Highly effective visible-photocatalytic hydrogen evolution and simultaneous organic pollutant degradation over an urchin-like oxygen-doped MoS2/ZnIn2S4 composite
Tao Yan, Qianqian Yang, Rui Feng, Xiang Ren, Yanxia Zhao, Meng Sun, Liangguo Yan, Qin Wei
Highly effective visible-photocatalytic hydrogen evolution and simultaneous organic pollutant degradation over an urchin-like oxygen-doped MoS2/ZnIn2S4 composite
● An urchin-like OMS/ZIS composite was fabricated by a facile solvothermal method.
● The OMS/ZIS exhibits superior photocatalytic H2 evolution for organics degradation.
● A probable mechanism of dual-functional photocatalysis was proposed in detail.
● This work provides an inspiration for rational design of dual-functional catalysts.
Achieving hydrogen production and simultaneous decomposition of organic pollutants through dual-functional photocatalytic reactions has received increasing attention due to the environmentally friendly and cost-effective characteristics of this approach. In this work, an urchin-like oxygen-doped MoS2/ZnIn2S4 (OMS/ZIS) composite was fabricated for the first time using a simple solvothermal method. The unique microstructure with abundant active sites and fast charge transfer channels further shortened the charge migration distance and compressed carrier recombination. The obtained composite exhibited an efficient H2 evolution reaction rate of 12.8 mmol/g/h under visible light, which was nearly times higher than pristine ZnIn2S4, and the apparent quantum efficiency was 14.9% (420 nm). The results of the simultaneous photocatalytic H2 evolution and organic pollutant decomposition test were satisfactory, resulting in decomposition efficiencies of resorcinol, tetracycline, and bisphenol A that reached 41.5%, 63.5%, and 53.0% after 4 h, respectively, and the highest H2 evolution rate was 672.7 μmol/g/h for bisphenol A. Furthermore, natural organic matter (NOM) abundantly found in actual water was adopted as an electron donor for H production under simulated sunlight irradiation, indicating the promising practicability of simultaneous hydrogen evolution and NOM decomposition. Moreover, the mechanisms of the dual-purpose photocatalytic reactions, as well as the synergistic effect between the molecular structures of the organic pollutants and the corresponding adsorption behavior on the photocatalyst surface were illustrated in detail. These obtained results may serve as an inspiration for the rational design of highly efficient, dual-functional photocatalysts in the future.
Dual-functional photocatalysts / Oxygen-doped MoS2/ZnIn2S4 / H2 evolution / Organic pollutant
[1] |
Byskov L S , Nørskov J K , Clausen B S , Topsøe H . (1999). DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts. Journal of Catalysis, 187( 1): 109– 122
CrossRef
Google scholar
|
[2] |
Chai B , Liu C , Wang C , Yan J , Ren Z . (2017). Photocatalytic hydrogen evolution activity over MoS2/ZnIn2S4 microspheres. Chinese Journal of Catalysis, 38( 12): 2067– 2075
CrossRef
Google scholar
|
[3] |
Chandrasekaran S , Yao L , Deng L , Bowen C , Zhang Y , Chen S , Lin Z , Peng F , Zhang P . (2019). Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 48( 15): 4178– 4280
CrossRef
Google scholar
|
[4] |
Chen G Ding N Li F Fan Y Luo Y Li D Meng Q ( 2014). Enhancement of photocatalytic H2 evolution on ZnIn2S4 loaded with in-situ photo-deposited MoS2 under visible light irradiation . Applied Catalysis B: Environmental, 160−161: 614− 620
|
[5] |
Chen S , Li S , Xiong L , Wang G . (2018). In-situ growth of ZnIn2S4 decorated on electrospun TiO2 nanofibers with enhanced visible-light photocatalytic activity. Chemical Physics Letters, 706 : 68– 75
CrossRef
Google scholar
|
[6] |
Cho Y J , Moon G H , Kanazawa T , Maeda K , Choi W . (2016). Selective dual-purpose photocatalysis for simultaneous H2 evolution and mineralization of organic compounds enabled by a Cr2O3 barrier layer coated on Rh/SrTiO3. Chemical Communications, 52( 62): 9636– 9639
CrossRef
Google scholar
|
[7] |
Daskalaki V M , Antoniadou M , Li Puma G , Kondarides D I , Lianos P . (2010). Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Environmental Science & Technology, 44( 19): 7200– 7205
CrossRef
Google scholar
|
[8] |
Ding N , Fan Y , Luo Y , Li D , Meng Q . (2015). Enhancement of H2 evolution over new ZnIn2S4/RGO/MoS2 photocatalysts under visible light. APL Materials, 3( 10): 104417
CrossRef
Google scholar
|
[9] |
Du C , Zhang Q , Lin Z , Yan B , Xia C , Yang G . (2019). Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 248 : 193– 201
CrossRef
Google scholar
|
[10] |
Eisenstein M . (2015). Pesticides: Seeking answers amid a toxic debate. Nature, 521( 7552): S52– S55
CrossRef
Google scholar
|
[11] |
Gao B , Du X , Ma Y , Li Y , Li Y , Ding S , Song Z , Xiao C . (2020). 3D flower-like defected MoS2 magnetron-sputtered on candle soot for enhanced hydrogen evolution reaction. Applied Catalysis B: Environmental, 263 : 117750
CrossRef
Google scholar
|
[12] |
Guan Z Wang P Li Q Li G Yang J( 2018). Constructing a ZnIn2S4 nanoparticle/MoS2-RGO nanosheet 0D/2D heterojunction for significantly enhanced visible-light photocatalytic H2 production . Dalton Transactions (Cambridge, England), 47( 19): 6800− 6807
|
[13] |
Hao M , Deng X , Xu L , Li Z . (2019). Noble metal free MoS2/ZnIn2S4 nanocomposite for acceptorless photocatalytic semi-dehydrogenation of 1,2,3,4-tetrahydroisoquinoline to produce 3,4-dihydroisoquinoline. Applied Catalysis B: Environmental, 252 : 18– 23
CrossRef
Google scholar
|
[14] |
Hou Y , Laursen A B , Zhang J , Zhang G , Zhu Y , Wang X , Dahl S , Chorkendorff I . (2013). Layered nanojunctions for hydrogen-evolution catalysis. Angewandte Chemie International Edition, 52( 13): 3621– 3625
CrossRef
Google scholar
|
[15] |
Hu P , Su H , Chen Z , Yu C , Li Q , Zhou B , Alvarez P J J , Long M . (2017). Selective degradation of organic pollutants using an efficient metal-free catalyst derived from carbonized polypyrrole via peroxymonosulfate activation. Environmental Science & Technology, 51( 19): 11288– 11296
CrossRef
Google scholar
|
[16] |
Huang T , Chen W , Liu T Y , Hao Q L , Liu X H . (2017). ZnIn2S4 hybrid with MoS2: A non-noble metal photocatalyst with efficient photocatalytic activity for hydrogen evolution. Powder Technology, 315 : 157– 162
CrossRef
Google scholar
|
[17] |
Jiang G , Wang K , Li J , Fu W , Zhang Z , Johnson G , Lv X , Zhang Y , Zhang S , Dong F . (2018a). Electrocatalytic hydrodechlorination of 2,4-dichlorophenol over palladium nanoparticles and its pH-mediated tug-of-war with hydrogen evolution. Chemical Engineering Journal, 348 : 26– 34
CrossRef
Google scholar
|
[18] |
Jiang X H , Wang L C , Yu F , Nie Y C , Xing Q J , Liu X , Pei Y , Zou J P , Dai W L . (2018b). Photodegradation of organic pollutants coupled with simultaneous photocatalytic evolution of hydrogen using quantum-dot-modified g-C3N4 catalysts under visible-light irradiation. ACS Sustainable Chemistry & Engineering, 6( 10): 12695– 12705
CrossRef
Google scholar
|
[19] |
Jo W K , Natarajan T S . (2016). Fabrication and efficient visible light photocatalytic properties of novel zinc indium sulfide (ZnIn2S4) - graphitic carbon nitride (g-C3N4)/bismuth vanadate (BiVO4) nanorod-based ternary nanocomposites with enhanced charge separation via Z-scheme transfer. Journal of Colloid and Interface Science, 482 : 58– 72
CrossRef
Google scholar
|
[20] |
Kampouri S , Nguyen T N , Spodaryk M , Palgrave R G , Züttel A , Smit B , Stylianou K C . (2018). Concurrent photocatalytic hydrogen generation and dye degradation using MIL‐125‐NH2 under visible light irradiation. Advanced Functional Materials, 28( 52): 1806368
CrossRef
Google scholar
|
[21] |
Kampouri S , Stylianou K C . (2019). Dual-functional photocatalysis for simultaneous hydrogen production and oxidation of organic substances. ACS Catalysis, 9( 5): 4247– 4270
CrossRef
Google scholar
|
[22] |
Li T , Zhong W , Jing C , Li X , Zhang T , Jiang C , Chen W . (2020). Enhanced hydrolysis of p-nitrophenyl phosphate by iron (hydr) oxide nanoparticles: Roles of exposed facets. Environmental Science & Technology, 54( 14): 8658– 8667
CrossRef
Google scholar
|
[23] |
Li W , Lin Z , Yang G . (2017). A 2D self-assembled MoS2/ZnIn2S4 heterostructure for efficient photocatalytic hydrogen evolution. Nanoscale, 9( 46): 18290– 18298
CrossRef
Google scholar
|
[24] |
Li Y Lu G Li S ( 2001). Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2. Applied Catalysis A, General, 214( 2): 179− 185
|
[25] |
Lin Z , Li L , Yu L , Li W , Yang G . (2017). Dual-functional photocatalysis for hydrogen evolution from industrial wastewaters. Physical Chemistry Chemical Physics, 19( 12): 8356– 8362
CrossRef
Google scholar
|
[26] |
Liu C , Wang L , Tang Y , Luo S , Liu Y , Zhang S , Zeng Y , Xu Y . (2015). Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 164 : 1– 9
CrossRef
Google scholar
|
[27] |
Liu H , Zhang J , Ao D . (2018a). Construction of heterostructured ZnIn2S4@NH2-MIL-125(Ti) nanocomposites for visible-light-driven H2 production. Applied Catalysis B: Environmental, 221 : 433– 442
CrossRef
Google scholar
|
[28] |
Liu J , Fang W , Wei Z , Qin Z , Jiang Z , Shangguan W . (2018b). Metallic 1T-LixMoS2 co-catalyst enhanced photocatalytic hydrogen evolution over ZnIn2S4 floriated microspheres under visible light irradiation. Catalysis Science & Technology, 8( 5): 1375– 1382
CrossRef
Google scholar
|
[29] |
Liu K H , Zhong H X , Li S J , Duan Y X , Shi M M , Zhang X B , Yan J M , Jiang Q . (2018c). Advanced catalysts for sustainable hydrogen generation and storage via hydrogen evolution and carbon dioxide/nitrogen reduction reactions. Progress in Materials Science, 92 : 64– 111
CrossRef
Google scholar
|
[30] |
Ma J , Wang H , Liu X , Lu L , Nie L , Yang X , Chai Y , Yuan R . (2017). Synthesis of tube shape MnO/Cp composite from 3,4,9,10-perylenetetracarboxylic dianhydride for lithium ion batteries. Chemical Engineering Journal, 309 : 545– 551
CrossRef
Google scholar
|
[31] |
Maqbool T , Qin Y , Ly Q V , Zhang J , Li C , Asif M B , Zhang Z . (2020). Exploring the relative changes in dissolved organic matter for assessing the water quality of full-scale drinking water treatment plants using a fluorescence ratio approach. Water Research, 183 : 116125
CrossRef
Google scholar
|
[32] |
Mo Z , Xu H , Chen Z , She X , Song Y , Wu J , Yan P , Xu L , Lei Y , Yuan S , Li H . (2018). Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Applied Catalysis B: Environmental, 225 : 154– 161
CrossRef
Google scholar
|
[33] |
Nie Y C , Yu F , Wang L C , Xing Q J , Liu X , Pei Y , Zou J P , Dai W L , Li Y , Suib S L . (2018). Photocatalytic degradation of organic pollutants coupled with simultaneous photocatalytic H2 evolution over graphene quantum dots/Mn-N-TiO2/g-C3N4 composite catalysts: performance and mechanism. Applied Catalysis B: Environmental, 227 : 312– 321
CrossRef
Google scholar
|
[34] |
Patsoura A , Kondarides D I , Verykios X E . (2006). Enhancement of photoinduced hydrogen production from irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes. Applied Catalysis B: Environmental, 64( 3-4): 171– 179
CrossRef
Google scholar
|
[35] |
Sun N , Qu Y , Yang C , Yang Z , Yan R , E W , Zhang Z , Li Z , Li H , Khan I . (2020). Efficiently photocatalytic degradation of monochlorophenol on in-situ fabricated BiPO4/β-Bi2O3 heterojunction microspheres and O2-free hole-induced selective dechloridation conversion with H2 evolution. Applied Catalysis B: Environmental, 263 : 118313
CrossRef
Google scholar
|
[36] |
Swain G , Sultana S , Parida K . (2019). One-pot-architectured Au-nanodot-promoted MoS2/ZnIn2S4: A novel p–n heterojunction photocatalyst for enhanced hydrogen production and phenol degradation. Inorganic Chemistry, 58( 15): 9941– 9955
CrossRef
Google scholar
|
[37] |
Tang Y J , Wang Y , Wang X L , Li S L , Huang W , Dong L Z , Liu C H , Li Y F , Lan Y Q . (2016). Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Advanced Energy Materials, 6( 12): 1600116
CrossRef
Google scholar
|
[38] |
Tian G Chen Y Ren Z Tian C Pan K Zhou W Wang J Fu H ( 2014). Enhanced photocatalytic hydrogen evolution over hierarchical composites of ZnIn2S4 nanosheets grown on MoS2 slices . Chemistry, An Asian Journal, 9( 5): 1291− 1297
Pubmed
|
[39] |
Wan S , Ou M , Zhong Q , Zhang S , Song F . (2017). Construction of Z-scheme photocatalytic systems using ZnIn2S4, CoOx-loaded Bi2MoO6 and reduced graphene oxide electron mediator and its efficient nonsacrificial water splitting under visible light. Chemical Engineering Journal, 325 : 690– 699
CrossRef
Google scholar
|
[40] |
Wang H , Wu Y , Feng M , Tu W , Xiao T , Xiong T , Ang H , Yuan X , Chew J W . (2018a). Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam. Water Research, 144 : 215– 225
CrossRef
Google scholar
|
[41] |
Wang Q , Huang J , Sun H , Ng Y H , Zhang K Q , Lai Y . (2018b). MoS2 quantum dots@TiO2 nanotube arrays: An extended-spectrum-driven photocatalyst for solar hydrogen evolution. ChemSusChem, 11( 10): 1708– 1721
CrossRef
Google scholar
|
[42] |
Wang S , Zhu B , Liu M , Zhang L , Yu J , Zhou M . (2019). Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Applied Catalysis B: Environmental, 243 : 19– 26
CrossRef
Google scholar
|
[43] |
Wei L , Chen Y , Lin Y , Wu H , Yuan R , Li Z . (2014). MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations. Applied Catalysis B: Environmental, 144 : 521– 527
CrossRef
Google scholar
|
[44] |
Wei Z , Liu J , Fang W , Xu M , Qin Z , Jiang Z , Shangguan W . (2019). Photocatalytic hydrogen evolution with simultaneous antibiotic wastewater degradation via the visible-light-responsive bismuth spheres-g-C3N4 nanohybrid: Waste to energy insight. Chemical Engineering Journal, 358 : 944– 954
CrossRef
Google scholar
|
[45] |
Wu Z Liu X Liu J Liu S Zha Z Chen Z (2019). Molybdenum disulfide based composites and their photocatalytic degradation and hydrogen evolution properties. Progress in Chemistry, 31(8): 1086− 1102 (in Chinese)
|
[46] |
Xiao X Hao R Liang M Zuo X Nan J Li L Zhang W (2012). One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A. Journal of Hazardous Materials, 233–234: 122–130
Pubmed
|
[47] |
Xu Y , Yan A , Jiang L , Huang F , Hu D , Duan G , Zheng F . (2022). MoS2/HCSs/ZnIn2S4 nanocomposites with enhanced charge transport and photocatalytic hydrogen evolution performance. Journal of Alloys and Compounds, 895 : 162504
CrossRef
Google scholar
|
[48] |
Yang G , Ding H , Chen D , Feng J , Hao Q , Zhu Y . (2018). Construction of urchin-like ZnIn2S4-Au-TiO2 heterostructure with enhanced activity for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 234 : 260– 267
CrossRef
Google scholar
|
[49] |
Yi H , Huang D , Qin L , Zeng G , Lai C , Cheng M , Ye S , Song B , Ren X , Guo X . (2018). Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production. Applied Catalysis B: Environmental, 239 : 408– 424
CrossRef
Google scholar
|
[50] |
Yuan Y J Chen D Zhong J Yang L X Wang J Liu M J Tu W G Yu Z T Zou Z G (2017). Interface engineering of a noble-metal-free 2D–2D MoS2/Cu-ZnIn2S4 photocatalyst for enhanced photocatalytic H2 production . Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 5(30): 15771– 15779
|
[51] |
Yuan Y J , Tu J R , Ye Z J , Chen D Q , Hu B , Huang Y W , Chen T T , Cao D P , Yu Z T , Zou Z G . (2016). MoS2-graphene/ZnIn2S4 hierarchical microarchitectures with an electron transport bridge between light-harvesting semiconductor and cocatalyst: A highly efficient photocatalyst for solar hydrogen generation. Applied Catalysis B: Environmental, 188 : 13– 22
CrossRef
Google scholar
|
[52] |
Zhang G , Chen D , Li N , Xu Q , Li H , He J , Lu J . (2020). Construction of hierarchical hollow Co9S8/ZnIn2S4 tubular heterostructures for highly efficient solar energy conversion and environmental remediation. Angewandte Chemie, 132( 21): 8332– 8338
CrossRef
Google scholar
|
[53] |
Zhang S , Gu P , Ma R , Luo C , Wen T , Zhao G , Cheng W , Wang X . (2019). Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: A critical review. Catalysis Today, 335 : 65– 77
CrossRef
Google scholar
|
[54] |
Zhang S , Liu X , Liu C , Luo S , Wang L , Cai T , Zeng Y , Yuan J , Dong W , Pei Y , Liu Y . (2018a). MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano, 12( 1): 751– 758
CrossRef
Google scholar
|
[55] |
Zhang S , Wang L , Liu C , Luo J , Crittenden J , Liu X , Cai T , Yuan J , Pei Y , Liu Y . (2017). Photocatalytic wastewater purification with simultaneous hydrogen production using MoS2 QD-decorated hierarchical assembly of ZnIn2S4 on reduced graphene oxide photocatalyst. Water Research, 121 : 11– 19
CrossRef
Google scholar
|
[56] |
Zhang X H , Li N , Wu J , Zheng Y Z , Tao X . (2018b). Defect-rich O-incorporated 1T-MoS2 nanosheets for remarkably enhanced visible-light photocatalytic H2 evolution over CdS: The impact of enriched defects. Applied Catalysis B: Environmental, 229 : 227– 236
CrossRef
Google scholar
|
[57] |
Zhang Z , Huang L , Zhang J , Wang F , Xie Y , Shang X , Gu Y , Zhao H , Wang X . (2018c). In situ constructing interfacial contact MoS2/ZnIn2S4 heterostructure for enhancing solar photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 233 : 112– 119
CrossRef
Google scholar
|
[58] |
Zhao T , Xing Z , Xiu Z , Li Z , Yang S , Zhou W . (2019). Oxygen-doped MoS2 nanospheres/CdS quantum dots/g-C3N4 nanosheets super-architectures for prolonged charge lifetime and enhanced visible-light-driven photocatalytic performance. ACS Applied Materials & Interfaces, 11( 7): 7104– 7111
CrossRef
Google scholar
|
/
〈 | 〉 |