Magnetotactic bacteria: Characteristics and environmental applications

Xinjie Wang, Yang Li, Jian Zhao, Hong Yao, Siqi Chu, Zimu Song, Zongxian He, Wen Zhang

PDF(1268 KB)
PDF(1268 KB)
Front. Environ. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (4) : 56. DOI: 10.1007/s11783-020-1235-z
REVIEW ARTICLE
REVIEW ARTICLE

Magnetotactic bacteria: Characteristics and environmental applications

Author information +
History +

Highlights

• Magnetotactic bacteria (MTB) synthesize magnetic nanoparticle within magnetosomes.

• The morphologic and phylogenetic diversity of MTB were summarized.

• Isolation and mass cultivation of MTB deserve extensive research for applications.

• MTB can remove heavy metals, radionuclides, and organic pollutants from wastewater.

Abstract

Magnetotactic bacteria (MTB) are a group of Gram-negative prokaryotes that respond to the geomagnetic field. This unique property is attributed to the intracellular magnetosomes, which contains membrane-bound nanocrystals of magnetic iron minerals. This review summarizes the most recent advances in MTB, magnetosomes, and their potential applications especially the environmental pollutant control or remediation. The morphologic and phylogenetic diversity of MTB were first introduced, followed by a critical review of isolation and cultivation methods. Past research has devoted to optimize the factors, such as oxygen, carbon source, nitrogen source, nutrient broth, iron source, and mineral elements for the growth of MTB. Besides the applications of MTB in modern biological and medical fields, little attention was made on the environmental applications of MTB for wastewater treatment, which has been summarized in this review. For example, applications of MTB as adsorbents have resulted in a novel magnetic separation technology for removal of heavy metals or organic pollutants in wastewater. In addition, we summarized the current advance on pathogen removal and detection of endocrine disruptor which can inspire new insights toward sustainable engineering and practices. Finally, the new perspectives and possible directions for future studies are recommended, such as isolation of MTB, genetic modification of MTB for mass production and new environmental applications. The ultimate objective of this review is to promote the applications of MTB and magnetosomes in the environmental fields.

Graphical abstract

Keywords

Magnetotactic bacteria / Magnetosome / Heavy metal / Radionuclide / Organic pollutants

Cite this article

Download citation ▾
Xinjie Wang, Yang Li, Jian Zhao, Hong Yao, Siqi Chu, Zimu Song, Zongxian He, Wen Zhang. Magnetotactic bacteria: Characteristics and environmental applications. Front. Environ. Sci. Eng., 2020, 14(4): 56 https://doi.org/10.1007/s11783-020-1235-z

References

[1]
Acosta-Avalos D, Abreu F (2018). Bacteriology. London: IntechOpen
[2]
Ali I, Peng C, Khan Z M, Naz I (2017). Yield cultivation of magnetotactic bacteria and magnetosomes: A review. Journal of Basic Microbiology, 57(8): 643–652
CrossRef Google scholar
[3]
Ali I, Peng C, Khan Z M, Naz I, Sultan M (2018). An overview of heavy metal removal from wastewater using magnetotactic bacteria. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 93(10): 2817–2832
CrossRef Google scholar
[4]
Ambashta R D, Sillanpaa M (2010). Water purification using magnetic assistance: A review. Journal of Hazardous Materials, 180(1–3): 38–49
CrossRef Google scholar
[5]
Amor M, Busigny V, Louvat P, Tharaud M, Gelabert A, Cartigny P, Carlut J, Isambert A, Durand-Dubief M, Ona-Nguema G, Alphandery E, Chebbi I, Guyot F (2018). Iron uptake and magnetite biomineralization in the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1: An iron isotope study. Geochimica et Cosmochimica Acta, 232: 225–243
CrossRef Google scholar
[6]
Arakaki A, Takeyama H, Tanaka T, Matsunaga T (2002). Cadmium recovery by a sulfate-reducing magnetotactic bacterium, Desulfovibrio magneticus RS-1, using magnetic separation. Applied Biochemistry and Biotechnology, 98–100(1–9): 833–840
CrossRef Google scholar
[7]
Bahaj A, Croudace I, James P, Moeschler F, Warwick P (1998). Continuous radionuclide recovery from wastewater using magnetotactic bacteria. Journal of Magnetism and Magnetic Materials, 184(2): 241–244
CrossRef Google scholar
[8]
Bahaj A S, James P, Moeschler F (1997). Continuous cultivation and recovery of magnetotactic bacteria. IEEE Transactions on Magnetics, 33(5): 4263–4265
CrossRef Google scholar
[9]
Bahaj A S, James P, Moeschler F (2002). Efficiency enhancements through the use of magnetic field gradient in origntation magnetic separation for the removal of pollutants by magnetotactic bacteria. Separation Science and Technology, 37(16): 3661–3671
CrossRef Google scholar
[10]
Barber-Zucker S, Zarivach R (2017). A look into the biochemistry of magnetosome biosynthesis in magnetotactic bacteria. ACS Chemical Biology, 12(1): 13–22
CrossRef Google scholar
[11]
Bazylinski D A, Frankel R B (2004). Magnetosome formation in prokaryotes. Nature Reviews. Microbiology, 2(3): 217–230
CrossRef Google scholar
[12]
Bazylinski D A, Lefèvre C T, Lower B H (2014). Nanomicrobiology. New York: Springer
[13]
Bazylinski D A, Schubbe S (2007). Controlled biomineralization by and applications of magnetotactic bacteria. Advances in Applied Microbiology, 62(7): 21–62
CrossRef Google scholar
[14]
Bender P, Marcano L, Orue I, Venero A D, Honecker D, Barquí N F N L, Muela A, Fdez-Gubieda M L (2019). Probing the stability and magnetic properties of magnetosome chains in freeze-dried magnetotactic bacteria. arXiv preprint arXiv: 1904.10732
[15]
Blondeau M, Guyodo Y, Guyot F, Gatel C, Menguy N, Chebbi I, Haye B, Durand-Dubief M, Alphandéry E, Brayner R (2018). Magnetic-field induced rotation of magnetosome chains in silicified magnetotactic bacteria. Scientific Reports, 8(1): 1–9
[16]
Cai F, Li J, Sun J, Ji Y (2011). Biosynthesis of gold nanoparticles by biosorption using Magnetospirillum gryphiswaldense MSR-1. Chemical Engineering Journal, 175: 70–75
CrossRef Google scholar
[17]
Chandrajit S, Prakash G (2011). Preliminary isolation report of aerobic magnetotactic bacteria in a modified nutrient medium. Recent Research in Science and Technology, 3(11): 71–75
[18]
Chen C, Ma Q, Jiang W, Song T (2011). Phototaxis in the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1 is independent of magnetic fields. Applied Microbiology and Biotechnology, 90(1): 269–275
CrossRef Google scholar
[19]
Chen L, Chen C, Wang P, Chen C, Wu L, Song T (2017). A compound magnetic field generating system for targeted killing of Staphylococcus aureus by magnetotactic bacteria in a microfluidic chip. Journal of Magnetism and Magnetic Materials, 427: 90–94
CrossRef Google scholar
[20]
Chen L J, Bazylinski D A, Brian H (2012). Bacteria that synthesize nano-sized compasses to navigate using earth's geomagnetic field. Nature Education Knowledge, 3(10): 30
[21]
de Castro Alves L, Yáñez-Vilar S, Piñeiro-Redondo Y, Rivas J (2019). Novel magnetic nanostructured beads for cadmium (II) removal. Nanomaterials (Basel, Switzerland), 9(3): 356
CrossRef Google scholar
[22]
Descamps E C, Abbé J B, Pignol D, Lefèvre C T (2016). Controlled biomineralization of magnetite in bacteria. Iron Oxides. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 99–116
[23]
Diaz-Alarcón J A, Alfonso-Pérez M P, Vergara-Gómez I, Díaz-Lagos M, Martínez-Ovalle S A (2019). Removal of iron and manganese in groundwater through magnetotactic bacteria. Journal of Environmental Management, 249: 109381
CrossRef Google scholar
[24]
Dieudonné A, Pignol D, Prévéral S (2019). Magnetosomes: Biogenic iron nanoparticles produced by environmental bacteria. Applied Microbiology and Biotechnology, 103(9): 3637–3649
CrossRef Google scholar
[25]
Faivre D, Schuler D (2008). Magnetotactic bacteria and magnetosomes. Chemical Reviews, 108(11): 4875–4898
CrossRef Google scholar
[26]
Farzan F, Shojaosadati S A, Abdul Tehrani H (2010). A preliminary report on the isolation and identification of magnetotactic bacteria from Iran environment. Iranian Journal of Biotechnology, 8(2): 98–102
[27]
Firlar E, Ouy M, Bogdanowicz A, Covnot L, Song B, Nadkarni Y, Shahbazian-Yassar R, Shokuhfar T (2019). Investigation of the magnetosome biomineralization in magnetotactic bacteria using graphene liquid cell- transmission electron microscopy. Nanoscale, 11(2): 698–705
CrossRef Google scholar
[28]
Ghaisari S, Winklhofer M, Strauch P, Klumpp S, Faivre D (2017). Magnetosome organization in magnetotactic bacteria unraveled by ferromagnetic resonance spectroscopy. Biophysical Journal, 113(3): 637–644
CrossRef Google scholar
[29]
Ginet N, Pardoux R, Adryanczyk G, Garcia D, Brutesco C, Pignol D (2011). Single-step production of a recyclable nanobiocatalyst for organophosphate pesticides biodegradation using functionalized bacterial magnetosomes. PLoS One, 6(6): e21442
CrossRef Google scholar
[30]
Heslop D, Roberts A P, Chang L, Davies M, Abrajevitch A, De Deckker P (2013). Quantifying magnetite magnetofossil contributions to sedimentary magnetizations. Earth and Planetary Science Letters, 382: 58–65
CrossRef Google scholar
[31]
Heyen U, Schuler D (2003). Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Applied Microbiology and Biotechnology, 61(5–6): 536–544
CrossRef Google scholar
[32]
Honda T, Tanaka T, Yoshino T (2015). Stoichiometrically controlled immobilization of multiple enzymes on magnetic nanoparticles by the magnetosome display system for efficient cellulose hydrolysis. Biomacromolecules, 16(12): 3863–3868
CrossRef Google scholar
[33]
Islam T, Peng C, Ali I (2018). Morphological and cellular diversity of magnetotactic bacteria: A review. Journal of Basic Microbiology, 58(5): 378–389
CrossRef Google scholar
[34]
Jacob J J, Suthindhiran K (2016). Magnetotactic bacteria and magnetosomes- Scope and challenges. Materials Science and Engineering C, 68: 919–928
CrossRef Google scholar
[35]
Jiang Y, Xi B, Li R, Li M, Xu Z, Yang Y, Gao S (2019). Advances in Fe (III) bioreduction and its application prospect for groundwater remediation: A review. Frontiers of Environmental Science & Engineering, 13(6): 89
[36]
Jogler C, Niebler M, Lin W, Kube M, Wanner G, Kolinko S, Stief P, Beck A J, De Beer D, Petersen N, Pan Y, Amann R, Reinhardt R, Schuler D (2010). Cultivation-independent characterization of ‘Candidatus Magnetobacterium bavaricum’ via ultrastructural, geochemical, ecological and metagenomic methods. Environmental Microbiology, 12(9): 2466–2478
CrossRef Google scholar
[37]
Ke L, Chen Y, Liu P, Liu S, Wu D, Yuan Y, Wu Y, Gao M (2018). Characteristics and optimized fermentation of a novel magnetotactic bacterium, Magnetospirillum sp. ME-1. FEMS Microbiology Letters, 365(14): 1–9
CrossRef Google scholar
[38]
Keim C N, Lins U, Farina M (2009). Manganese in biogenic magnetite crystals from magnetotactic bacteria. FEMS Microbiology Letters, 292(2): 250–253
CrossRef Google scholar
[39]
Kiran M G, Pakshirajan K, Das G (2018). Metallic wastewater treatment by sulfate reduction using anaerobic rotating biological contactor reactor under high metal loading conditions. Frontiers of Environmental Science & Engineering, 12(4): 12
[40]
Körnig A, Dong J, Bennet M, Widdrat M, Andert J, Müller F D, Schüler D, Klumpp S, Faivre D (2014). Probing the mechanical properties of magnetosome chains in living magnetotactic bacteria. Nano Letters, 14(8): 4653–4659
CrossRef Google scholar
[41]
Kundu S, Kulkarni G R (2010). Enhancement of magnetotactic bacterial yield in a modified MSGM medium without alteration of magnetosomes properties. Indian Journal of Experimental Biology, 48(5): 518–523
[42]
Lefèvre C T, Bazylinski D A (2013). Magnetotactic bacteria: Ecology, diversity and evolution. Microbiology and Molecular Biology Reviews, 77(3): 497–526
CrossRef Google scholar
[43]
Lefèvre C T, Menguy N, Abreu F, Lins U, Pósfai M, Prozorov T, Pignol D, Frankel R B, Bazylinski D A (2011). A cultured greigite-producing magnetotactic bacterium in a novel group of sulfatereducing bacteria. Science, 334(6063): 1720–1723
CrossRef Google scholar
[44]
Lefèvre C T, Wu L F (2013). Evolution of the bacterial organelle responsible for magnetotaxis. Trends in Microbiology, 21(10): 534–543
CrossRef Google scholar
[45]
Li T, Xiao K, Yang B, Peng G, Liu F, Tao L, Chen S, Wei H, Yu G, Deng S (2019). Recovery of Ni (II) from real electroplating wastewater using fixed-bed resin adsorption and subsequent electrodeposition. Frontiers of Environmental Science & Engineering, 13(6): 91
[46]
Lin W, Pan Y, Bazylinski D A (2017). Diversity and ecology of and biomineralization by magnetotactic bacteria. Environmental Microbiology Reports, 9(4): 345–356
CrossRef Google scholar
[47]
Lin W, Wang Y, Pan Y (2012). Short-term effects of temperature on the abundance and diversity of magnetotactic cocci. MicrobiologyOpen, 1(1): 53–63
CrossRef Google scholar
[48]
Liu L, Bilal M, Duan X, Iqbal H M N (2019). Mitigation of environmental pollution by genetically engineered bacteria- Current challenges and future perspectives. Science of the Total Environment, 667: 444–454
CrossRef Google scholar
[49]
Liu S, Wiatrowski H A (2018). Reduction of Hg(II) to Hg(0) by biogenic magnetite from two magnetotactic bacteria. Geomicrobiology Journal, 35(3): 198–208
CrossRef Google scholar
[50]
Liu Y, Li G R, Guo F F, Jiang W, Li Y, Li L J (2010). Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density. Microbial Cell Factories, 9(1): 99
CrossRef Google scholar
[51]
Mathuriya A S, Yadav K, Kaushik B D (2015). Magnetotactic bacteria: Performances and bhallenges. Geomicrobiology Journal, 32(9): 780–788
CrossRef Google scholar
[52]
Murat D, Quinlan A, Vali H, Komeili A (2010). Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proceedings of the National Academy of Sciences of the United States of America, 107(12): 5593–5598
CrossRef Google scholar
[53]
Nguyen C C, Hugie C N, Kile M L, Navab-Daneshmand T (2019). Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: A review. Frontiers of Environmental Science & Engineering, 13(3): 46
CrossRef Google scholar
[54]
Parisi F, Lazzara G, Merli M, Milioto S, Princivalle F, Sciascia L (2019). Simultaneous removal and recovery of metal ions and dyes from wastewater through montmorillonite clay minera. Nanomaterials (Basel, Switzerland), 9(12): 1699
CrossRef Google scholar
[55]
Prabhu N N, Kowshik M (2016). Techniques for the isolation of magnetotactic bacteria. Journal of Microbial & Biochemical Technology, 8(3):188–194
CrossRef Google scholar
[56]
Qu Y, Zhang X, Xu J, Zhang W, Guo Y (2014). Removal of hexavalent chromium from wastewater using magnetotactic bacteria. Separation and Purification Technology, 136: 10–17
CrossRef Google scholar
[57]
Ranjan B, Pillai S, Permaul K, Singh S (2019). Simultaneous removal of heavy metals and cyanate in a wastewater sample using immobilized cyanate hydratase on magnetic-multiwall carbon nanotubes. Journal of Hazardous Materials, 363: 73–80
CrossRef Google scholar
[58]
Safarik I, Ptackova L, Safarikova M (2002). Adsorption of dyes on magnetically labeled baker’s yeast cells. European Cells & Materials, 3: 52–55
[59]
Šafaříková M, Ptackova L, Kibrikova I, Safarik I (2005). Biosorption of water-soluble dyes on magnetically modified Saccharomyces cerevisiae subsp. uvarum cells. Chemosphere, 59(6): 831–835
CrossRef Google scholar
[60]
Sannigrahi S, Suthindhiran K (2019). Metal recovery from printed circuit boards by magnetotactic bacteria. Hydrometallurgy, 187: 113–124
CrossRef Google scholar
[61]
Shi Y, Chai L, Yang Z, Jing Q, Chen R, Chen Y (2012). Identification and hexavalent chromium reduction characteristics of Pannonibacter phragmitetus. Bioprocess and Biosystems Engineering, 35(5): 843–850
CrossRef Google scholar
[62]
Simmons S L, Bazylinski D A, Edwards K J (2006). South-seeking magnetotactic bacteria in the Northern Hemisphere. Science, 311(5759): 371–374
CrossRef Google scholar
[63]
Singh J, Chang Y Y, Yang J K, Kang S H, Koduru J R (2016). Utilization of nano/micro-size iron recovered from the fine fraction of automobile shredder residue for phenol degradation in water. Frontiers of Environmental Science & Engineering, 10(4): 9
CrossRef Google scholar
[64]
Song H, Li X, Cheng H, Cheng F (2013). Theoretical and experimental study of Au(III)-containing wastewater treatment using magnetotactic bacteria. Desalination and Water Treatment, 51(19–21): 3864–3870
[65]
Song H, Li X, Sun J, Xu S, Han X (2008). Application of a magnetotactic bacterium, Stenotrophomonas sp to the removal of Au(III) from contaminated wastewater with a magnetic separator. Chemosphere, 72(4): 616–621
CrossRef Google scholar
[66]
Song H, Li X, Sun J, Yin X, Wang Y, Wu Z (2007). Biosorption equilibrium and kinetics of Au(III) and Cu(II) on magnetotactic Bacteria. Chinese Journal of Chemical Engineering, 15(6): 847–854
CrossRef Google scholar
[67]
Stanton M M, Park B W, Vilela D, Bente K, Faivre D, Sitti M, Sanchez S (2017). Magnetotactic bacteria powered biohybrids target E. coli biofilms. ACS Nano, 11(10): 9968–9978
CrossRef Google scholar
[68]
Tajer-Mohammad-Ghazvini P, Kasra-Kermanshahi R, Nozad-Golikand A, Sadeghizadeh M, Ghorbanzadeh-Mashkani S, Dabbagh R (2016). Cobalt separation by Alphaproteobacterium MTB-KTN90: Magnetotactic bacteria in bioremediation. Bioprocess and Biosystems Engineering, 39(12): 1899–1911
CrossRef Google scholar
[69]
Tanaka M, Arakaki A, Staniland S S, Matsunaga T (2010). Simultaneously discrete biomineralization of magnetite and tellurium nanocrystals in magnetotactic bacteria. Applied Microbiology and Biotechnology, 76(16): 5526–5532
[70]
Tanaka M, Kawase M, Tanaka T, Matsunaga T (2009). Gold biorecovery from plating waste by magnetotactic bacterium, Magnetospirillum magneticum AMB-1. Online Proceeding Library Archive, 1169: 1169-Q03-12
CrossRef Google scholar
[71]
Tanaka M, Knowles W, Brown R, Hondow N, Arakaki A, Baldwin S, Staniland S, Matsunaga T (2016). Biomagnetic recovery and bioaccumulation of selenium granules in magnetotactic bacteria. Applied Microbiology and Biotechnology, 82(13): 3886–3891
[72]
Tanaka M, Nakata Y, Mori T, Okamura Y, Miyasaka H, Takeyama H, Matsunaga T (2008). Development of a cell surface display system in a magnetotactic bacterium, “Magnetospirillum magneticum” AMB-1. Applied and Environmental Microbiology, 74(11): 3342–3348
CrossRef Google scholar
[73]
Tanaka T, Takeda H, Ueki F, Obata K, Tajima H, Takeyama H, Goda Y, Fujimoto S, Matsunaga T (2004). Rapid and sensitive detection of 17β-estradiol in environmental water using automated immunoassay system with bacterial magnetic particles. Journal of Biotechnology, 108(2): 153–159
CrossRef Google scholar
[74]
Toro-Nahuelpan M, Giacomelli G, Raschdorf O, Borg S, Plitzko J M, Bramkamp M, Schüler D, Müller F D (2019). MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria. Nature Microbiology, 4(11): 1978–1989
CrossRef Google scholar
[75]
Uebe R, Schüler D (2016). Magnetosome biogenesis in magnetotactic bacteria. Nature Reviews. Microbiology, 14(10): 621–637
CrossRef Google scholar
[76]
Vargas G, Cypriano J, Correa T, Leão P, Bazylinski D A, Abreu F (2018). Applications of magnetotactic bacteria, magnetosomes and magnetosome crystals in biotechnology and nanotechnology: Mini-review. Molecules (Basel, Switzerland), 23(10): 2438
CrossRef Google scholar
[77]
Wang J, Zhuang S (2019). Removal of cesium ions from aqueous solutions using various separation technologies. Reviews in Environmental Science and Biotechnology, 18(2): 231–269
CrossRef Google scholar
[78]
Wang M, Liu P, Wang Y, Zhou D, Ma C, Zhang D, Zhan J (2015). Core-shell superparamagnetic Fe3O4@beta-CD composites for host-guest adsorption of polychlorinated biphenyls (PCBs). Journal of Colloid and Interface Science, 447: 1–7
CrossRef Google scholar
[79]
Wang Y, Gao H, Sun J, Li J, Su Y, Ji Y, Gong C (2011). Selective reinforced competitive biosorption of Ag(I) and Cu(II) on Magnetospirillum gryphiswaldense. Desalination, 270(1–3): 258–263
CrossRef Google scholar
[80]
Wang Y H, Sun J S (2005). Biosorption of heavy metal ions by activated sludge cultivated with culture medium of MTB. Chinese Journal of Chemical Engineering, 22(4): 255–258
[81]
Yan L, Da H, Zhang S, López V M, Wang W (2017). Bacterial magnetosome and its potential application. Microbiological Research, 203: 19–28
CrossRef Google scholar
[82]
Yan L, Zhang S, Chen P, Liu H, Yin H, Li H (2012). Magnetotactic bacteria, magnetosomes and their application. Microbiological Research, 167(9): 507–519
CrossRef Google scholar
[83]
Yan L, Zhang S, Chen P, Wang W, Wang Y, Li H (2013). Magnetic properties of Acidithiobacillus ferrooxidans. Materials Science and Engineering C, 33(7): 4026–4031
CrossRef Google scholar
[84]
Yang C D, Takeyama H, Tanaka T, Matsunaga T (2001). Effects of growth medium composition, iron sources and atmospheric oxygen concentrations on production of luciferase-bacterial magnetic particle complex by a recombinant Magnetospirillum magneticum AMB-1. Enzyme and Microbial Technology, 29(1): 13–19
CrossRef Google scholar
[85]
Yang H, Liu J, Yang J (2011). Leaching copper from shredded particles of waste printed circuit boards. Journal of Hazardous Materials, 187(1–3): 393–400
CrossRef Google scholar
[86]
Yang J, Lei M, Chen T, Gao D, Zheng G, Guo G, Lee D (2014). Current status and developing trends of the contents of heavy metals in sewage sludges in China. Frontiers of Environmental Science & Engineering, 8(5): 719–728
CrossRef Google scholar
[87]
Yang X, Wan Y, Zheng Y, He F, Yu Z, Huang J, Wang H, Ok Y S, Jiang Y, Gao B (2019). Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chemical Engineering Journal, 366: 608–621
CrossRef Google scholar
[88]
Yazdi S R, Nosrati R, Stevens C A, Vogel D, Davies P L, Escobedo C (2018). Magnetotaxis enables magnetotactic bacteria to navigate in flow. Small, 14(5): 1702982
[89]
Zeytuni N, Ozyamak E, Ben-Harush K, Davidov G, Levin M, Gat Y, Moyal T, Brik A, Komeili A, Zarivach R (2011). Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly. Proceedings of the National Academy of Sciences of the United States of America, 108(33): E480–E487
CrossRef Google scholar
[90]
Zhou W, Zhang Y, Ding X, Liu Y, Shen F, Zhang X, Deng S, Xiao H, Yang G, Peng H (2012). Magnetotactic bacteria: Promising biosorbents for heavy metals. Applied Microbiology and Biotechnology, 95(5): 1097–1104
CrossRef Google scholar
[91]
Zhou Y, Lisowski W, Zhou Y, Jern N W, Huang K, Fong E (2017). Genetic improvement of Magnetospirillum gryphiswaldense for enhanced biological removal of phosphate. Biotechnology Letters, 39(10): 1509–1514
CrossRef Google scholar
[92]
Zhu X, Hitchcock A P, Le Nagard L, Bazylinski D A, Morillo V, Abreu F, Leao P, Lins U (2018). X-ray absorption spectroscopy and magnetism of synthetic greigite and greigite magnetosomes in magnetotactic bacteria. Geomicrobiology Journal, 35(3): 215–226
CrossRef Google scholar

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 21677015), the Innovative Research Group of the National Natural Science Foundation of China (No. 51721093), and the US national science foundation (No. 1756444) via Biological & Environmental Interfaces of Nano Materials.

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1268 KB)

Accesses

Citations

Detail

Sections
Recommended

/