Airborne bacteria associated with particulate matter from a highly urbanised metropolis: A potential risk to the population’s health

María del Carmen Calderón-Ezquerro, Elizabeth Selene Gómez-Acata, Carolina Brunner-Mendoza

PDF(1528 KB)
PDF(1528 KB)
Front. Environ. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (9) : 120. DOI: 10.1007/s11783-022-1552-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Airborne bacteria associated with particulate matter from a highly urbanised metropolis: A potential risk to the population’s health

Author information +
History +

Highlights

• The airborne bacteria of Mexico City are representative of urban environments.

• Particle material<10 µm influenced the type and quantity of airborne bacteria.

• The diversity and richness of bacteria were higher in the rainy season.

• The emission & transport of airborne bacteria determine the atmosphere’s microbiome.

• Bacterias as Kocuria, Paracoccus, and Staphylococcus were in the air of Mexico City.

Abstract

Bacteria in the air present patterns in space and time produced by different sources and environmental factors. Few studies have focused on the link between airborne pathogenic bacteria in densely populated cities, and the risk to the population’s health. Bacteria associated with particulate matter (PM) were monitored from the air of Mexico City (Mexico). We employed a metagenomic approach to characterise bacteria using the 16S rRNA gene. Airborne bacteria sampling was carried out in the north, centre, and south of Mexico City, with different urbanisation rates, during 2017. Bacteria added to the particles were sampled using high-volume PM10 samplers. To ascertain significant differences in bacterial diversity between zones and seasons, the Kruskal-Wallis, Wilcoxon tests were done on alpha diversity parameters. Sixty-three air samples were collected, and DNA was sequenced using next-generation sequencing. The results indicated that the bacterial phyla in the north and south of the city were Firmicutes, Cyanobacteria, Proteobacteria, and Actinobacteria, while in the central zone there were more Actinobacteria. There were no differences in the alpha diversity indices between the sampled areas. According to the OTUs, the richness of bacteria was higher in the central zone. Alpha diversity was higher in the rainy season than in the dry season; the Shannon index and the OTUs observed were higher in the central zone in the dry season. Pathogenic bacteria such as Kocuria, Paracoccus, and Micrococcus predominated in both seasonal times, while Staphylococcus, Corynebacterium, and Nocardioides were found during the rainy season, with a presence in the central zone.

Graphical abstract

Keywords

Airborne bacteria / Urbanisation / PM10 / Mexico City / Microbiome

Cite this article

Download citation ▾
María del Carmen Calderón-Ezquerro, Elizabeth Selene Gómez-Acata, Carolina Brunner-Mendoza. Airborne bacteria associated with particulate matter from a highly urbanised metropolis: A potential risk to the population’s health. Front. Environ. Sci. Eng., 2022, 16(9): 120 https://doi.org/10.1007/s11783-022-1552-5

References

[1]
Acosta-Martinez V, Van Pelt S, Moore-Kucera J, Baddock M C, Zobeck T M (2015). Microbiology of wind-eroded sediments: Current knowledge and future research directions. Aeolian Research, 18: 99–113
CrossRef Google scholar
[2]
Alghamdi M A, Shamy M, Redal M A, Khoder M, Awad A H, Elserougy S (2014). Microorganisms associated particulate matter: A prelimi-nary study. Science of the Total Environment, 479–480: 109–116
CrossRef Pubmed Google scholar
[3]
Antoinette van Overeem M (1937). On green organisms occurring in the lower troposphere. Recueil des Travaux Botaniques Néerlandais, 34(1): 388–442
[4]
Backer L C, McNeel S V, Barber T, Kirkpatrick B, Williams C, Irvin M, Zhou Y, Johnson T B, Nierenberg K, Aubel M, LePrell R, Chapman A, Foss A, Corum S, Hill V R, Kieszak S M, Cheng Y S (2010). Recreational exposure to microcystins during algal blooms in two California lakes. Toxicon, 55(5): 909–921
CrossRef Pubmed Google scholar
[5]
Be N A, Thissen J B, Fofanov V Y, Allen J E, Rojas M, Golovko G, Fofanov Y, Koshinsky H, Jaing C J (2015). Metagenomic analysis of the airborne environment in urban spaces. Microbial Ecology, 69(2): 346–355
CrossRef Pubmed Google scholar
[6]
Benson J M, Hutt J A, Rein K, Boggs S E, Barr E B, Fleming L E (2005). The toxicity of microcystin LR in mice following 7 days of inhalation exposure. Toxicon, 45(6): 691–698
CrossRef Pubmed Google scholar
[7]
Berg G, Rybakova D, Fischer D, Cernava T, Vergès M C C, Charles T, Chen X, Cocolin L, Eversole K, Corral G H, Kazou M, Kinkel L, Lange L, Lima N, Loy A, Macklin J A, Maguin E, Mauchline T, McClure R, Mitter B, Ryan M, Sarand I, Smidt H, Schelkle B, Roume H, Kiran G S, Selvin J, Souza R S C, van Overbeek L, Singh B K, Wagner M, Walsh A, Sessitsch A, Schloter M (2020). Microbiome, definition re-visited: Old concepts and new challenges. Microbiome, 8(1): 1–22
CrossRef Pubmed Google scholar
[8]
Bertolini V, Gandolfi I, Ambrosini R, Bestetti G, Innocente E, Rampazzo G, Franzetti A (2013). Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy. Applied Microbiology and Biotechnology, 97(14): 6561–6570
CrossRef Pubmed Google scholar
[9]
Bowers R M, Clements N, Emerson J B, Wiedinmyer C, Hannigan M P, Fierer N (2013). Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environmental Science & Techno-logy, 47(21): 12097–12106
CrossRef Pubmed Google scholar
[10]
Bowers R M, Sullivan A P, Costello E K, Collett J L Jr, Knight R, Fierer N (2011). Sources of bacteria in outdoor air across cities in the midwestern United States. Applied and Environmental Microbio-logy, 77(18): 6350–6356
CrossRef Pubmed Google scholar
[11]
Bravo-Alvarez H, Torres-Jardón R (2002). Air pollution levels and trends in the Mexico City metropolitan area. In: Fenn M de B L, Hernández-Tejeda T, eds. Urban Air Pollution and Forests. Resources at risk in the Mexico City air basin. New York: Springer–Verlag, 121–159
[12]
Burrows S M, Butler T, Jockel P, Tost H, Kerkweg A, Poschl U, Lawrence M G (2009a). Bacteria in the global atmosphere–Part 2: Modeling of emissions and transport between different ecosystems. Atmospheric Chemistry and Physics, 9(23): 9281–9297
CrossRef Google scholar
[13]
Burrows S M, Elbert W, Lawrence M G, Poschl U (2009b). Bacteria in the global atmosphere–Part 1: Review and synthesis of literature data for different ecosystems. Atmospheric Chemistry and Physics, 9(23): 9263–9280
CrossRef Google scholar
[14]
Calderón-Ezquerro M C, Guerrero-Guerra C, Martínez-López B, Fuentes-Rojas F, Téllez-Unzueta F, López-Espinoza E D, Calderón-Segura M E, Martínez-Arroyo A, Trigo-Pérez M M (2016). First airbornepollen calendar for Mexico City and its relationship withbioclimatic factors. Aerobiologia, 32(2): 225–244
CrossRef Google scholar
[15]
Calderón-Ezquerro M C, Serrano-Silva N, Brunner-Mendoza C (2020). Metagenomic characterisation of bioaerosols during the dry season in Mexico City. Aerobiologia, 36(3): 493–505
CrossRef Google scholar
[16]
Calderón-Ezquerro M C, Martinez-Lopez B, Guerrero-Guerra C, López-Espinosa E D, Cabos-Narvaez W D (2018). Behaviour of Quercus pollen in the air, determination of its sources and transport through the atmosphere of Mexico City and conurbated areas. International Journal of Biometeorology, 62(9): 1721–1732
[17]
Calderón-Ezquerro M D C, Serrano-Silva N, Brunner-Mendoza C (2021). Aerobiological study of bacterial and fungal community composition in the atmosphere of Mexico City throughout an annual cycle. Environmental Pollution, 278: 116858
CrossRef Pubmed Google scholar
[18]
Camatini M, Corvaja V, Pezzolato E, Mantecca P, Gualtieri M (2012). PM10-biogenic fraction drives the seasonal variation of proinflammatory response in A549 cells. Environmental Toxicology, 27(2): 63–73
CrossRef Pubmed Google scholar
[19]
Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R, Huttley G A (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336
CrossRef Pubmed Google scholar
[20]
Carson J L, Brown R M Jr (1976). The correlation of soil algae airborne algae and fern spores with meteorological conditions on the Island of Hawaii. USA. Pacific Science, 30: 197–205
[21]
Cha S, Srinivasan S, Jang J H, Lee D, Lim S, Kim K S, Jheong W, Lee D W, Park E R, Chung H M, Choe J, Kim M K, Seo T (2017). Metagenomic analysis of airborne bacterial community and diversity in Seoul Korea during December 2014 Asian dust event. PLoS One, 12(1): e0170693
CrossRef Pubmed Google scholar
[22]
Chatterjee K, Sigler V (2015). Evaluation of airborne microbial densities and assemblages following extended impaction onto a modified collection surface. Aerobiologia, 31(1): 21–32
CrossRef Google scholar
[23]
Chen X, Kumari D, Achal V (2020). A review on airborne microbes: The characteristics of sources pathogenicity and geography. Atmosphere, 11(9): 919
CrossRef Google scholar
[24]
Chorus I, Welker M (2021). Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences Monitoring and Management. London: Taylor & Francis, 858
[25]
Chrisostomou A, Moustaka-Gouni M, Sgardelis S, Lanaras T (2009). Air-dispersed phytoplankton in a Mediterranean river-reservoir system (Aliakmon-Polyphytos Greece). Journal of Plankton Research, 31(8): 877–884
CrossRef Google scholar
[26]
Clauß M (2015). Particle size distribution of airborne microorganisms in the environment: A review. Landbauforsch. Applied Agricultural and Forestry Research, 65(2): 77–100
CrossRef Google scholar
[27]
De Cáceres M, Legendre P, Moretti M (2010). Improving indicator species analysis by combining groups of sites. Oikos, 119(10): 1674–1684
CrossRef Google scholar
[28]
Després L, David J P, Gallet C (2007). The evolutionary ecology of insect resistance to plant chemicals. Trends in Ecology & Evolution, 22(6): 298–307
CrossRef Pubmed Google scholar
[29]
Després V R, Huffman J A, Burrows S M, Hoose C, Savatov A S, Buryak G (2012). Primary biological aerosol particles in the atmosphere: A review. Tellus Series B-Chemical and Physical Meteorology, 64(1): 15598
CrossRef Google scholar
[30]
Du P, Du R, Ren W, Lu Z, Fu P (2018). Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city, China. Science of the Total Environment, 610– 611: 308–315
CrossRef Pubmed Google scholar
[31]
Dufrêne M, Legendre P (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67(3): 345–366
CrossRef Google scholar
[32]
Edgerton S A, Bian X, Doran J C, Fast J D, Hubbe J M, Malone E L, Shaw W J, Whiteman C D, Zhong S, Arriaga J L, Ortiz E, Ruiz M, Sosa G, Vega E, Limon T, Guzman F, Archuleta J, Bossert J E, Elliot S M, Lee J T, McNair L A, Chow J C, Watson J G, Coulter R L, Doskey P V, Gaffney J S, Marley N A, Neff W, Petty R (1999). Particulate air pollution in Mexico City: A collaborative research project. Journal of the Air & Waste Management Association, 49(10): 1221–1229
CrossRef Pubmed Google scholar
[33]
Ehresmann D W, Hatch M T (1975). Effect of relative humidity on the survival of airborne unicellular algae. Journal of Applied Microbiology, 29(3): 352–357
CrossRef Pubmed Google scholar
[34]
Estrada F, Martínez-Arroyo A, Fernández-Eguiarte A, Luyando E, Gay C (2009). Defining climate zones in Mexico City using multivariate analysis. Atmosfera, 22: 175–193
[35]
Fang Z, Ouyang Z, Zheng H, Wang X, Hu L (2007). Culturable airborne bacteria in outdoor environments in Beijing, China. Microbial Ecology, 54(3): 487–496
CrossRef Pubmed Google scholar
[36]
Flies E J, Clarke L J, Brook B W, Jones P (2020). Urbanisation reduces the abundance and diversity of airborne microbes–but what does that mean for our health? A systematic review. Science of the Total Environment, 738: 140337
CrossRef Pubmed Google scholar
[37]
Flies E J, Mavoa S, Zosky G R, Mantzioris E, Williams C, Eri R, Brook B W, Buettel J C (2019). Urban-associated diseases: Candidate diseases, environmental risk factors, and a path forward. Environment International, 133(Pt A): 105187
CrossRef Pubmed Google scholar
[38]
Flies E J, Skelly C, Lovell R, Breed M F, Phillips D, Weinstein P (2018). Cities biodiversity and health: We need healthy urban Microbiome, initiatives. Cities & Health, 2(2): 143–150
CrossRef Google scholar
[39]
Flies E J, Skelly C, Negi S S, Prabhakaran P, Liu Q, Liu K, Goldizen F C, Lease C, Weinstein P (2017). Biodiverse green spaces: A prescription for global urban health. Frontiers in Ecology and the Environment, 15(9): 510–516
CrossRef Google scholar
[40]
Franzetti A, Gandolfi I, Gaspari E, Ambrosini R, Bestetti G (2011). Seasonal variability of bacteria in fine and coarse urban air particulate matter. Applied Microbiology and Biotechnology, 90(2): 745–753
CrossRef Pubmed Google scholar
[41]
Fröhlich-Nowoisky J, Kampf C J, Weber B, Huffman J A, Pöhlker C, Andreae M O, Lang-Yona N, Burrows S M, Gunthe S S, Elbert W, Su H, Hoor P, Thines E, Hoffmann T, Després V R, Pöschl U (2016). Bioaerosols in the Earth system: Climate health and ecosystem interactions. Atmospheric Research, 182: 346–376
CrossRef Google scholar
[42]
Gandolfi I, Bertolini V, Ambrosini R, Bestetti G, Franzetti A (2013). Unravelling the bacterial diversity in the atmosphere. Applied Microbiology and Biotechnology, 97(11): 4727–4736
CrossRef Pubmed Google scholar
[43]
Gandolfi I, Bertolini V, Bestetti G, Ambrosini R, Innocente E, Rampazzo G, Papacchini M, Franzetti A (2015). Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas. Applied Microbiology and Biotechnology, 99(11): 4867–4877
CrossRef Pubmed Google scholar
[44]
Gao M, Jia R, Qiu T, Han M, Song Y, Wang X (2015). Seasonal size distribution of airborne culturable bacteria and fungi and preliminary estimation of their deposition in human lungs during non-haze and haze days. Atmospheric Environment, 118: 203–210
CrossRef Google scholar
[45]
Genitsaris S, Kormas K A, Moustaka-Gouni M (2011). Airborne algae and cyanobacteria: Occurrence and related health effects. Frontiers in Bioscience, 3(2): 772–787
Pubmed
[46]
Gonzáles T L (2007). Perspectives of environmental, geological risk in the Los Remedios river, the border area between the Federal District and Edo.From Mexico. Bachelor’s Thesis. Mexico City: School of Engineering and Architecture. National Polytechnic Institute
[47]
González M R (2015). Identificación de cianobacterias potencialmente productoras de cianotoxinas en la curva de salguero del río Cesar. Revista Luna Azul, 31: 17–25
[48]
Gouveia N C, Maisonet M (2006). Health effects of air pollution: An overview. In: World Health Organization, ed. Regional Office for Europe. Air Quality Guidelines: Global Update 2005: Particulate Matter Ozone Nitrogen Dioxide and Sulfur Dioxide. Copenhagen: World Health Organization. Regional Office for Europe
[49]
Griffin D W (2007). Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clinical Microbiology Reviews, 20(3): 459–477
CrossRef Pubmed Google scholar
[50]
Hesse W (1884). t’ber quantitative Bestimmung der in der Luft enhaltenen Mikroorganismen. Mitt. aus dem kais. Gesundht. Berlin, 2: 182–207
[51]
Hesse W (1888). Bemerkungen zur quantitativen Bestimmung der Mikroorganismen in der Luft. Zeitschrift für Hygiene, 4(1): 19–21
CrossRef Google scholar
[52]
Hirano S S, Upper C D (1983). Ecology and epidemiology of foliar bacterial plant pathogens. Annual Review of Phytopathology, 21(1): 243–270
CrossRef Google scholar
[53]
Ho H M, Rao C Y, Hsu H H, Chiu Y H, Liu C M, Chao H J (2005). Characteristics and determinants of ambient fungal spores in Hualien China. Atmospheric Environment, 39(32): 5839–5850
CrossRef Google scholar
[54]
INEGI (2017). Anuario estadístico y geográfico de la Ciudad de México. 2017 / / Instituto nacional de Estadística y Geografía. Ciudad de México: INEGI, Instituto Nacional de Estadística y Geografía (México), 506
[55]
INEGI (2020). Panorama sociodemográfico de Ciudad de México: Censo de Población y Vivienda 2020: CPV / Instituto nacional de estadística y Geografía. Ciudad de México: INEGI, 51
[56]
Innocente E, Squizzato S, Visin F, Facca C, Rampazzo G, Bertolini V, Gandolfi I, Franzetti A, Ambrosini R, Bestetti G (2017). Influence of seasonality, air mass origin and particulate matter chemical composition on airborne bacterial community structure in the Po Valley, Italy. Science of the Total Environment, 593–594: 677–687
CrossRef Pubmed Google scholar
[57]
Iossifova Y Y, Reponen T, Bernstein D I, Levin L, Kalra H, Campo P, Villareal M, Lockey J, Hershey G K K, LeMasters G (2007). House dust (1-3)-beta-D-glucan and wheezing in infants. Allergy, 62(5): 504–513
CrossRef Pubmed Google scholar
[58]
Jackson T A (1978). The biogeochemistry of heavy metals in polluted lakes and streams at Flin Flon Canada and a proposed method for limiting heavy-metal pollution of natural waters. Environmental Geology, 2(3): 173–189
CrossRef Google scholar
[59]
Joint Research Centre (2019). The Future of Cities-Opportunities, Challanges and the Way Forward. Luxembourg: Union EUR 29752 EN, Publications Office
[60]
Jones A M, Harrison R M (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations: A review. Science of the Total Environment, 326(1–3): 151–180
CrossRef Pubmed Google scholar
[61]
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner F O (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1): e1
CrossRef Pubmed Google scholar
[62]
Kolde K R (2015). Maintainer Raivo. Package ‘pheatmap’. Version. 20151:0.8. Date: 2015-07-02. Tallinn: University of Tartu
[63]
Krieg N R, Ludwig W, Whitman W, Hedlund B P, Paster B J, Staley J T, Ward N, Brown D, Parte A ( 2010 ). Bergey’s Manual of Systematic Bacterioly: Volume Four The Bacteroidetes Spirochaetes Tenericutes (Mollicutes) Acidobacteria Fibrobacteres Fusobacteria Dictyoglomi Gemmatimonadetes Lentisphaerae Verrucomicrobia Chlamydiae and Planctomycetes. 2nd. ed. New York: Springer, 397
[64]
Lewandowska A U, Śliwińska-Wilczewska S, Woźniczka D (2017). Identification of cyanobacteria and microalgae in aerosols of various sizes in the air over the Southern Baltic Sea. Marine Pollution Bulletin, 125(1–2): 30–38
CrossRef Pubmed Google scholar
[65]
Li W, Fu L, Niu B, Wu S, Wooley J (2012). Ultrafast clustering algorithms for metagenomic sequence analysis. Briefings in Bioinformatics, 13(6): 656–668
CrossRef Pubmed Google scholar
[66]
Li Y, Liao H, Yao H (2019). Prevalence of antibiotic resistance genes in air-conditioning systems in hospitals farms and residences. International Journal of Environmental Research and Public Health, 16(5): 683
CrossRef Pubmed Google scholar
[67]
Lindemann J, Upper C D (1985). Aerial dispersal of epiphytic bacteria over bean plants. Applied and Environmental Microbiology, 50(5): 1229–1232
CrossRef Pubmed Google scholar
[68]
Liu H, Zhang X, Zhang H, Yao X, Zhou M, Wang J, He Z, Zhang H, Lou L, Mao W, Zheng P, Hu B (2018). Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter. Environmental Pollution, 233: 483–493
CrossRef Pubmed Google scholar
[69]
Lymperopoulou D S, Adams R I, Lindow S E (2016). Contribution of vegetation to the microbial composition of nearby outdoor air. Applied and Environmental Microbiology, 82(13): 3822–3833
CrossRef Pubmed Google scholar
[70]
Magoč T, Salzberg S L (2011). FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England), 27(21): 2957–2963
CrossRef Pubmed Google scholar
[71]
Matthias-Maser S, Jaenicke R (1994). Examination of atmospheric bioaerosol particles with radii > 0.2 μm. Journal of Aerosol Science, 25(8): 1605–1613
CrossRef Google scholar
[72]
Matthias-Maser S, Jaenicke R (2000). The size distribution of primary biological aerosol particles in the multiphase atmosphere. Aerobiologia, 16(2): 207–210
CrossRef Google scholar
[73]
May N W, Olson N E, Panas M, Axson J L, Tirella P S, Kirpes R M, Craig R L, Gunsch M J, China S, Laskin A, Ault A P, Pratt K A (2018). Aerosol emissions from great lakes harmful algal blooms. Environmental Science & Technology, 52(2): 397–405
CrossRef Pubmed Google scholar
[74]
Meklin T, Reponen T, Toivola M, Koponen V, Husman T, Hyvärinen A, Nevalainen A (2002). Size distributions of airborne microbes in moisture-damaged and reference school buildings of two construction types. Atmospheric Environment, 36(39–40): 39–40
CrossRef Pubmed Google scholar
[75]
Mhuireach G, Johnson B R, Altrichter A E, Ladau J, Meadow J F, Pollard K S, Green J L (2016). Urban greenness influences airborne bacterial community composition. Science of the Total Environment, 571: 680–687
CrossRef Pubmed Google scholar
[76]
Molina T L, de Foy B, Vázquez-Martínez O, Páramo-Figueroa V H (2009). Air Quality Weather and Climate in Mexico City. Geneva, Switzerland: WMO Bulletin n, 58
[77]
Mu F, Li Y, Lu R, Qi Y, Xie W, Bai W (2020). Source identification of airborne bacteria in the mountainous area and the urban areas. Atmospheric Research, 231: 104676
CrossRef Google scholar
[78]
Ogle D H ( 2018 ). Introductory Fisheries Analyses with R. Boca Raton: Chapman & Hall/CRC
CrossRef Google scholar
[79]
Oksanen J, Blanchet F G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin P R, O’Hara R B, Simpson G L, Solymos P, Henry M, Stevens H, Szoecs E, Wagner H (2017). Vegan: Community Ecology Package. R Package Version. 2 4–3. Oulu: University of Oulu
[80]
Paściak M, Pawlik K, Gamian A, Szponar B, Skóra J, Gutarowska B (2014). An airborne actinobacteria Nocardiopsis alba isolated from bioaerosol of a mushroom compost facility. Aerobiologia, 30(4): 413–422
CrossRef Pubmed Google scholar
[81]
Pillai S D, Ricke S C (2002). Bioaerosols from municipal and animal wastes: Background and contemporary issues. Canadian Journal of Microbiology, 48(8): 681–696
CrossRef Pubmed Google scholar
[82]
Polymenakou P N (2012). Atmosphere: A source of pathogenic or beneficial microbes? Atmosphere, 3(1): 87–102
CrossRef Google scholar
[83]
Roy-Ocotla G, Carrera J (1993). Aeroalgae: Responses to some aerobiological questions. Grana, 32: 48e56
CrossRef Google scholar
[84]
Ruiz-Gil T, Acuña J J, Fujiyoshi S, Tanaka D, Noda J, Maruyama F, Jorquera M A (2020). Airborne bacterial communities of outdoor environments and their associated influencing factors. Environment International, 145: 106156
CrossRef Pubmed Google scholar
[85]
Santos-Burgoa C, Rosas I, Yela A (1994). Occurrence of airborne enteric bacteria in Mexico City. Aerobiologia, 10(1): 39–45
CrossRef Google scholar
[86]
Serrano-Silva N, Calderón-Ezquerro M C (2018). Metagenomic survey of bacterial diversity in the atmosphere of Mexico City using different sampling methods. Environmental Pollution, 235: 20e29
CrossRef Google scholar
[87]
Sharma N K, Rai A, Singh S (2006a). Meteorological factors affecting the diversity of airborne algae in an urban atmosphere. Ecography, 29(5): 766–772
CrossRef Google scholar
[88]
Sharma N K, Rai A K, Singh S, Brown R M Jr (2007). Airborne algae: Their present status and relevance. Journal of Phycology, 43(4): 615–627
CrossRef Google scholar
[89]
Sharma N K, Singh S (2010). Differential aerosolization of algal and cyanobacterial particles in the atmosphere. Indian Journal of Microbiology, 50(4): 468–473
CrossRef Pubmed Google scholar
[90]
Sharma N K, Singh S, Rai A K (2006b). Diversity and seasonal variation of viable algal particles in the atmosphere of a subtropical city in India. Environmental Research, 102(3): 252–259
CrossRef Pubmed Google scholar
[91]
Smets W, Moretti S, Denys S, Lebeer S (2016). Airborne bacteria in the atmosphere: Presence purpose and potential. Atmospheric Environment, 139: 214–221
CrossRef Google scholar
[92]
Stackebrandt E, Koch C, Gvozdiak O, Schumann P (1995). Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Neste-renkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. International Journal of Systematic Bacteriology, 45(4): 682–692
CrossRef Pubmed Google scholar
[93]
Stein M M, Hrusch C L, Gozdz J, Igartua C, Pivniouk V, Murray S E, Ledford J G, Marques Dos Santos M, Anderson R L, Metwali N, Neilson J W, Maier R M, Gilbert J A, Holbreich M, Thorne P S, Martinez F D, von Mutius E, Vercelli D, Ober C, Sperling A I (2016). Innate immunity and asthma risk in Amish and Hutterite Farm Children. New England Journal of Medicine, 375(5): 411–421
CrossRef Pubmed Google scholar
[94]
Stetzenbach L D(2009). Airborne Infectious Microorganisms. Encyclopedia of Microbiology. Elsevier Public Health Emergency Collection. Amsterdam: Elsevier, 175–182
CrossRef Google scholar
[95]
Tanaka D, Sato K, Goto M, Fujiyoshi S, Maruyama F, Takato S, Shimada T, Sakatoku A, Aoki K, Nakamura S (2019). Airborne microbial communities at high-altitude and suburban sites in Toyama Japan suggest a new perspective for bioprospecting. Frontiers in Bioengineering and Biotechnology, 7: 12
CrossRef Pubmed Google scholar
[96]
Team R (2020). “Core 2020.” R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Compu-ting
[97]
Tomasi C, Fuzzi S, Kokhanovsky A (2017). Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate. Hoboken,: John Wiley & Sons, First, 704
[98]
UNIATMOS (2020). Bases de datos y metadatos de la Unidad de Informática para las Ciencias Atmosféricas y Ambientales. Repositorio Institucional Instituto de Ciencias de la Atmósfera y Cambio Climático, UNAM. Mexico City: Institute of Atmospheric Sciences and Climate Change
[99]
Wiśniewska K, Lewandowska A U, Śliwińska-Wilczewska S (2019). The importance of cyanobacteria and microalgae present in aerosols to human health and the environment: Review study. Environment International, 131: 104964
CrossRef Pubmed Google scholar
[100]
Xu C, Wei M, Chen J, Wang X, Zhu C, Li J, Zheng L, Sui G, Li W, Wang W, Zhang Q, Mellouki A (2017). Bacterial characterization in ambient submicron particles during severe haze episodes at Ji’nan, China. Science of the Total Environment, 580: 188–196
CrossRef Pubmed Google scholar
[101]
Yan D, Zhang T, Su J, Zhao L L, Wang H, Fang X M, Zhang Y Q, Liu H Y, Yu L Y (2018). Structural variation in the bacterial community associated with airborne particulate matter in Beijing China during hazy and nonhazy days. Applied and Environmental Microbiology, 84(9): e00004–e00018
CrossRef Pubmed Google scholar
[102]
Ye L, Zhang T (2011). Pathogenic bacteria in sewage treatment plants as revealed by 454 pyrosequencing. Environmental Science & Technology, 45(17): 7173–7179
CrossRef Pubmed Google scholar
[103]
Yooseph S, Andrews-Pfannkoch C, Tenney A, McQuaid J, Williamson S, Thiagarajan M, Brami D, Zeigler-Allen L, Hoffman J, Goll J B, Fadrosh D, Glass J, Adams M D, Friedman R, Venter J C (2013). A metagenomic framework for the study of airborne microbial communities. PLoS One, 8(12): e81862
CrossRef Pubmed Google scholar
[104]
Zhang Q, Liu C, Tang Y, Zhou G, Shen P, Fang C, Yokota A (2007). Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. International Journal of Systematic and Evolutionary Microbiology, 57(8): 1752–1756
CrossRef Pubmed Google scholar
[105]
Zhen Q, Deng Y, Wang Y, Wang X, Zhang H, Sun X, Ouyang Z (2017). Meteorological factors had more impact on airborne bacterial communities than air pollutants. Science of the Total Environment, 601– 602: 703–712
CrossRef Pubmed Google scholar
[106]
Zhou G, Luo X, Tang Y, Zhang L, Yang Q, Qiu Y, Fang C (2008). Kocuria flava sp. nov. and Kocuria turfanensis sp. nov., airborne actinobacteria isolated from Xinjiang, China. International Journal of Systematic and volutionary Microbiology, 58(6): 1304–1307
CrossRef Pubmed Google scholar

Acknowledgements

We thank César Guerrero Guerra and Ana Rosa Flores Márquez for their valuable technical assistance and Miguel Angel Meneses and Manuel Garcia Espinosa for their technical support in the field, all of them from the Centre of Atmospheric Sciences of UNAM (Mexico). This work was funded by the “Secretaría de Ciencia y Tecnología e Innovación de la Ciudad de México” (Mexico) (SECITI/050/2016; SECITI/057/2017), and Brunner-Mendoza C. received a postdoctoral scholarship from the “Dirección General de Asuntos de Personal Académico” (Mexico) (DGAPA, UNAM).

Electronic Supplementary Material

ƒSupplementary material is available in the online version of this article at https://doi.org/10.1007/s11783-022-1552-5 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1528 KB)

Accesses

Citations

Detail

Sections
Recommended

/