Supplementary files
/
| 〈 |
|
〉 |