Is atmospheric oxidation capacity better in indicating tropospheric O3 formation?
Peng Wang, Shengqiang Zhu, Mihalis Vrekoussis, Guy P. Brasseur, Shuxiao Wang, Hongliang Zhang
Is atmospheric oxidation capacity better in indicating tropospheric O3 formation?
● This study summarizes and evaluates different approaches that indicate O3 formation.
● Isopleth and sensitivity methods are useful but have many prerequisites.
● AOC is a better indicator of photochemical reactions leading to O3 formation.
Tropospheric ozone (O3) concentration is increasing in China along with dramatic changes in precursor emissions and meteorological conditions, adversely affecting human health and ecosystems. O3 is formed from the complex nonlinear photochemical reactions from nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs). Although the mechanism of O3 formation is rather clear, describing and analyzing its changes and formation potential at fine spatial and temporal resolution is still a challenge today. In this study, we briefly summarized and evaluated different approaches that indicate O3 formation regimes. We identify that atmospheric oxidation capacity (AOC) is a better indicator of photochemical reactions leading to the formation of O3 and other secondary pollutants. Results show that AOC has a prominent positive relationship to O3 in the major city clusters in China, with a goodness of fit (R2) up to 0.6. This outcome provides a novel perspective in characterizing O3 formation and has significant implications for formulating control strategies of secondary pollutants.
O3 / AOC / O3 formation regime
[1] |
Chen S , Wang H , Lu K , Zeng L , Hu M , Zhang Y . (2020). The trend of surface ozone in Beijing from 2013 to 2019: Indications of the persisting strong atmospheric oxidation capacity. Atmospheric Environment, 242 : 117801
CrossRef
Google scholar
|
[2] |
Chen T M , Kuschner W G , Gokhale J , Shofer S . (2007). Outdoor air pollution: Ozone health effects. American Journal of the Medical Sciences, 333( 4): 244– 248
CrossRef
Google scholar
|
[3] |
Clarke J F , Ching J K S . (1983). Aircraft observations of regional transport of ozone in the northeastern United States. Atmospheric Environment (1967), 17( 9): 1703– 1712
CrossRef
Google scholar
|
[4] |
Ding D , Xing J , Wang S , Dong Z , Zhang F , Liu S , Hao J . (2022). Optimization of a NOx and VOC cooperative control strategy based on clean air benefits. Environmental Science & Technology, 56( 2): 739– 749
CrossRef
Google scholar
|
[5] |
Dodge M ( 1977). Combined Use of Modeling Techniques and Smog Chamber Data to Derive Ozone-precursor Relationships, US Environmental Protection Agency. Research Triangle Park, North Carolina: US Environmental Protection Agency, 881– 889
|
[6] |
Elshorbany Y F , Kurtenbach R , Wiesen P , Lissi E , Rubio M , Villena G , Gramsch E , Rickard A R , Pilling M J , Kleffmann J . (2009). Oxidation capacity of the city air of Santiago, Chile. Atmospheric Chemistry and Physics, 9( 6): 2257– 2273
CrossRef
Google scholar
|
[7] |
Feng T , Bei N , Huang R J , Cao J , Zhang Q , Zhou W , Tie X , Liu S , Zhang T , Su X , Lei W , Molina L T , Li G . (2016). Summertime ozone formation in Xi’an and surrounding areas, China. Atmospheric Chemistry and Physics, 16( 7): 4323– 4342
CrossRef
Google scholar
|
[8] |
Feng Z , Kobayashi K . (2009). Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmospheric Environment, 43( 8): 1510– 1519
CrossRef
Google scholar
|
[9] |
Gaubert B , Bouarar I , Doumbia T , Liu Y , Stavrakou T , Deroubaix A , Darras S , Elguindi N , Granier C , Lacey F , Müller J F , Shi X , Tilmes S , Wang T , Brasseur G P . (2021). Global changes in secondary atmospheric pollutants during the 2020 COVID-19 pandemic. Journal of Geophysical Research: Atmospheres, 126( 8): e2020JD034213
|
[10] |
Husain L , Coffey P E , Meyers R E , Cederwall R T . (1977). Ozone transport from stratosphere to troposphere. Geophysical Research Letters, 4( 9): 363– 365
CrossRef
Google scholar
|
[11] |
Jacob D J . (2000). Heterogeneous chemistry and tropospheric ozone. Atmospheric Environment, 34( 12): 2131– 2159
CrossRef
Google scholar
|
[12] |
Jin S Demerjian K ( 1993). A photochemical box model for urban air quality study. Atmospheric Environment. Part B, Urban Atmosphere, 27( 4): 371− 387
|
[13] |
Jin X , Holloway T . (2015). Spatial and temporal variability of ozone sensitivity over China observed from the ozone monitoring instrument. Journal of Geophysical Research. Atmospheres, 120( 14): 7229– 7246
CrossRef
Google scholar
|
[14] |
Kentarchos A S , Roelofs G J . (2003). A model study of stratospheric ozone in the troposphere and its contribution to tropospheric OH formation. Journal of Geophysical Research, 108( D12): 8517
CrossRef
Google scholar
|
[15] |
Lelieveld J , Hoor P , Jöckel P , Pozzer A , Hadjinicolaou P , Cammas J P , Beirle S . (2009). Severe ozone air pollution in the Persian Gulf region. Atmospheric Chemistry and Physics, 9( 4): 1393– 1406
CrossRef
Google scholar
|
[16] |
Li K , Jacob D J , Liao H , Shen L , Zhang Q , Bates K H . (2019a). Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proceedings of the National Academy of Sciences of the United States of America, 116( 2): 422– 427
CrossRef
Google scholar
|
[17] |
Li K , Jacob D J , Liao H , Zhu J , Shah V , Shen L , Bates K H , Zhang Q , Zhai S . (2019b). A two-pollutant strategy for improving ozone and particulate air quality in China. Nature Geoscience, 12( 11): 906– 910
CrossRef
Google scholar
|
[18] |
Lippmann M . (1989). Health effects of ozone a critical review. JAPCA, 39( 5): 672– 695
CrossRef
Google scholar
|
[19] |
Liu Z , Wang Y , Hu B , Lu K , Tang G , Ji D , Yang X , Gao W , Xie Y , Liu J , Yao D , Yang Y , Zhang Y . (2021). Elucidating the quantitative characterization of atmospheric oxidation capacity in Beijing, China. Science of the Total Environment, 771 : 145306
CrossRef
Google scholar
|
[20] |
Lu H , Lyu X , Cheng H , Ling Z , Guo H . (2019). Overview on the spatial-temporal characteristics of the ozone formation regime in China. Environmental Science. Processes & Impacts, 21( 6): 916– 929
CrossRef
Google scholar
|
[21] |
Ma M , Gao Y , Ding A , Su H , Liao H , Wang S , Wang X , Zhao B , Zhang S , Fu P , Guenther A B , Wang M , Li S , Chu B , Yao X , Gao H . (2022). Development and assessment of a high-resolution biogenic emission inventory from urban green spaces in China. Environmental Science & Technology, 56( 1): 175– 184
CrossRef
Google scholar
|
[22] |
Ma M , Gao Y , Wang Y , Zhang S , Leung L R , Liu C , Wang S , Zhao B , Chang X , Su H , Zhang T , Sheng L , Yao X , Gao H . (2019). Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017. Atmospheric Chemistry and Physics, 19( 19): 12195– 12207
CrossRef
Google scholar
|
[23] |
Menut L , Vautard R , Beekmann M , Honoré C . (2000). Sensitivity of photochemical pollution using the adjoint of a simplified chemistry-transport model. Journal of Geophysical Research, 105( D12): 15379– 15402
CrossRef
Google scholar
|
[24] |
Milford J B , Russell A G , Mcrae G J . (1989). A new approach to photochemical pollution control: Implications of spatial patterns in pollutant responses to reductions in nitrogen oxides and reactive organic gas emissions. Environmental Science & Technology, 23( 10): 1290– 1301
CrossRef
Google scholar
|
[25] |
Monks P S . (2005). Gas-phase radical chemistry in the troposphere. Chemical Society Reviews, 34( 5): 376– 395
CrossRef
Google scholar
|
[26] |
Pollack I B , Ryerson T B , Trainer M , Neuman J A , Roberts J M , Parrish D D . (2013). Trends in ozone, its precursors, and related secondary oxidation products in Los Angeles, California: A synthesis of measurements from 1960 to 2010. Journal of Geophysical Research. Atmospheres, 118( 11): 5893– 5911
CrossRef
Google scholar
|
[27] |
Porter W C , Safieddine S A , Heald C L . (2017). Impact of aromatics and monoterpenes on simulated tropospheric ozone and total OH reactivity. Atmospheric Environment, 169 : 250– 257
CrossRef
Google scholar
|
[28] |
Prinn R G . (2003). The cleansing capacity of the atmosphere. Annual Review of Environment and Resources, 28( 1): 29– 57
CrossRef
Google scholar
|
[29] |
Qian Y , Henneman L R F , Mulholland J A , Russell A G . (2019). Empirical development of ozone isopleths: Applications to Los Angeles. Environmental Science & Technology Letters, 6( 5): 294– 299
CrossRef
Google scholar
|
[30] |
Qin M Hu A Mao J Li X Sheng L Sun J Li J Wang X Zhang Y Hu J (2022). PM2.5 and O3 relationships affected by the atmospheric oxidizing capacity in the Yangtze River Delta, China . Science of the Total Environment, 810: 152268
|
[31] |
Ren X , Van Duin D , Cazorla M , Chen S , Mao J , Zhang L , Brune W H , Flynn J H , Grossberg N , Lefer B L , Rappenglück B , Wong K W , Tsai C , Stutz J , Dibb J E , Thomas Jobson B , Luke W T , Kelley P . (2013). Atmospheric oxidation chemistry and ozone production: Results from SHARP 2009 in Houston, Texas. Journal of Geophysical Research. Atmospheres, 118( 11): 5770– 5780
CrossRef
Google scholar
|
[32] |
Sillman S . (1995). The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations. Journal of Geophysical Research, 100( D7): 14175– 14188
CrossRef
Google scholar
|
[33] |
Sillman S . (1999). The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmospheric Environment, 33( 12): 1821– 1845
CrossRef
Google scholar
|
[34] |
Sillman S He D ( 2002). Some theoretical results concerning O3-NO x-VOC chemistry and NO x-VOC indicators . Journal of Geophysical Research: Atmospheres, 107(D22): ACH 26– 21-ACH 26– 21
|
[35] |
Sillman S , Logan J A , Wofsy S C . (1990). The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes. Journal of Geophysical Research, 95( D2): 1837– 1851
CrossRef
Google scholar
|
[36] |
Steinfeld J I . (1998). Atmospheric chemistry and physics: from air pollution to climate change. Environment, 40( 7): 26
CrossRef
Google scholar
|
[37] |
Tan Z , Lu K , Jiang M , Su R , Dong H , Zeng L , Xie S , Tan Q , Zhang Y . (2018). Exploring ozone pollution in Chengdu, southwestern China: A case study from radical chemistry to O3-VOC-NOx sensitivity. Science of the Total Environment, 636 : 775– 786
CrossRef
Google scholar
|
[38] |
Van Dingenen R , Dentener F J , Raes F , Krol M C , Emberson L , Cofala J . (2009). The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmospheric Environment, 43( 3): 604– 618
CrossRef
Google scholar
|
[39] |
Wang N , Lyu X , Deng X , Huang X , Jiang F , Ding A . (2019a). Aggravating O3 pollution due to NOx emission control in eastern China. Science of the Total Environment, 677 : 732– 744
CrossRef
Google scholar
|
[40] |
Wang P , Chen Y , Hu J , Zhang H , Ying Q . (2019b). Attribution of tropospheric ozone to NOx and VOC emissions: Considering ozone formation in the transition regime. Environmental Science & Technology, 53( 3): 1404– 1412
CrossRef
Google scholar
|
[41] |
Wang S , Zhang Y , Ma J , Zhu S , Shen J , Wang P , Zhang H . (2021a). Responses of decline in air pollution and recovery associated with COVID-19 lockdown in the Pearl River Delta. Science of the Total Environment, 756 : 143868
CrossRef
Google scholar
|
[42] |
Wang W , Van Der A R , Ding J , Van Weele M , Cheng T . (2021b). Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations. Atmospheric Chemistry and Physics, 21( 9): 7253– 7269
CrossRef
Google scholar
|
[43] |
Wang Y , Zhu S , Ma J , Shen J , Wang P , Wang P , Zhang H . (2021c). Enhanced atmospheric oxidation capacity and associated ozone increases during COVID-19 lockdown in the Yangtze River Delta. Science of the Total Environment, 768 : 144796
CrossRef
Google scholar
|
[44] |
Xing J , Wang S X , Jang C , Zhu Y , Hao J M . (2011). Nonlinear response of ozone to precursor emission changes in China: A modeling study using response surface methodology. Atmospheric Chemistry and Physics, 11( 10): 5027– 5044
CrossRef
Google scholar
|
[45] |
Ye L , Wang X , Fan S , Chen W , Chang M , Zhou S , Wu Z , Fan Q . (2016). Photochemical indicators of ozone sensitivity: Application in the Pearl River Delta, China. Frontiers of Environmental Science & Engineering, 10( 6): 15
CrossRef
Google scholar
|
[46] |
Zhao K , Luo H , Yuan Z , Xu D , Du Y , Zhang S , Hao Y , Wu Y , Huang J , Wang Y , Jiang R . (2021). Identification of close relationship between atmospheric oxidation and ozone formation regimes in a photochemically active region. Journal of Environmental Sciences-China, 102 : 373– 383
CrossRef
Google scholar
|
[47] |
Zhu J , Wang S , Wang H , Jing S , Lou S , Saiz-Lopez A , Zhou B . (2020). Observationally constrained modeling of atmospheric oxidation capacity and photochemical reactivity in Shanghai, China. Atmospheric Chemistry and Physics, 20( 3): 1217– 1232
CrossRef
Google scholar
|
[48] |
Zhu S , Poetzscher J , Shen J , Wang S , Wang P , Zhang H . (2021). Comprehensive insights into O3 changes during the COVID-19 from O3 formation regime and atmospheric oxidation capacity. Geophysical Research Letters, 48( 10): e2021GL093668
|
/
〈 | 〉 |