Is atmospheric oxidation capacity better in indicating tropospheric O3 formation?

Peng Wang , Shengqiang Zhu , Mihalis Vrekoussis , Guy P. Brasseur , Shuxiao Wang , Hongliang Zhang

Front. Environ. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (5) : 65

PDF (613KB)
Front. Environ. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (5) : 65 DOI: 10.1007/s11783-022-1544-5
SHORT COMMUNICATION
SHORT COMMUNICATION

Is atmospheric oxidation capacity better in indicating tropospheric O3 formation?

Author information +
History +
PDF (613KB)

Abstract

● This study summarizes and evaluates different approaches that indicate O3 formation.

● Isopleth and sensitivity methods are useful but have many prerequisites.

● AOC is a better indicator of photochemical reactions leading to O3 formation.

Tropospheric ozone (O3) concentration is increasing in China along with dramatic changes in precursor emissions and meteorological conditions, adversely affecting human health and ecosystems. O3 is formed from the complex nonlinear photochemical reactions from nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs). Although the mechanism of O3 formation is rather clear, describing and analyzing its changes and formation potential at fine spatial and temporal resolution is still a challenge today. In this study, we briefly summarized and evaluated different approaches that indicate O3 formation regimes. We identify that atmospheric oxidation capacity (AOC) is a better indicator of photochemical reactions leading to the formation of O3 and other secondary pollutants. Results show that AOC has a prominent positive relationship to O3 in the major city clusters in China, with a goodness of fit (R2) up to 0.6. This outcome provides a novel perspective in characterizing O3 formation and has significant implications for formulating control strategies of secondary pollutants.

Graphical abstract

Keywords

O 3 / AOC / O 3 formation regime

Cite this article

Download citation ▾
Peng Wang, Shengqiang Zhu, Mihalis Vrekoussis, Guy P. Brasseur, Shuxiao Wang, Hongliang Zhang. Is atmospheric oxidation capacity better in indicating tropospheric O3 formation?. Front. Environ. Sci. Eng., 2022, 16(5): 65 DOI:10.1007/s11783-022-1544-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen S , Wang H , Lu K , Zeng L , Hu M , Zhang Y . (2020). The trend of surface ozone in Beijing from 2013 to 2019: Indications of the persisting strong atmospheric oxidation capacity. Atmospheric Environment, 242 : 117801

[2]

Chen T M , Kuschner W G , Gokhale J , Shofer S . (2007). Outdoor air pollution: Ozone health effects. American Journal of the Medical Sciences, 333( 4): 244– 248

[3]

Clarke J F , Ching J K S . (1983). Aircraft observations of regional transport of ozone in the northeastern United States. Atmospheric Environment (1967), 17( 9): 1703– 1712

[4]

Ding D , Xing J , Wang S , Dong Z , Zhang F , Liu S , Hao J . (2022). Optimization of a NOx and VOC cooperative control strategy based on clean air benefits. Environmental Science & Technology, 56( 2): 739– 749

[5]

Dodge M ( 1977). Combined Use of Modeling Techniques and Smog Chamber Data to Derive Ozone-precursor Relationships, US Environmental Protection Agency. Research Triangle Park, North Carolina: US Environmental Protection Agency, 881– 889

[6]

Elshorbany Y F , Kurtenbach R , Wiesen P , Lissi E , Rubio M , Villena G , Gramsch E , Rickard A R , Pilling M J , Kleffmann J . (2009). Oxidation capacity of the city air of Santiago, Chile. Atmospheric Chemistry and Physics, 9( 6): 2257– 2273

[7]

Feng T , Bei N , Huang R J , Cao J , Zhang Q , Zhou W , Tie X , Liu S , Zhang T , Su X , Lei W , Molina L T , Li G . (2016). Summertime ozone formation in Xi’an and surrounding areas, China. Atmospheric Chemistry and Physics, 16( 7): 4323– 4342

[8]

Feng Z , Kobayashi K . (2009). Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmospheric Environment, 43( 8): 1510– 1519

[9]

Gaubert B , Bouarar I , Doumbia T , Liu Y , Stavrakou T , Deroubaix A , Darras S , Elguindi N , Granier C , Lacey F , Müller J F , Shi X , Tilmes S , Wang T , Brasseur G P . (2021). Global changes in secondary atmospheric pollutants during the 2020 COVID-19 pandemic. Journal of Geophysical Research: Atmospheres, 126( 8): e2020JD034213

[10]

Husain L , Coffey P E , Meyers R E , Cederwall R T . (1977). Ozone transport from stratosphere to troposphere. Geophysical Research Letters, 4( 9): 363– 365

[11]

Jacob D J . (2000). Heterogeneous chemistry and tropospheric ozone. Atmospheric Environment, 34( 12): 2131– 2159

[12]

Jin S Demerjian K ( 1993). A photochemical box model for urban air quality study. Atmospheric Environment. Part B, Urban Atmosphere, 27( 4): 371− 387

[13]

Jin X , Holloway T . (2015). Spatial and temporal variability of ozone sensitivity over China observed from the ozone monitoring instrument. Journal of Geophysical Research. Atmospheres, 120( 14): 7229– 7246

[14]

Kentarchos A S , Roelofs G J . (2003). A model study of stratospheric ozone in the troposphere and its contribution to tropospheric OH formation. Journal of Geophysical Research, 108( D12): 8517

[15]

Lelieveld J , Hoor P , Jöckel P , Pozzer A , Hadjinicolaou P , Cammas J P , Beirle S . (2009). Severe ozone air pollution in the Persian Gulf region. Atmospheric Chemistry and Physics, 9( 4): 1393– 1406

[16]

Li K , Jacob D J , Liao H , Shen L , Zhang Q , Bates K H . (2019a). Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proceedings of the National Academy of Sciences of the United States of America, 116( 2): 422– 427

[17]

Li K , Jacob D J , Liao H , Zhu J , Shah V , Shen L , Bates K H , Zhang Q , Zhai S . (2019b). A two-pollutant strategy for improving ozone and particulate air quality in China. Nature Geoscience, 12( 11): 906– 910

[18]

Lippmann M . (1989). Health effects of ozone a critical review. JAPCA, 39( 5): 672– 695

[19]

Liu Z , Wang Y , Hu B , Lu K , Tang G , Ji D , Yang X , Gao W , Xie Y , Liu J , Yao D , Yang Y , Zhang Y . (2021). Elucidating the quantitative characterization of atmospheric oxidation capacity in Beijing, China. Science of the Total Environment, 771 : 145306

[20]

Lu H , Lyu X , Cheng H , Ling Z , Guo H . (2019). Overview on the spatial-temporal characteristics of the ozone formation regime in China. Environmental Science. Processes & Impacts, 21( 6): 916– 929

[21]

Ma M , Gao Y , Ding A , Su H , Liao H , Wang S , Wang X , Zhao B , Zhang S , Fu P , Guenther A B , Wang M , Li S , Chu B , Yao X , Gao H . (2022). Development and assessment of a high-resolution biogenic emission inventory from urban green spaces in China. Environmental Science & Technology, 56( 1): 175– 184

[22]

Ma M , Gao Y , Wang Y , Zhang S , Leung L R , Liu C , Wang S , Zhao B , Chang X , Su H , Zhang T , Sheng L , Yao X , Gao H . (2019). Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017. Atmospheric Chemistry and Physics, 19( 19): 12195– 12207

[23]

Menut L , Vautard R , Beekmann M , Honoré C . (2000). Sensitivity of photochemical pollution using the adjoint of a simplified chemistry-transport model. Journal of Geophysical Research, 105( D12): 15379– 15402

[24]

Milford J B , Russell A G , Mcrae G J . (1989). A new approach to photochemical pollution control: Implications of spatial patterns in pollutant responses to reductions in nitrogen oxides and reactive organic gas emissions. Environmental Science & Technology, 23( 10): 1290– 1301

[25]

Monks P S . (2005). Gas-phase radical chemistry in the troposphere. Chemical Society Reviews, 34( 5): 376– 395

[26]

Pollack I B , Ryerson T B , Trainer M , Neuman J A , Roberts J M , Parrish D D . (2013). Trends in ozone, its precursors, and related secondary oxidation products in Los Angeles, California: A synthesis of measurements from 1960 to 2010. Journal of Geophysical Research. Atmospheres, 118( 11): 5893– 5911

[27]

Porter W C , Safieddine S A , Heald C L . (2017). Impact of aromatics and monoterpenes on simulated tropospheric ozone and total OH reactivity. Atmospheric Environment, 169 : 250– 257

[28]

Prinn R G . (2003). The cleansing capacity of the atmosphere. Annual Review of Environment and Resources, 28( 1): 29– 57

[29]

Qian Y , Henneman L R F , Mulholland J A , Russell A G . (2019). Empirical development of ozone isopleths: Applications to Los Angeles. Environmental Science & Technology Letters, 6( 5): 294– 299

[30]

Qin M Hu A Mao J Li X Sheng L Sun J Li J Wang X Zhang Y Hu J (2022). PM2.5 and O3 relationships affected by the atmospheric oxidizing capacity in the Yangtze River Delta, China . Science of the Total Environment, 810: 152268

[31]

Ren X , Van Duin D , Cazorla M , Chen S , Mao J , Zhang L , Brune W H , Flynn J H , Grossberg N , Lefer B L , Rappenglück B , Wong K W , Tsai C , Stutz J , Dibb J E , Thomas Jobson B , Luke W T , Kelley P . (2013). Atmospheric oxidation chemistry and ozone production: Results from SHARP 2009 in Houston, Texas. Journal of Geophysical Research. Atmospheres, 118( 11): 5770– 5780

[32]

Sillman S . (1995). The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations. Journal of Geophysical Research, 100( D7): 14175– 14188

[33]

Sillman S . (1999). The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmospheric Environment, 33( 12): 1821– 1845

[34]

Sillman S He D ( 2002). Some theoretical results concerning O3-NO x-VOC chemistry and NO x-VOC indicators . Journal of Geophysical Research: Atmospheres, 107(D22): ACH 26– 21-ACH 26– 21

[35]

Sillman S , Logan J A , Wofsy S C . (1990). The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes. Journal of Geophysical Research, 95( D2): 1837– 1851

[36]

Steinfeld J I . (1998). Atmospheric chemistry and physics: from air pollution to climate change. Environment, 40( 7): 26

[37]

Tan Z , Lu K , Jiang M , Su R , Dong H , Zeng L , Xie S , Tan Q , Zhang Y . (2018). Exploring ozone pollution in Chengdu, southwestern China: A case study from radical chemistry to O3-VOC-NOx sensitivity. Science of the Total Environment, 636 : 775– 786

[38]

Van Dingenen R , Dentener F J , Raes F , Krol M C , Emberson L , Cofala J . (2009). The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmospheric Environment, 43( 3): 604– 618

[39]

Wang N , Lyu X , Deng X , Huang X , Jiang F , Ding A . (2019a). Aggravating O3 pollution due to NOx emission control in eastern China. Science of the Total Environment, 677 : 732– 744

[40]

Wang P , Chen Y , Hu J , Zhang H , Ying Q . (2019b). Attribution of tropospheric ozone to NOx and VOC emissions: Considering ozone formation in the transition regime. Environmental Science & Technology, 53( 3): 1404– 1412

[41]

Wang S , Zhang Y , Ma J , Zhu S , Shen J , Wang P , Zhang H . (2021a). Responses of decline in air pollution and recovery associated with COVID-19 lockdown in the Pearl River Delta. Science of the Total Environment, 756 : 143868

[42]

Wang W , Van Der A R , Ding J , Van Weele M , Cheng T . (2021b). Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations. Atmospheric Chemistry and Physics, 21( 9): 7253– 7269

[43]

Wang Y , Zhu S , Ma J , Shen J , Wang P , Wang P , Zhang H . (2021c). Enhanced atmospheric oxidation capacity and associated ozone increases during COVID-19 lockdown in the Yangtze River Delta. Science of the Total Environment, 768 : 144796

[44]

Xing J , Wang S X , Jang C , Zhu Y , Hao J M . (2011). Nonlinear response of ozone to precursor emission changes in China: A modeling study using response surface methodology. Atmospheric Chemistry and Physics, 11( 10): 5027– 5044

[45]

Ye L , Wang X , Fan S , Chen W , Chang M , Zhou S , Wu Z , Fan Q . (2016). Photochemical indicators of ozone sensitivity: Application in the Pearl River Delta, China. Frontiers of Environmental Science & Engineering, 10( 6): 15

[46]

Zhao K , Luo H , Yuan Z , Xu D , Du Y , Zhang S , Hao Y , Wu Y , Huang J , Wang Y , Jiang R . (2021). Identification of close relationship between atmospheric oxidation and ozone formation regimes in a photochemically active region. Journal of Environmental Sciences-China, 102 : 373– 383

[47]

Zhu J , Wang S , Wang H , Jing S , Lou S , Saiz-Lopez A , Zhou B . (2020). Observationally constrained modeling of atmospheric oxidation capacity and photochemical reactivity in Shanghai, China. Atmospheric Chemistry and Physics, 20( 3): 1217– 1232

[48]

Zhu S , Poetzscher J , Shen J , Wang S , Wang P , Zhang H . (2021). Comprehensive insights into O3 changes during the COVID-19 from O3 formation regime and atmospheric oxidation capacity. Geophysical Research Letters, 48( 10): e2021GL093668

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (613KB)

5803

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/