Atmospheric heterogeneous reaction of chlorobenzene on mineral α-Fe2O3 particulates: a chamber experiment study

Meiling Chen , Mengjie Yin , Yuetan Su , Ruizhe Li , Kezhou Liu , Zhongbiao Wu , Xiaole Weng

Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (11) : 134

PDF (4618KB)
Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (11) : 134 DOI: 10.1007/s11783-023-1734-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Atmospheric heterogeneous reaction of chlorobenzene on mineral α-Fe2O3 particulates: a chamber experiment study

Author information +
History +
PDF (4618KB)

Abstract

● Photochemical conversion of chlorobenzene (CB) on α-Fe2O3 was evaluated.

● CB can be considerably degraded by α-Fe2O3 under light irradiation.

● Photochemical conversion of CB is markedly suppressed by adding SO2 or NO2.

● CB can be ultimately converted into PCDD/Fs under dark state or light irradiation.

● Photochemical conversion complements an overlooked source of natural PCDD/Fs.

Despite the large emission of chlorinated volatile organic compounds (CVOCs) into the atmosphere, the ultimate fate of these compounds remains largely unknown. Herein, we explore the photochemical conversion of an important class of CVOCs, namely chlorobenzene (CB), on mineral α-Fe2O3 particulates under atmospheric relevant conditions. A series of chamber reactions composed of the CB with/without SO2 or NO2 are performed, followed by in situ diffuse reflectance infrared Fourier transform spectroscopy measurements and density functional theory calculations. We show that CB can be considerably degraded by α-Fe2O3 under light irradiation, whereas the reaction is markedly suppressed by adding SO2 or NO2 owing to their competitive adsorption and surface acidification. In particular, we discover that CB can be ultimately converted into polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) under dark state or light irradiation, suggesting a possible origin of atmospheric PCDD/Fs from this overlooked photochemical source.

Graphical abstract

Keywords

Photochemical conversion / Chlorobenzene / α-Fe 2O 3 / PCDD/Fs / Mineral particulate

Cite this article

Download citation ▾
Meiling Chen, Mengjie Yin, Yuetan Su, Ruizhe Li, Kezhou Liu, Zhongbiao Wu, Xiaole Weng. Atmospheric heterogeneous reaction of chlorobenzene on mineral α-Fe2O3 particulates: a chamber experiment study. Front. Environ. Sci. Eng., 2023, 17(11): 134 DOI:10.1007/s11783-023-1734-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Atkinson R , Aschmann S M , Winer A M , Pitts J N Jr . (1985). Atmospheric gas-phase loss processes for chlorobenzene, benzotrifluoride, and 4-chlorobenzotrifluoride, and generalization of predictive techniques for atmospheric lifetimes of aromatic-compounds. Archives of Environmental Contamination and Toxicology, 14(4): 417–425

[2]

Cai C , Li J , He Y , Jia J . (2023). Target the neglected VOCs emission from iron and steel industry in China for air quality improvement. Frontiers of Environmental Science & Engineering, 17(8): 95

[3]

Cao Y Q , Ma Q X , Chu B W , He H . (2023). Homogeneous and heterogeneous photolysis of nitrate in the atmosphere: state of the science, current research needs, and future prospects. Frontiers of Environmental Science & Engineering, 17(4): 48

[4]

Chen J Y , Yi J J , Ji Y M , Zhao B C , Ji Y P , Li G Y , An T C . (2020a). Enhanced H-abstraction contribution for oxidation of xylenes via mineral particles: Implications for particulate matter formation and human health. Environmental Research, 186: 109568

[5]

Chen T , Sun C , Wang T J , Lomnicki S , Zhan M X , Li X D , Lu S Y , Yan J H . (2020b). Formation of DF, PCDD/Fs and EPFRs from 1,2,3-trichlorobenzene over metal oxide/silica surface. Waste Management (New York, N.Y.), 118: 27–35

[6]

Chen Z L , Lin X Q , Lu S Y , Li X D , Qiu Q L , Wu A J , Ding J M , Yan J H . (2018). Formation pathways of PCDD/Fs during the co-combustion of municipal solid waste and coal. Chemosphere, 208: 862–870

[7]

Cui H X , Cheng T T , Chen J M , Xu Y F , Fang W F . (2008). A simulated heterogeneous reaction of SO2 on the surface of hematite at different temperatures. Acta Physico-Chimica Sinica, 24(12): 2331–2336 (in Chinese)

[8]

Day D A , Liu S , Russell L M , Ziemann P J . (2010). Organonitrate group concentrations in submicron particles with high nitrate and organic fractions in coastal southern California. Atmospheric Environment, 44(16): 1970–1979

[9]

Deng W , Dai Q G , Lao Y J , Shi B B , Wang X Y . (2016). Low temperature catalytic combustion of 1,2-dichlorobenzene over CeO2-TiO2 mixed oxide catalysts. Applied Catalysis B: Environmental, 181: 848–861

[10]

Du C T , Kong L D , Zhanzakova A , Tong S Y , Yang X , Wang L , Fu H B , Cheng T T , Chen J M , Zhang S C . (2019). Impact of adsorbed nitrate on the heterogeneous conversion of SO2 on alpha-Fe2O3 in the absence and presence of simulated solar irradiation. Science of the Total Environment, 649: 1393–1402

[11]

Duan Z H , Scheutz C , Kjeldsen P . (2021). Trace gas emissions from municipal solid waste landfills: a review. Waste Management (New York, N.Y.), 119: 39–62

[12]

Ebrahimbabaie P , Pichtel J . (2021). Biotechnology and nanotechnology for remediation of chlorinated volatile organic compounds: current perspectives. Environmental Science and Pollution Research International, 28(7): 7710–7741

[13]

Edney E O , Kleindienst T E , Corse E W . (1986). Room-temperature rate constants for the reaction of oh with selected chlorinated and oxygenated hydrocarbons. International Journal of Chemical Kinetics, 18(12): 1355–1371

[14]

Fang Q L , Zhu B Z , Sun Y L , Zhu Z C , Xu M G , Ge T T . (2019a). Mechanistic insight into the selective catalytic reduction of NO by NH3 over α-Fe2O3 (001): a density functional theory study. Catalysis Science & Technology, 9(1): 116–124

[15]

Fang X , Park S , Saito T , Tunnicliffe R , Ganesan A L , Rigby M , Li S , Yokouchi Y , Fraser P J , Harth C M . . (2019b). Rapid increase in ozone-depleting chloroform emissions from China. Nature Geoscience, 12(2): 89–93

[16]

Froese K L , Hutzinger O . (1996). Polychlorinated benzene, phenol, dibenzo-p-dioxin, and dibenzofuran in heterogeneous combustion reactions of acetylene. Environmental Science & Technology, 30(3): 998–1008

[17]

Fu H B , Wang X , Wu H B , Yin Y , Chen J M . (2007). Heterogeneous uptake and oxidation of SO2 on iron oxides. Journal of Physical Chemistry C, 111(16): 6077–6085

[18]

Ge X , Wexler A S , Clegg S L . (2011). Atmospheric amines–Part Ⅰ. A review. Atmospheric Environment, 45(3): 524–546

[19]

George I , Abbatt J . (2010). Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. Nature Chemistry, 2(9): 713–722

[20]

Gu Y F , Cai T , Gao X H , Xia H Q , Sun W , Zhao J , Dai Q G , Wang X Y . (2019). Catalytic combustion of chlorinated aromatics over WOx/CeO2 catalysts at low temperature. Applied Catalysis B: Environmental, 248: 264–276

[21]

Guan J K , Zhou L S , Li W Q , Hu D , Wen J , Huang B C . (2021). Improving the performance of Gd addition on catalytic activity and SO2 resistance over MnOx/ZSM-5 catalysts for low-temperature NH3-SCR. Catalysts, 11(3): 324

[22]

He X , Ma Z C , Xi X , Kudesi A , Wang J M . (2022). Heterogeneous reaction of toluene/NO2/O3 on alpha-Fe2O3 nanoparticles: the impacts of O3, light illumination, and relative humidity on the formation of N-containing organic compounds (NOC). Environmental Science. Nano, 9(9): 3318–3330

[23]

Hettiarachchi E , Grassian V H . (2022). Heterogeneous reactions of α-pinene on mineral surfaces: formation of organonitrates and α-pinene oxidation products. Journal of Physical Chemistry A, 126(25): 4068–4079

[24]

Hixson B C , Jordan J W , Wagner E L , Bevsek H M . (2011). Reaction products and kinetics of the reaction of NO2 with gamma-Fe2O3. Journal of Physical Chemistry A, 115(46): 13364–13369

[25]

Huang H L , Huang H B , Zhan Y J , Liu G Y , Wang X M , Lu H X , Xiao L , Feng Q Y , Leung D Y C . (2016). Efficient degradation of gaseous benzene by VUV photolysis combined with ozone-assisted catalytic oxidation: performance and mechanism. Applied Catalysis B: Environmental, 186: 62–68

[26]

Kanwal A , Sajjad S , Leghari S A K , Yousaf Z . (2021). Cascade electron transfer in ternary CuO/α-Fe2O3/γ-Al2O3 nanocomposite as an effective visible photocatalyst. Journal of Physics and Chemistry of Solids, 151: 109899

[27]

Kislov V V , Nguyen T L , Mebel A M , Lin S H , Smith S C . (2004). Photodissociation of benzene under collision-free conditions: an ab initio/Rice-Ramsperger-Kassel-Marcus study. Journal of Chemical Physics, 120(15): 7008–7017

[28]

Li H L , Dong F Q , Bian L , Huo T T , Zhou L , Luo W G , Zhang J , Zheng F , Lv Z Z , He X C . . (2022). Heterogeneous oxidation mechanism of SO2 on α-Fe2O3 (001) catalyst by HONO: effect of oxygen defect. Colloid and Interface Science Communications, 46: 100572

[29]

Lichtenberger J , Amiridis M D . (2004). Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts. Journal of Catalysis, 223(2): 296–308

[30]

Liu C , Ma Q , Liu Y , Ma J , He H . (2012). Synergistic reaction between SO2 and NO2 on mineral oxides: a potential formation pathway of sulfate aerosol. Physical Chemistry Chemical Physics, 14(5): 1668–1676

[31]

Liu F D, Asakura K, He H, Shan W P, Shi X Y, Zhang C B (2011a). Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 103(3−4): 369−377

[32]

LiuS LWangB GHeJTangX DLuoWWangC (2011b). Source fingerprints of volatile organic compounds emitted from a municipal solid waste incineration power plant in Guangzhou, China. International Conference on Environment Science and Engineering (ICESE), Bali Island, Indonesia

[33]

Long Y P , Su Y T , Xue Y H , Wu Z B A , Weng X L . (2021). V2O5-WO3/TiO2 catalyst for efficient synergistic control of NOx and chlorinated organics: insights into the arsenic effect. Environmental Science & Technology, 55(13): 9317–9325

[34]

Lunt M F , Park S , Li S , Henne S , Manning A J , Ganesan A L , Simpson I J , Blake D R , Liang Q , O’doherty S . . (2018). Continued emissions of the ozone-depleting substance carbon tetrachloride from eastern Asia. Geophysical Research Letters, 45(20): 11423–11430

[35]

Lv S Y , Liu Q Y , Zhao Y X , He S G . (2021). Photooxidation of isoprene by titanium oxide cluster anions with dimensions up to a nanosize. Journal of the American Chemical Society, 143(10): 3951–3958

[36]

Ma Y F , Wang P Y , Lin X Q , Chen T , Li X D . (2021). Formation and inhibition of polychlorinated-rho-dibenzodioxins and dibenzofurans from mechanical grate municipal solid waste incineration systems. Journal of Hazardous Materials, 403(5): 123812

[37]

Montzka S A , Dutton G S , Yu P , Ray E , Portmann R W , Daniel J S , Kuijpers L , Hall B D , Mondeel D , Siso C . . (2018). An unexpected and persistent increase in global emissions of ozone-depleting CFC-11. Nature, 557(7705): 413–417

[38]

Nagao M , Suda Y . (1989). Adsorption of benzene, toluene, and chlorobenzene on titanium-dioxide. Langmuir, 5(1): 42–47

[39]

Niu H J Y , Li K Z , Chu B W , Su W K , Li J H . (2017). Heterogeneous reactions between toluene and NO2 on mineral particles under simulated atmospheric conditions. Environmental Science & Technology, 51(17): 9596–9604

[40]

Peng A P , Gao J , Chen Z Y , Wang Y , Li H , Ma L Q , Gu C . (2018). Interactions of gaseous 2-chlorophenol with Fe3+-saturated montmorillonite and their toxicity to human lung cells. Environmental Science & Technology, 52(9): 5208–5217

[41]

Pitts J N Jr , Grosjean D , Vancauwenberghe K , Schmid J P , Fitz D R . (1978). Photo-oxidation of aliphatic-amines under simulated atmospheric conditions: formation of nitrosamines, nitramines, amides, and photo-chemical oxidant. Environmental Science & Technology, 12(8): 946–953

[42]

Ponczek M , George C . (2018). Kinetics and product formation during the photooxidation of butanol on atmospheric mineral dust. Environmental Science & Technology, 52(9): 5191–5198

[43]

Potter P M , Guan X , Lomnicki S M . (2018). Synergy of iron and copper oxides in the catalytic formation of PCDD/Fs from 2-monochlorophenol. Chemosphere, 203: 96–103

[44]

Qi J H , Liu X H , Yao X H , Zhang R F , Chen X J , Lin X H , Gao H W , Liu R H . (2018). The concentration, source and deposition flux of ammonium and nitrate in atmospheric particles during dust events at a coastal site in northern China. Atmospheric Chemistry and Physics, 18(2): 571–586

[45]

Ren Z Y , Lu Y , Li Q S , Sun Y Z , Wu C M , Ding Q . (2018). Occurrence and characteristics of PCDD/Fs formed from chlorobenzenes production in China. Chemosphere, 205: 267–274

[46]

Ryder O S , Campbell N R , Shaloski M , Al-Mashat H , Nathanson G M , Bertram T H . (2015). Role of organics in regulating ClNO2 production at the air–sea interface. Journal of Physical Chemistry A, 119(31): 8519–8526

[47]

Ryu J Y . (2008). Formation of chlorinated phenols, dibenzo-p-dioxins, dibenzofurans, benzenes, benzoquinnones and perchloroethylenes from phenols in oxidative and copper(II) chloride-catalyzed thermal process. Chemosphere, 71(6): 1100–1109

[48]

USEPA (1994). Method 1613: Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS. Cincinnati, OH: USEPA

[49]

USEPA (1999). Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. 2nd ed. Cincinnati, OH: USEPA

[50]

WangB GFengZ CZhouYLiuH X (2009). VOC components in the air caused by the local polyurethane synthetic leather industries in the Pearl River Delta region. China Environment Science, 29(9): 914−918 (in Chinese)

[51]

Wang D , Zhang H J , Fan Y , Ren M H , Cao R , Chen J P . (2019a). Electrophilic chlorination of naphthalene in combustion flue gas. Environmental Science & Technology, 53(10): 5741–5749

[52]

Wang J , Wang X , Liu X L , Zeng J L , Guo Y Y , Zhu T Y . (2015). Kinetics and mechanism study on catalytic oxidation of chlorobenzene over V2O5/TiO2 catalysts. Journal of Molecular Catalysis A Chemical, 402: 1–9

[53]

WangPZhuSVrekoussisMBrasseurG PWangSZhangH (2022). Is atmospheric oxidation capacity better in indicating tropospheric O3 formation? Frontiers of Environmental Science & Engineering, 16(5): 65

[54]

Wang X W , Jiang W Y , Yin R Q , Sun P F , Lu Y H , Wu Z B , Weng X L . (2020). The role of surface sulfation in mediating the acidity and oxidation ability of nickel modified ceria catalyst for the catalytic elimination of chlorinated organics. Journal of Colloid and Interface Science, 574: 251–259

[55]

Wang Z W , Li S , Xie S H , Liu Y X , Dai H X , Guo G S , Deng J G . (2019b). Supported ultralow loading Pt catalysts with high H2O-, CO2-, and SO2-resistance for acetone removal. Applied Catalysis A, General, 579(5): 106–115

[56]

Wu R R , Wang S N , Wang L M . (2014). Atmospheric oxidation mechanism of chlorobenzene. Chemosphere, 111: 537–544

[57]

Xie C Y , Sun Y L , Zhu B Z . (2021). The promoting mechanism of doping Mn, Co, and Ce on gas adsorption property and anti-SO2 oxidation over γ-Fe2O3 (001) surface: a density functional theory study. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 628(5): 127218

[58]

Yang L L , Liu G R , Zheng M H , Zhao Y Y , Jin R , Wu X L , Xu Y . (2017). Molecular mechanism of dioxin formation from chlorophenol based on electron paramagnetic resonance spectroscopy. Environmental Science & Technology, 51(9): 4999–5007

[59]

Yang W W , Ma Q X , Liu Y C , Ma J Z , Chu B W , He H . (2019). The effect of water on the heterogeneous reactions of SO2 and NH3 on the surfaces of α-Fe2O3 and γ-Al2O3. Environmental Science. Nano, 6(9): 2749–2758

[60]

Yu Y X , Tan W , An D Q , Wang X W , Liu A N , Zou W X , Tang C J , Ge C Y , Tong Q , Sun J F . . (2021). Insight into the SO2 resistance mechanism on γ-Fe2O3 catalyst in NH3-SCR reaction: a collaborated experimental and DFT study. Applied Catalysis B: Environmental, 281: 119544

[61]

Zhang Y , Li G , Wu P , Zhuang K , Shen K , Wang S , Huang T . (2020). Effect of SO2 on the low-temperature denitrification performance of Ho-modified Mn/Ti catalyst. Chemical Engineering Journal, 400(15): 122597

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4618KB)

Supplementary files

FSE-23034-OF-CML_suppl_1

2971

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/