Effectiveness of aerobic pretreatment of municipal solid waste for accelerating biogas generation during simulated landfilling

Munawar Ali , Junli Zhang , Roberto Raga , Maria Cristina Lavagnolo , Alberto Pivato , Xu Wang , Yuanyuan Zhang , Raffaello Cossu , Dongbei Yue

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 5

PDF (285KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 5 DOI: 10.1007/s11783-018-1031-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Effectiveness of aerobic pretreatment of municipal solid waste for accelerating biogas generation during simulated landfilling

Author information +
History +
PDF (285KB)

Abstract

Effect of aerobic pretreatment of MSW on landfill gas generation was investigated.

Volatile solid (VS) loss of MSW is an effective and comparable indicator.

Chinese MSW requires at least a reduction of VS about 27% (w/w) prior to disposal.

Aerobic pretreatment of MSW reduced lag phase more than 90% before methanogenesis.

Aerobic pretreatment degree influences quantity of gas generation.

This study evaluates the effectiveness of aerobic pretreatment of municipal solid waste (MSW) on reducing lag phase and accelerating biogas generation. Aerobic pretreatment degree (APD) was determined on the basis of reduction in volatile solids (VS) on a wet weight basis. In this study, intermittent aeration (IA) was applied to three reactors as a main aeration mode; since a single reactor was operated under continuous aeration mode. However, the purpose of the experiment was to reduce VS content of waste, irrespective of the comparison between aeration modes. Fresh MSW was first pretreated aerobically with different aeration rates (10, 40, 60 and 85 L/min/m3) for the period of 30–50 days, resulting in VS-loss equivalent to 20%, 27%, 38% and 53% on w/w basis for the wastes A1, A2, A3 and A4, respectively. The cumulative biogas production, calculated based on the modified Gompertz model were 384, 195, 353, 215, and 114 L/kg VS for the wastes A0, A1, A2, A3 and A4, respectively. Untreated waste (A0) showed a long lag phase; whereas the lag phases of pretreated MSW were reduced by more than 90%. Aerobically pretreated wastes reached stable methanogenic phase within 41 days compared to 418 days for untreated waste. The waste mass decreased by about 8% to 27% compared to untreated MSW, indicative that even more MSW could be placed in the same landfill. The study confirmed the effectiveness of aerobic pretreatment of MSW prior to landfilling on reducing lag phase and accelerating biogas generation.

Graphical abstract

Keywords

Municipal solid waste (MSW) / Aerobic pretreatment degree (APD) / Volatile solids (VS) / Intermittent aeration (IA) / Landfill gas / Landfilling

Cite this article

Download citation ▾
Munawar Ali, Junli Zhang, Roberto Raga, Maria Cristina Lavagnolo, Alberto Pivato, Xu Wang, Yuanyuan Zhang, Raffaello Cossu, Dongbei Yue. Effectiveness of aerobic pretreatment of municipal solid waste for accelerating biogas generation during simulated landfilling. Front. Environ. Sci. Eng., 2018, 12(3): 5 DOI:10.1007/s11783-018-1031-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cossu RLai  TSandon A. Standardization of BOD5/COD ratio as a biological stability index for MSW. Waste Management (New York, N.Y.)201232(8): 1503–1508

[2]

Di Maria FMicale  C. A holistic life cycle analysis of waste management scenarios at increasing source segregation intensity: the case of an Italian urban area. Waste Management (New York, N.Y.)201434(11): 2382–2392

[3]

Salati SScaglia  Bdi Gregorio A Carrera A Adani F. Mechanical biological treatment of organic fraction of MSW affected dissolved organic matter evolution in simulated landfill. Bioresource Technology2013142(Supplement C): 115–120

[4]

Scaglia BSalati  SDi Gregorio A Carrera A Tambone F Adani F. Short mechanical biological treatment of municipal solid waste allows landfill impact reduction saving waste energy content. Bioresource Technology2013143(Supplement C): 131–138

[5]

Gioannis G DMuntoni  ACappai G Milia S. Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants. Waste Management (New York, N.Y.)200929(3): 1026–1034

[6]

Ritzkowski MStegmann  R. Landfill aeration within the scope of post-closure care and its completion. Waste Management (New York, N.Y.)201333(10): 2074–2082

[7]

Erses A SOnay  T TYenigun  O. Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresource Technology200899(13): 5418–5426

[8]

Mahar R BLiu  JLi H Nie Y. Bio-pretreatment of municipal solid waste prior to landfilling and its kinetics. Biodegradation200920(3): 319–330

[9]

Gerassimidou SEvangelou  AKomilis D. Aerobic biological pretreatment of municipal solid waste with a high content of putrescibles: Effect on landfill emissions. Waste Management & Research201331(8): 783–791

[10]

Lornage RRedon  ELagier T Hébé I Carré J. Performance of a low cost MBT prior to landfilling: Study of the biological treatment of size reduced MSW without mechanical sorting. Waste Management (New York, N.Y.)200727(12): 1755–1764

[11]

Broun RSattler  M. A comparison of greenhouse gas emissions and potential electricity recovery from conventional and bioreactor landfills. Journal of Cleaner Production2016112(Part 4): 2664–2673

[12]

Amini H RReinhart  D R. Regional prediction of long-term landfill gas to energy potential. Waste Management (New York, N.Y.)201131(9): 2020–2026

[13]

Li SYoo  H KMacauley  MPalmer K Shih J S. Assessing the role of renewable energy policies in landfill gas to energy projects. Energy Economics201549(Supplement C): 687–697

[14]

Fazeli ABakhtvar  FJahanshaloo L Che Sidik N A Bayat A E. Malaysia’s stand on municipal solid waste conversion to energy: A review. Renewable and Sustainable Energy Reviews201658(Supplement C): 1007–1016

[15]

Cossu R. Technical evolution of landfilling. Waste Management (New York, N.Y.)201030(6): 947–948

[16]

Nie Y. The technology and policy of urban solid waste disposal in China. International Journal of Environmental Studies201067(2): 183–193

[17]

Xu QTian  YWang S Ko J H. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors. Waste Management (New York, N.Y.)201541(Supplement C): 94–100

[18]

Ni ZLiu  JGirotto F Cossu R Qi G. Targeted modification of organic components of municipal solid waste by short-term pre-aeration and its enhancement on anaerobic degradation in simulated landfill bioreactors. Bioresource Technology2016216(Supplement C): 250–259

[19]

Fang J JYang  NCen D Y Shao L M He P J. Odor compounds from different sources of landfill: characterization and source identification. Waste Management (New York, N.Y.)201232(7): 1401–1410

[20]

Zhou CGong  ZHu J Cao ALiang  H. A cost-benefit analysis of landfill mining and material recycling in China. Waste Management (New York, N.Y.)201535(Supplement C): 191–198

[21]

Ying DChuanyu  CBin H Yueen X Xuejuan Z Yingxu C Weixiang W. Characterization and control of odorous gases at a landfill site: A case study in Hangzhou, China. Waste Management (New York, N.Y.)201232(2): 317–326

[22]

National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistics Press, 2016 (in Chinese)

[23]

Cai BWang  JLong Y Li WLiu  JNi Z Bo XLi  DWang J Chen XGao  QZhang L. Evaluating the impact of odors from the 1955 landfills in China using a bottom-up approach. Journal of Environmental Management2015164(Supplement C): 206–214

[24]

De Clercq DWen  ZFan F Caicedo L. Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: A case study in Beijing. Renewable and Sustainable Energy Reviews201659(Supplement C): 1676–1685

[25]

Zhang HWen  ZChen Y. Environment and economic feasibility of municipal solid waste central sorting strategy: a case study in Beijing. Frontiers of Environmental Science & Engineering201610(4): 10

[26]

Sun YYue  DLi R Yang TLiu  S. Assessing the performance of gas collection systems in select Chinese landfills according to the LandGEM model: Drawbacks and potential direction. Environmental Technology (United Kingdom)2015,  36(23): 2912–2918

[27]

Zhang YYue  DLiu J Lu PWang  YLiu J Nie Y. Release of non-methane organic compounds during simulated landfilling of aerobically pretreated municipal solid waste. Journal of Environmental Management2012101(Supplement C): 54–58

[28]

Zhang YYue  DNie Y. Greenhouse gas emissions from two-stage landfilling of municipal solid waste. Atmospheric Environment201255(Supplement C): 139–143

[29]

Zhao YChristensen  T HLu  WWu H Wang H. Environmental impact assessment of solid waste management in Beijing City, China. Waste Management (New York, N.Y.)201131(4): 793–799

[30]

Wang HNie  Y. Municipal solid waste characteristics and management in China. Journal of the Air & Waste Management Association200151(2): 250–263

[31]

Shao L MHe  P JZhang  HYu X H Li G J. Methanogenesis acceleration of fresh landfilled waste by micro-aeration. Journal of Environmental Sciences-China200517(3): 371–374

[32]

Xu QJin  XMa Z Tao HKo  J H. Methane production in simulated hybrid bioreactor landfill. Bioresource Technology2014168(Supplement C): 92–96

[33]

Yue DHan  BSun Y Yang T. Sulfide emissions from different areas of a municipal solid waste landfill in China. Waste Management (New York, N.Y.)201434(6): 1041–1044

[34]

Wang LPei  THuang C Yuan H. Management of municipal solid waste in the Three Gorges region. Waste Management (New York, N.Y.)200929(7): 2203–2208

[35]

Mahar R BLiu  JYue D Nie Y. Landfilling of pretreated municipal solid waste by natural convection of air and its effects. Journal of Environmental Science and HealthPart A200742(3): 351–359

[36]

Mahar R BLiu  JYue D Nie Y. Biodegradation of organic matters from mixed unshredded municipal solid waste through air convection before landfilling. Journal of the Air & Waste Management Association200757(1):39–46

[37]

Norbu TVisvanathan  CBasnayake B. Pretreatment of municipal solid waste prior to landfilling. Waste Management (New York, N.Y.)200525(10): 997–1003

[38]

Dennehy CLawlor  P GJiang  YGardiner G E Xie SNghiem  L DZhan  X. Greenhouse gas emissions from different pig manure management techniques: a critical analysis.  Frontiers of Environmental Science & Engineering, 201711(3): 11

[39]

van Praagh MHeerenklage  JSmidt E Modin H Stegmann R Persson K M. Potential emissions from two mechanically-biologically pretreated (MBT) wastes. Waste Management (New York, N.Y.)200929(2): 859–868

[40]

Zach ABinner  ELatif M. Improvement of municipal solid waste quality for landfilling by means of mechanical-biological pretreatment. Waste Management & Research200018(1): 25–32

[41]

Peces MAstals  SMata-Alvarez J. Assessing total and volatile solids in municipal solid waste samples. Environmental Technology201435(24): 3041–3046

[42]

Mahar R BSahito  A RYue  DKhan K. Modeling and simulation of landfill gas production from pretreated MSW landfill simulator. Frontiers of Environmental Science & Engineering201610(1): 159–167

[43]

Mali Sandip T Khare Kanchan C Biradar Ashok H. Enhancement of methane production and bio-stabilisation of municipal solid waste in anaerobic bioreactor landfill. Bioresource Technology2012110(Supplement C): 10–17

[44]

Cossu RMorello  LRaga R Cerminara G. Biogas production enhancement using semi-aerobic pre-aeration in a hybrid bioreactor landfill. Waste Management (New York, N.Y.)201655(Supplement C): 83–92

[45]

Nikolaou AGiannis  AGidarakos E. Comparative studies of aerobic and anaerobic treatment of MSW organic fraction in landfill bioreactors. Environmental Technology201031(12): 1381–1389

[46]

Di Maria FSordi  AMicale C. Experimental and life cycle assessment analysis of gas emission from mechanically-biologically pretreated waste in a landfill with energy recovery. Waste Management (New York, N.Y.)201333(11): 2557–2567

[47]

Luo JQian  GLiu J Xu Z P. Anaerobic methanogenesis of fresh leachate from municipal solid waste: A brief review on current progress. Renewable & Sustainable Energy Reviews201549(Supplement C): 21–28

[48]

Siddiqui A ARichards  D JPowrie  W. Biodegradation and flushing of MBT wastes. Waste Management (New York, N.Y.)201333(11): 2257–2266

[49]

Ağdağ O N Sponza D T. Effect of aeration on the performance of a simulated landfilling reactor stabilizing municipal solid wastes. Journal of Environmental Science and Health, Part A200439(11–12): 2955–2972

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (285KB)

3012

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/