Effectiveness of aerobic pretreatment of municipal solid waste for accelerating biogas generation during simulated landfilling

Munawar Ali, Junli Zhang, Roberto Raga, Maria Cristina Lavagnolo, Alberto Pivato, Xu Wang, Yuanyuan Zhang, Raffaello Cossu, Dongbei Yue

PDF(285 KB)
PDF(285 KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 5. DOI: 10.1007/s11783-018-1031-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Effectiveness of aerobic pretreatment of municipal solid waste for accelerating biogas generation during simulated landfilling

Author information +
History +

Highlights

Effect of aerobic pretreatment of MSW on landfill gas generation was investigated.

Volatile solid (VS) loss of MSW is an effective and comparable indicator.

Chinese MSW requires at least a reduction of VS about 27% (w/w) prior to disposal.

Aerobic pretreatment of MSW reduced lag phase more than 90% before methanogenesis.

Aerobic pretreatment degree influences quantity of gas generation.

Abstract

This study evaluates the effectiveness of aerobic pretreatment of municipal solid waste (MSW) on reducing lag phase and accelerating biogas generation. Aerobic pretreatment degree (APD) was determined on the basis of reduction in volatile solids (VS) on a wet weight basis. In this study, intermittent aeration (IA) was applied to three reactors as a main aeration mode; since a single reactor was operated under continuous aeration mode. However, the purpose of the experiment was to reduce VS content of waste, irrespective of the comparison between aeration modes. Fresh MSW was first pretreated aerobically with different aeration rates (10, 40, 60 and 85 L/min/m3) for the period of 30–50 days, resulting in VS-loss equivalent to 20%, 27%, 38% and 53% on w/w basis for the wastes A1, A2, A3 and A4, respectively. The cumulative biogas production, calculated based on the modified Gompertz model were 384, 195, 353, 215, and 114 L/kg VS for the wastes A0, A1, A2, A3 and A4, respectively. Untreated waste (A0) showed a long lag phase; whereas the lag phases of pretreated MSW were reduced by more than 90%. Aerobically pretreated wastes reached stable methanogenic phase within 41 days compared to 418 days for untreated waste. The waste mass decreased by about 8% to 27% compared to untreated MSW, indicative that even more MSW could be placed in the same landfill. The study confirmed the effectiveness of aerobic pretreatment of MSW prior to landfilling on reducing lag phase and accelerating biogas generation.

Graphical abstract

Keywords

Municipal solid waste (MSW) / Aerobic pretreatment degree (APD) / Volatile solids (VS) / Intermittent aeration (IA) / Landfill gas / Landfilling

Cite this article

Download citation ▾
Munawar Ali, Junli Zhang, Roberto Raga, Maria Cristina Lavagnolo, Alberto Pivato, Xu Wang, Yuanyuan Zhang, Raffaello Cossu, Dongbei Yue. Effectiveness of aerobic pretreatment of municipal solid waste for accelerating biogas generation during simulated landfilling. Front. Environ. Sci. Eng., 2018, 12(3): 5 https://doi.org/10.1007/s11783-018-1031-1

References

[1]
Cossu R, Lai  T, Sandon A. Standardization of BOD5/COD ratio as a biological stability index for MSW. Waste Management (New York, N.Y.), 2012, 32(8): 1503–1508
CrossRef Pubmed Google scholar
[2]
Di Maria F, Micale  C. A holistic life cycle analysis of waste management scenarios at increasing source segregation intensity: the case of an Italian urban area. Waste Management (New York, N.Y.), 2014, 34(11): 2382–2392
CrossRef Pubmed Google scholar
[3]
Salati S, Scaglia  B, di Gregorio A,  Carrera A,  Adani F. Mechanical biological treatment of organic fraction of MSW affected dissolved organic matter evolution in simulated landfill. Bioresource Technology, 2013, 142(Supplement C): 115–120
CrossRef Pubmed Google scholar
[4]
Scaglia B, Salati  S, Di Gregorio A,  Carrera A,  Tambone F,  Adani F. Short mechanical biological treatment of municipal solid waste allows landfill impact reduction saving waste energy content. Bioresource Technology, 2013, 143(Supplement C): 131–138
CrossRef Pubmed Google scholar
[5]
Gioannis G D, Muntoni  A, Cappai G,  Milia S. Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants. Waste Management (New York, N.Y.), 2009, 29(3): 1026–1034
CrossRef Pubmed Google scholar
[6]
Ritzkowski M, Stegmann  R. Landfill aeration within the scope of post-closure care and its completion. Waste Management (New York, N.Y.), 2013, 33(10): 2074–2082
CrossRef Pubmed Google scholar
[7]
Erses A S, Onay  T T, Yenigun  O. Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresource Technology, 2008, 99(13): 5418–5426
CrossRef Pubmed Google scholar
[8]
Mahar R B, Liu  J, Li H,  Nie Y. Bio-pretreatment of municipal solid waste prior to landfilling and its kinetics. Biodegradation, 2009, 20(3): 319–330
CrossRef Pubmed Google scholar
[9]
Gerassimidou S, Evangelou  A, Komilis D. Aerobic biological pretreatment of municipal solid waste with a high content of putrescibles: Effect on landfill emissions. Waste Management & Research, 2013, 31(8): 783–791
CrossRef Pubmed Google scholar
[10]
Lornage R, Redon  E, Lagier T,  Hébé I,  Carré J. Performance of a low cost MBT prior to landfilling: Study of the biological treatment of size reduced MSW without mechanical sorting. Waste Management (New York, N.Y.), 2007, 27(12): 1755–1764
CrossRef Pubmed Google scholar
[11]
Broun R, Sattler  M. A comparison of greenhouse gas emissions and potential electricity recovery from conventional and bioreactor landfills. Journal of Cleaner Production, 2016, 112(Part 4): 2664–2673
CrossRef Google scholar
[12]
Amini H R, Reinhart  D R. Regional prediction of long-term landfill gas to energy potential. Waste Management (New York, N.Y.), 2011, 31(9): 2020–2026
CrossRef Pubmed Google scholar
[13]
Li S, Yoo  H K, Macauley  M, Palmer K,  Shih J S. Assessing the role of renewable energy policies in landfill gas to energy projects. Energy Economics, 2015, 49(Supplement C): 687–697
CrossRef Google scholar
[14]
Fazeli A, Bakhtvar  F, Jahanshaloo L,  Che Sidik N A,  Bayat A E. Malaysia’s stand on municipal solid waste conversion to energy: A review. Renewable and Sustainable Energy Reviews, 2016, 58(Supplement C): 1007–1016
CrossRef Google scholar
[15]
Cossu R. Technical evolution of landfilling. Waste Management (New York, N.Y.), 2010, 30(6): 947–948
CrossRef Pubmed Google scholar
[16]
Nie Y. The technology and policy of urban solid waste disposal in China. International Journal of Environmental Studies, 2010, 67(2): 183–193
CrossRef Google scholar
[17]
Xu Q, Tian  Y, Wang S,  Ko J H. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors. Waste Management (New York, N.Y.), 2015, 41(Supplement C): 94–100
CrossRef Pubmed Google scholar
[18]
Ni Z, Liu  J, Girotto F,  Cossu R,  Qi G. Targeted modification of organic components of municipal solid waste by short-term pre-aeration and its enhancement on anaerobic degradation in simulated landfill bioreactors. Bioresource Technology, 2016, 216(Supplement C): 250–259
CrossRef Pubmed Google scholar
[19]
Fang J J, Yang  N, Cen D Y,  Shao L M,  He P J. Odor compounds from different sources of landfill: characterization and source identification. Waste Management (New York, N.Y.), 2012, 32(7): 1401–1410
CrossRef Pubmed Google scholar
[20]
Zhou C, Gong  Z, Hu J,  Cao A, Liang  H. A cost-benefit analysis of landfill mining and material recycling in China. Waste Management (New York, N.Y.), 2015, 35(Supplement C): 191–198
CrossRef Pubmed Google scholar
[21]
Ying D, Chuanyu  C, Bin H,  Yueen X,  Xuejuan Z,  Yingxu C,  Weixiang W. Characterization and control of odorous gases at a landfill site: A case study in Hangzhou, China. Waste Management (New York, N.Y.), 2012, 32(2): 317–326
CrossRef Pubmed Google scholar
[22]
National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistics Press, 2016 (in Chinese)
[23]
Cai B, Wang  J, Long Y,  Li W, Liu  J, Ni Z,  Bo X, Li  D, Wang J,  Chen X, Gao  Q, Zhang L. Evaluating the impact of odors from the 1955 landfills in China using a bottom-up approach. Journal of Environmental Management, 2015, 164(Supplement C): 206–214
CrossRef Pubmed Google scholar
[24]
De Clercq D, Wen  Z, Fan F,  Caicedo L. Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: A case study in Beijing. Renewable and Sustainable Energy Reviews, 2016, 59(Supplement C): 1676–1685
CrossRef Google scholar
[25]
Zhang H, Wen  Z, Chen Y. Environment and economic feasibility of municipal solid waste central sorting strategy: a case study in Beijing. Frontiers of Environmental Science & Engineering, 2016, 10(4): 10
CrossRef Google scholar
[26]
Sun Y, Yue  D, Li R,  Yang T, Liu  S. Assessing the performance of gas collection systems in select Chinese landfills according to the LandGEM model: Drawbacks and potential direction. Environmental Technology (United Kingdom), 2015,  36(23): 2912–2918
[27]
Zhang Y, Yue  D, Liu J,  Lu P, Wang  Y, Liu J,  Nie Y. Release of non-methane organic compounds during simulated landfilling of aerobically pretreated municipal solid waste. Journal of Environmental Management, 2012, 101(Supplement C): 54–58
CrossRef Pubmed Google scholar
[28]
Zhang Y, Yue  D, Nie Y. Greenhouse gas emissions from two-stage landfilling of municipal solid waste. Atmospheric Environment, 2012, 55(Supplement C): 139–143
CrossRef Google scholar
[29]
Zhao Y, Christensen  T H, Lu  W, Wu H,  Wang H. Environmental impact assessment of solid waste management in Beijing City, China. Waste Management (New York, N.Y.), 2011, 31(4): 793–799
CrossRef Pubmed Google scholar
[30]
Wang H, Nie  Y. Municipal solid waste characteristics and management in China. Journal of the Air & Waste Management Association, 2001, 51(2): 250–263
CrossRef Pubmed Google scholar
[31]
Shao L M, He  P J, Zhang  H, Yu X H,  Li G J. Methanogenesis acceleration of fresh landfilled waste by micro-aeration. Journal of Environmental Sciences-China, 2005, 17(3): 371–374
Pubmed
[32]
Xu Q, Jin  X, Ma Z,  Tao H, Ko  J H. Methane production in simulated hybrid bioreactor landfill. Bioresource Technology, 2014, 168(Supplement C): 92–96
CrossRef Pubmed Google scholar
[33]
Yue D, Han  B, Sun Y,  Yang T. Sulfide emissions from different areas of a municipal solid waste landfill in China. Waste Management (New York, N.Y.), 2014, 34(6): 1041–1044
CrossRef Pubmed Google scholar
[34]
Wang L, Pei  T, Huang C,  Yuan H. Management of municipal solid waste in the Three Gorges region. Waste Management (New York, N.Y.), 2009, 29(7): 2203–2208
CrossRef Pubmed Google scholar
[35]
Mahar R B, Liu  J, Yue D,  Nie Y. Landfilling of pretreated municipal solid waste by natural convection of air and its effects. Journal of Environmental Science and Health, Part A, 2007, 42(3): 351–359
CrossRef Pubmed Google scholar
[36]
Mahar R B, Liu  J, Yue D,  Nie Y. Biodegradation of organic matters from mixed unshredded municipal solid waste through air convection before landfilling. Journal of the Air & Waste Management Association, 2007, 57(1):39–46
CrossRef Pubmed Google scholar
[37]
Norbu T, Visvanathan  C, Basnayake B. Pretreatment of municipal solid waste prior to landfilling. Waste Management (New York, N.Y.), 2005, 25(10): 997–1003
CrossRef Pubmed Google scholar
[38]
Dennehy C, Lawlor  P G, Jiang  Y, Gardiner G E,  Xie S, Nghiem  L D, Zhan  X. Greenhouse gas emissions from different pig manure management techniques: a critical analysis.  Frontiers of Environmental Science & Engineering, 2017, 11(3): 11
[39]
van Praagh M, Heerenklage  J, Smidt E,  Modin H,  Stegmann R,  Persson K M. Potential emissions from two mechanically-biologically pretreated (MBT) wastes. Waste Management (New York, N.Y.), 2009, 29(2): 859–868
CrossRef Pubmed Google scholar
[40]
Zach A, Binner  E, Latif M. Improvement of municipal solid waste quality for landfilling by means of mechanical-biological pretreatment. Waste Management & Research, 2000, 18(1): 25–32
[41]
Peces M, Astals  S, Mata-Alvarez J. Assessing total and volatile solids in municipal solid waste samples. Environmental Technology, 2014, 35(24): 3041–3046
CrossRef Pubmed Google scholar
[42]
Mahar R B, Sahito  A R, Yue  D, Khan K. Modeling and simulation of landfill gas production from pretreated MSW landfill simulator. Frontiers of Environmental Science & Engineering, 2016, 10(1): 159–167
CrossRef Google scholar
[43]
Mali Sandip T,  Khare Kanchan C,  Biradar Ashok H. Enhancement of methane production and bio-stabilisation of municipal solid waste in anaerobic bioreactor landfill. Bioresource Technology, 2012, 110(Supplement C): 10–17
CrossRef Pubmed Google scholar
[44]
Cossu R, Morello  L, Raga R,  Cerminara G. Biogas production enhancement using semi-aerobic pre-aeration in a hybrid bioreactor landfill. Waste Management (New York, N.Y.), 2016, 55(Supplement C): 83–92
CrossRef Pubmed Google scholar
[45]
Nikolaou A, Giannis  A, Gidarakos E. Comparative studies of aerobic and anaerobic treatment of MSW organic fraction in landfill bioreactors. Environmental Technology, 2010, 31(12): 1381–1389
CrossRef Pubmed Google scholar
[46]
Di Maria F, Sordi  A, Micale C. Experimental and life cycle assessment analysis of gas emission from mechanically-biologically pretreated waste in a landfill with energy recovery. Waste Management (New York, N.Y.), 2013, 33(11): 2557–2567
CrossRef Pubmed Google scholar
[47]
Luo J, Qian  G, Liu J,  Xu Z P. Anaerobic methanogenesis of fresh leachate from municipal solid waste: A brief review on current progress. Renewable & Sustainable Energy Reviews, 2015, 49(Supplement C): 21–28
CrossRef Google scholar
[48]
Siddiqui A A, Richards  D J, Powrie  W. Biodegradation and flushing of MBT wastes. Waste Management (New York, N.Y.), 2013, 33(11): 2257–2266
CrossRef Pubmed Google scholar
[49]
Ağdağ O N,  Sponza D T. Effect of aeration on the performance of a simulated landfilling reactor stabilizing municipal solid wastes. Journal of Environmental Science and Health, Part A, 2004, 39(11–12): 2955–2972
CrossRef Pubmed Google scholar

Acknowledgements

The authors are grateful for the financial support from Special Fund of Environmental Protection Research for Public Welfare of China (No. 201509055).

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer–Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(285 KB)

Accesses

Citations

Detail

Sections
Recommended

/